Зоны Френеля

Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля

Зоны Френеля
Определение 1

Дифракция света – это явление отклонения света от прямолинейного направления его распространения во время прохождения рядом с препятствиями.

Из опыта видно, что определенные условия влияют на захождение геометрической тени на область.

Когда на пути встречается препятствие в виде диска, шарика или круглого отверстия, тогда экран, расположенный на большом расстоянии, покажет дифракционную картину, то есть систему чередующихся светлых и темных колец. При отверстии линейного характера (щели или нити) экран показывает параллельные дифракционные полосы.

Принцип Гюйгенса-Френеля

Существование дифракционных явлений было задолго до времен Ньютона. Объяснение, основанное на корпускулярной теории, не давало должных результатов.

Одним из первых объяснений явления дифракции, основанное на волновых представлениях, было дано Т. Юнгом. Еще в 1818 году была известна и развита количественная теория дифракционных явлений О. Френеля.

Принцип Гюйгенса был заложен в основу. Он только дополнил при помощи идеи об интерференции вторичных волн.

Первоначальный вид данного принципа давал возможность нахождения положения фронтов в последующие моменты времени, иначе говоря, определял направление распространения волны.

Это и есть принцип геометрической оптики.

Впоследствии гипотеза Гюйгенса об огибающих вторичных волнах были заменены Френелем с помощью физически ясного положения, тогда вторичные волны в точке наблюдения интерферировали друг с другом.

Принципом Гюйгенса-Френеля считалась гипотеза, которая была со временем подтверждена. При решении задач, где необходимо использовать данный принцип, получение результата достаточно точное. На иллюстрации изображен принцип Гюйгенса-Френеля.

Рисунок 3.8.1 Принцип Гюйгенса-Френеля. ∆S1 и ∆S2 – элементы волнового фронта, n1→ и n2→ — заданные нормали.

Предположим, что поверхность S – положение волнового фронта в некоторый момент. Из теории волн известно, что он является поверхностью, где в заданных точках происходит колебание с одинаковым значением фазы.

Волновыми фронтами плоской волны считают семейством параллельных плоскостей, которые перпендикулярно направлены относительно распространения волны.

Волновые фронты сферической волны, которые испускаются при помощи точечного источника, относят к концентрическим сферам.

Для определения колебания в заданной точке P, которое вызвано волной, используя принцип Френеля, находят колебания, которые вызваны в этой точке с помощью отдельных вторичных волн, которые приходят от элементов поверхности S (∆S1, ∆S2 и так далее). Далее следует произвести сложение колебаний, учитывая амплитуды и фазы. Элементы, загороженные препятствиями, не учитываются при решении.

Для примера ниже приведена дифракционная задача прохождения плоской монохроматической волны, которая исходит от удаленного источника через отверстие с радиусом R непрозрачного экрана.

Рисунок 3.8.2 Дифракция плоской волны на экране, содержащем круглое отверстие.

Р – точка наблюдения, находящаяся на оси симметрии, располагаемого на L расстоянии относительно экрана.

По принципу Гюйгенса-Френеля распределить на волновой поверхности вторичные источники, совпадающие с плоскостью отверстия, где волны достигают точки Р.

Интерференция волн в этой точке является причиной возникновения результирующего колебания, квадрат амплитуды которого определяется при наличии значений длин волн λ, амплитуды A0 падающей волны и расположением элементов.

Чтобы расчеты были облегченными, волновая поверхность падающей волны разбивается на кольцевые зоны, называемыми зонами Френеля, исходя из правила: расстояния от границ соседних зон к точке Р имеют отличие на половину волны.

https://www.youtube.com/watch?v=mDilsGUgKt8

Иначе говоря, r1=L+λ2, r2=L+2λ2, r3=L+3λ2…

При рассмотрении волновой поверхности исходя из точки Р, тогда получим, что границы зон Френеля будут иметь вид концентрических окружностей. Наглядно это изображено на рисунке.

Рисунок 3.8.3 Границы зон Френеля в плоскости отверстия.

По рисунку 3.8.2 определяем радиусы ρmзон по формуле: ρm=ρm2-L2=mλL+m2λ24≈mλL.

Зоны Френеля. Интерференционный максимум

Из определений раздела оптики имеем, что λA3>…>A1, где Amобозначает амплитуду колебаний, которые были вызваны при помощи m-ой зоны.

Используя приближение, видно, что амплитуда колебаний, которая вызвана определенной зоной, равняется среднему арифметическому соседних зон. Иначе это запишем как Am=Am-1+Am+12.

Отличие от двух соседних точек расстоянием λ2 говорит о том, что колебания, возбуждаемые этими зонами в состоянии противофазы. Соседние волны начинают гасить друг друга, а это приводит к тому, что суммарная амплитуда в точке запишется как:

A=A1–A2+A3–A4+…=A1–(A2–A3)–(A4–A5)–…>1 или R2>>Lλ.

Определение границы применимости геометрической оптики возможно при помощи заданного неравенства. При выполнении данного условия узкий пучок света может быть сформирован.

Определение 5

Отсюда следует вывод, что волновая оптика – это предельный случай геометрической.

Выше рассмотренный случай относится к дифракции света с удаленным источником, располагаемом на препятствиях округлой формы.

При расположении точечного источника света на конечном расстоянии сферически расходящаяся волна должна падать на препятствие. Данный случай усложняет задачу.

 Тогда построение зон Френеля необходимо выполнять на поверхности сферической формы, показанное на рисунке 3.8.4.

 Рисунок 3.8.4 Зоны Френеля на сферическом фронте волны. 

При расчете видно, что радиусы ρmзон Френеля на волне сферического фронта запишется, как

ρm=aba+bλ.

Выводы по теории Френеля справедливы.

Дифракция и интерференция света применима к любым волнам, так как имеется общность закономерностей. Начало XIX века – это было время, когда ученые только начинали изучать волны, а физическая природа света еще не была раскрыта.

Рисунок 3.8.5 Модель дифракции света.

Рисунок 3.8.6 Модель зоны Френеля.

Источник: https://Zaochnik.com/spravochnik/fizika/volnovaja-optika/difraktsija-sveta/

Зоны Френеля

Зоны Френеля

Вычисление амплитуды световых колебаний с использованием аналитического выражения принципа Гюйгенса — Френеля является в общем случае сложной, нетривиальной задачей. Однако Френель показал, что в некоторых случаях при наличии симметрии найти амплитуду суммарных колебаний можно используя алгебраическое или геометрическое суммирование.

Пусть сферическая или плоская волна попадает на экран с отверстием. Необходимо определить, как распределяется интенсивность света за экраном. Для того чтобы решить эту задачу используя принцип Гюйгенса — Френеля делают предположения:

  1. Непрозрачные части экрана не работают как источники вторичных волн.

  2. В отверстии экрана точки волнового фронта служат источником вторичных волн, как будто нет экрана.

Пусть точка А является источником сферической волны, $S$ — волновой фронт в момент времени $t$.

Рисунок 1.

Для того чтобы найти интенсивность волны в точке $В$, надо разбить поверхность $М$ на зоны — кольца, имеющие такие размеры, чтобы расстояния от краев зоны до точки $В$ были различны на величину $\frac{\lambda }{2}$. Границы зон на рис.1 обозначены как $M_0,\ M_1,\ M_2,\dots $ Запишем вышеназванное условие как:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Рисунок 2.

Центральная зона носит название нулевой ($M_0$). Иногда центральную зону называют первой, при этом говорят, что $m=1,2,$ …

Радиусы и площади зон Френеля

Для определения радиусов зон рассмотрим рисунок (рис. 2). На этом рисунке: радиусы зон $r_1,\ r_2,\dots ,r_m.$ $R$ — радиус кривизны сферического фронта волны.

Точка $D$ обозначает место пересечения фронта волны с прямой $АВ$, $d_1,\ d_2,\dots ,d_m-$ расстояния от точки $D$ до проекции границы соответствующей зоны на прямую $АВ$. Из рис.

2 видно, что для радиуса $r_m$ будет справедливо уравнение:

Рисунок 3.

Если ограничиться точностью величин до ${\lambda }2$ из уравнения (2) следует:

Используя второе выражение из (3) площадь нулевой зоны найдем как:

Найдем суммарную площадь первой и нулевой зон, получим:

Соответственно площадь первой зоны равна:

Получилось, что площадь первой зоны равна площади нулевой зоны. Выражение (6) определяет площади и всех остальных зон.

Пренебрегая кривизной поверхности фронта волны считают, что площадь кольцевой зоны на поверхности волнового фронта равна ее проекции на плоскость, которая перпендикулярна прямой $АВ$.

Если радиусы зон Френеля существенно меньше радиуса кривизны волнового фронта, то ошибка в таком допущении небольшая. Если длины волн малы, из формулы (3) можно сделать вывод, что данное условие хорошо выполнимо для большого количества зон Френеля.

Амплитуды колебаний

Амплитуды колебаний, которые возбуждаются в точке В зонами Френеля образуют монотонно убывающую последовательность. При этом фазы колебаний, которые возбуждают соседние зоны отличны на $\pi $. Поэтому амплитуда результирующего колебания в точке В может быть записана как:

Запишем выражение (7) в ином виде:

Так как амплитуда ($A_m$) монотонно убывает, то приближенно можно положить, что:

В таком случае выражение (8) преобразуется до:

В соответствии с выражением (10) амплитуда волны в точке $В$ равна половине амплитуды волны, которая создается центральной зоной.

Пример 1

Задание: Длина волны, которую посылает точечный источник света, равна $\lambda=500нм$. Источник находится на расстоянии $a=1м$ от непроницаемого для света экрана с круглым отверстием диаметр его, равен $d=1\ мм$. Каким должно быть расстояние от экрана до точки, в которой ведутся наблюдения ($b$), если отверстие открывает три зоны Френеля?

Решение:

Будем считать, что центральная зона — первая, то есть $m=1,2,3$ …

Рисунок 4.

Исходя из рис.4, можно записать:

\[r2=a2-{\left(a-d_m\right)}2\left(1.1\right).\]

Из численных данных задачи имеем, что:

\[\lambda \ll a,\ \to \lambda \ll b\left(1.2\right).\]

Преобразуем выражение (1.1) к виду:

\[r2={(b+m\frac{\lambda }{2})}2-{\left(b+d_m\right)}2\left(1.3\right).\]

Выразим $d_m$, и $r2$, учитывая, что выражение $\frac{b2}{4{(a+b)}2}m2{\lambda }2$мало, и им можно пренебречь, получим:

\[d_m=\frac{bm\lambda }{2(a+b)},\ r2=\frac{ab}{a+b}m\lambda \left(1.4\right).\]

Используя условие: $r=\frac{d}{2}$, из формулы для $r2$ (1.4) найдем расстояние $b$:

\[b=\frac{ar2}{am\lambda -r2}\to b=\frac{ad2}{4am\lambda -d2}.\]

Проведем вычисления, получим:

\[b=\frac{1\cdot {\left({10}{-3}\right)}2}{4\cdot 1\cdot 3\cdot 500\cdot {10}{-9}-{\left({10}{-3}\right)}2}=0,2(м).\]

Ответ: $0,2 м$.

Пример 2

Задание: Каким будет число зон Френеля, которые откроет отверстие радиусом r, если поле исследуется на расстоянии b от центра отверстия. Считать падающую волну плоской.

Решение:

Рисунок 5.

Исходя из выражения, которое определяет зоны Френеля:

\[b_m=b+m\frac{\lambda }{2}(2.1)\]

используя формулу для радиусов зон (рис.5):

\[{r_m}2={b_m}2-b2\ \left(2.2\right)\]

получим уравнение:

\[{r_m}2={\left(b+m\frac{\lambda}{2}\right)}2-b2=b2+2bm\frac{\lambda}{2}+{\left(m\frac{\lambda}{2}\right)}2-b2=bm\lambda+{\left(m\frac{\lambda}{2}\right)}2\left(2.3\right).\]

Так как длина волны видимого света мала, то ее квадратами можно пренебречь, то есть получаем:

\[{r_m}2\approx bm\lambda \to m=\frac{{r_m}2}{b\lambda }\left(2.4\right).\]

Если по условию задачи радиус отверстия равен r, то искомая величина:

\[m=\frac{r2}{b\lambda }.\]

Ответ: $m=\frac{r2}{b\lambda }.$

Источник: https://spravochnick.ru/fizika/optika/zony_frenelya/

5.2. Метод зон Френеля

Зоны Френеля

Принцип Гюйгенса — Френеля в рамках волновой теории позволяет объяснить прямолинейное распространение света. Определим амплитуду световой волны в произвольной точке Р, используя метод зон Френеля. Рассмотрим сначала случай падающей плоской волны (рис. 5.2).

Пусть плоский фронт волны F, распространяющейся от расположенного в бесконечности источника света, в некоторый момент времени находится на расстоянии ОР – r0 от точки наблюдения Р.

Рис. 5.2. Применение принципа Гюйгенса — Френеля к плоской волне: зоны Френеля на поверхности
плоского волнового фронта F представляют собой концентрические кольца
(для наглядности изображение зон Френеля развернуто на 90°, такими они выглядят из точки Р)

Все точки фронта волны, согласно принципу Гюйгенса — Френеля, испускают элементарные сферические волны, которые распространяются по всем направлениям и через некоторое время достигают точки наблюдения Р. Результирующая амплитуда колебаний в этой точке определяется векторной суммой амплитуд всех вторичных волн.

Колебания во всех точках волнового фронта F имеют одинаковое направление и происходят в одной фазе. С другой стороны, все точки фронта F находятся от точки Р на различных расстояниях. Для определения результирующей амплитуды всех вторичных волн в точке наблюдения Френель предложил метод разбиения волновой поверхности на кольцевые зоны, называемые зонами Френеля.

Взяв точку Р в качестве центра, построим ряд концентрических сфер, радиусы которых начинаются с  и увеличиваются каждый раз на половину длины волны  . При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами  и т. д.

Определим радиусы зон Френеля, имея ввиду, что , 0А2 = АР2 – 0Р2, то есть

(5.3)

Аналогично находим

(5.4)

Для оценки амплитуд колебаний определим площади зон Френеля. Первая зона (круг):

(5.5)

вторая зона (кольцо):

(5.6)

третья и последующие зоны (кольца):

(5.7)

Таким образом, площади зон Френеля примерно одинаковы, поэтому, согласно принципу Гюйгенса — Френеля, каждая зона Френеля служит источником вторичных сферических волн, амплитуды которых приблизительно одинаковы.

Кроме того, колебания, возбуждаемые в точке Р двумя соседними зонами, противоположны по фазе, так как разность хода соответствующих волн от этих зон до точки наблюдения Р равна  .

Поэтому при наложении эти колебания должны взаимно ослаблять друг друга, то есть амплитуда А результирующего колебания в точке Р может быть представлена в виде знакопеременного ряда

(5.8)

где А1 — амплитуда колебаний в точке Р возбуждаемых действием центральной (первой) зоны Френеля, А2 — амплитуда колебаний, возбуждаемых второй зоной, и т. д.

Расстояние от m-й зоны до точки Р медленно растет с номером зоны m. Угол  между нормалью к элементам зоны и направлением в точку Р также растет с m, следовательно, амплитуда Аm колебания, возбуждаемого m-й зоной в точке Р, монотонно убывает с ростом m. Другими словами, амплитуды колебаний, возбуждаемых в точке Р зонами Френеля, образуют монотонно убывающую последовательность:

(5.9)

Вследствие монотонного и медленного убывания Ат можно приближенно положить, что амплитуда колебаний от зоны с номером m равна среднему арифметическому амплитуд колебаний от двух соседних зон Френеля:

(5.10)

В выражении для амплитуды результирующего колебания все амплитуды от четных зон входят с одним знаком, а от нечетных — с другим. Запишем это выражение в следующем виде:

(5.11)

Выражения в скобках на основании (5.10) будут равны нулю, так что

(5.12)

то есть результирующая амплитуда, создаваемая в точке наблюдения Р всей поверхностью волнового фронта, равна половине амплитуды, создаваемой одной лишь центральной (первой) зоной Френеля.

Таким образом, колебания, вызываемые в точке Р волновой поверхностью F, имеют такую же амплитуду, как если бы действовала только половина первой (центральной) зоны.

Следовательно, свет распространяется как бы в узком канале, сечение которого равно половине первой (центральной) зоны Френеля — мы снова пришли к прямолинейному распространению плоской волны.

Если же на пути волны поставить диафрагму с отверстием, оставляющим открытой только центральную (первую) зону Френеля, амплитуда в точке Р будет равна А1, то есть в два раза превзойдет амплитуду, создаваемую всем волновым фронтом.

Соответственно, интенсивность света в точке Р будет в четыре раза больше, чем при отсутствии преграды между источником света и точкой Р.

Удивительно, не так ли? Но чудес в природе не бывает: в других точках экрана интенсивность света будет ослаблена, а средняя освещенность всего экрана при использовании диафрагмы, как и следовало ожидать, уменьшится.

5.2 Зоны Френеля для трехсантиметровой волны.

5.3 Зонная пластинка для трехсантиметровых волн.

Правомерность такого подхода, заключающегося в делении волнового фронта на зоны Френеля, подтверждена экспериментально. Колебания от четных и нечетных зон Френеля находятся в противофазе и, следовательно, взаимно ослабляют друг друга.

Если поставить на пути световой волны пластинку, которая перекрывает все четные или нечетные зоны Френеля, то можно убедиться, что интенсивность света в точке Р резко возрастет. Такая пластинка, называемая зонной, действует подобно собирающей линзе.

Подчеркнем еще раз: зоны Френеля — это мысленно выделенные участки поверхности волнового фронта, положение которых зависит от выбранной точки наблюдения Р. При другой точке наблюдения расположение зон Френеля будет иным.

Метод зон Френеля — удобный способ решения задач о дифракции волн на тех или иных препятствиях.

5.4 Трехсантиметровые волны. Фазовая зонная пластинка.

Различают два вида дифракции. Если источник света S и точка наблюдения Р находятся далеко от препятствия, лучи, падающие на препятствие и идущие в точку Р, образуют практически параллельные пучки.

В таком случае говорят о дифракции в параллельных лучах, или дифракции Фраунгофера.

Если же рассматривается дифракционная картина на конечном расстоянии от препятствия, вызвавшего дифракцию, то говорят о дифракции сферических волн, или дифракции Френеля.

Дополнительная информация

http://pymath.ru/viewtopic.php?f=77&t=757&sid=63be0a3e99f9a32260b53dcfaad3c271 – урок «Радиус зоны Френеля»

Источник: https://online.mephi.ru/courses/physics/optics/data/course/5/5.2.html

Booksm
Добавить комментарий