Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Зонная теория проводимости

Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Зонная теория позволяет объяснить, почему одни вещества проводят электрический ток, а другие — нет. Зонная теория проводимости основана на современном представлении о строении атома. Упрощенное строение атома с точки зрения энергетических уровней приведено на рисунке 1.

Рисунок 1. Энергетические уровни одиночного атома вещества

Одиночные атомы представляют собой только теоретический интерес. Обычно из атомов формируются кристаллические или поликристаллические структуры. При этом атомы вещества сближаются друг с другом.

Но ведь согласно принципу Паули на каждом энергетическом уровне может находиться только определенное количество электронов.

Поэтому отдельные энергетические уровни атома в кристалле расщепляются на N подуровней, где N — количество атомов в кристалле.

В зонной теории энергетические уровни показывается в виде горизонтальных линий, а не окружностей, т.к. они в одиночном атоме не зависят от направления удаления от ядра. График расщепления энергетических уровней в зависимости от расстояния между атомами лития в объеме вещества приведен на рисунке 2

Рисунок 2. График расщепления энергетических уровней в зависимости от расстояния между атомами

На этом рисунке расстояние между атомами Li при обычном давлении обозначено r0 Обратите внимание, что для наглядности нарушен масштаб по оси ординат. Например, расстояние между уровнями 2p и 2s составляет 32 эВ, а между 2s и 1s — 978 эВ.

На рисунке 2 видно, что при реальных расстояниях между атомами расщепляются в основном внешние энергетические уровни. Кроме того все внутренние уровни заполнены электронами. Интерес представляют верхние энергетические уровни. В приведенном атоме лития это уровни 3s и 3p. Поэтому в зонной теории обычно показываются именно эти зоны.

В случае, если зоны соседних энергетических уровней перекрываются, то электронам легко переходить на более высокие уровни и достаточно даже небольшого напряжения, чтобы возник электрический ток. Такие материалы называются металлами. Их проводимость обычно составляет ρ = 10-5 ÷ 10-6 Ом/см. График валентной зоны и зоны проводимости в металлах показан на рисунке 3.

Рисунок 3. График расщепления энергетических уровней в металлах

На примере металлов легко ввести понятие электронного газа и распределения электронов по энергетическим уровням.

Совокупность электронов в твердом теле статистическая физика рассматривает как «электронный газ» — систему, состоящую из большого числа частиц.

Эта система описывается функцией плотности заполнения энергетических состояний частицами F(W). Если число частиц в системе равно N, а число возможных состояний Z, то

,        (1)

и функцией распределения частиц по энергиям ф(W), определяющей число частиц с энергией W:

,        (2)

Вещества, удельная электропроводность которых находится в пределах ρ = 105 ÷ 10-10 Ом/см называются полупроводниками. На рисунке 4 представлены графики валентной зоны, запрещенной зоны и зоны проводимости для полупроводниковых материалов в соответствии с зонной теорией проводимости.

Рисунок 4. Энергетические зоны в полупроводниках

Вещества, удельная электропроводность которых находится в пределах ρ = 10-10 ÷ 10-15 Ом/см называются диэлектриками. В радиоэлектронике при изготовлении микросхем наибольшее распространение получил оксид кремния. На рисунке 5 представлены графики валентной зоны, запрещенной зоны и зоны проводимости для диэлектриков.

Рисунок 5. График энергетических зон в диэлектриках

Дата последнего обновления файла 20.01.2020

Литература:

  1. В. Н. Дулин Электронные и ионные приборы — М. — Л.: Государственное энергетическое издательство, 1963. -544 с.
  2. Электронные, квантовые приборы и микроэлектроника. Под редакцией Федорова Н. Д. — М.: Радио и связь, 1998. -560 с.
  3. Электронные приборы. Под редакцией Шишкина Г.Г. -М.: Энергоатомиздат, 1989.-496 с.
  4. Батушев В. А. Электронные приборы. -М.: Высшая школа, 1980. -383 с.
  5. Савиных В. Л. Физические основы электроники. Учебное пособие. СибГУТИ, 2003.
  6. Глазачев А. В. Петрович В. П. Физические основы электроники. Конспект лекций — Томск: Томский политехнический университет, 2015.
  7. Элементы зонной теории твердого тела

Вместе со статьей «Зонная теория проводимости» читают:

Основы квантовой теории строения атома
https://digteh.ru/foe/atom/

Полупроводники с электронной проводимостью
https://digteh.ru/foe/nsemicond/

Полупроводники с дырочной проводимостью
https://digteh.ru/foe/psemicond/

Автор Микушин А. В. All rights reserved. 2001 … 2019

Предыдущие версии сайта: http://neic.nsk.su/~mavr

http://digital.sibsutis.ru/

Источник: https://DigTeh.ru/foe/zon_teor/

Зонная теория твердых тел Энергетические зоны в

Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Зонная теория твердых тел

Энергетические зоны в кристалле • Взаимодействие между атомами в кристалле приводит к тому, что энергетические уровни атомов смещаются, расщепляются и образуют зоны. • Энергетическая зона – совокупность N близкорасположенных уровней разрешенных значений энергии, полученных при расщеплении в кристалле уровня изолированного атома.

• Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл • Расстояние между соседними энергетическими уровнями в зоне составляет приблизительно 10 -22 э. В.

• Разрешенные энергетические зоны разделены зонами запрещенных значений энергии — запрещенными энергетическими зонами. • Разрешенная зона, возникшая из уровней внутренних валентных электронов свободных атомов, называется валентной зоной

• Энергетическая зона , образованная из энергетических уровней внешних , «коллективизированных» электронов, зона проводимости • Зона проводимости в кристаллах либо заполнена частично, либо свободна

• Зонная теория объясняет различие электрических свойств металлов, диэлектриков и полупроводников на основе: 1. Неодинакового заполнения электронами разрешенных зон 2. Различной шириной запрещенных зон

Полупроводники • Полупроводниками являются твердые тела, которые при T=0 характеризуются полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой ( E порядка 1 -2 э. В) запрещенной зоной • Электропроводность полупроводников меньше электропроводности металлов и больше электропроводности диэлектриков.

Полупроводники: • элементы IV, V и VI групп Периодической системы элементов Менделеева ( Si, Ge, As, Se, Те) • химические соединения этих элементов (оксиды, сульфиды, селениды, сплавы элементов различных групп)

• Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. • С понижением температуры сопротивление металлов падает • У полупроводников с понижением температуры сопротивление возрастает

• Электропроводность собственных полупроводников увеличивается с ростом температуры по закону

• Различают собственные и примесные полупроводники. • Собственными полупроводниками являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. К собственным полупроводникам относятся химически чистые Ge, Se, а также многие химические соединения: In. Sb, Ga. As, Cd. S и др.

• При нагревании или облучении полупроводника электронам верхних уровней валентной зоны сообщается дополнительная энергия – энергия активации ∆Е, и они могут переходить на нижние уровни зоны проводимости.

• При этом в валентной зоне освобождаются энергетические уровни – образуются дырки. При наложении внешнего электрического поля электроны зоны проводимости переводятся на более высокие, а дырки валентной зоны на более низкие энергетические уровни.

Электропроводность полупроводника становится отличной от нуля.

• Движение электронов проводимости и дырок в отсутствие электрического поля является хаотическим • Под действием электрического поля электроны начнут двигаться против поля, дырки — по полю • Наряду с процессом генерации электронов и дырок идет процесс рекомбинации • для каждой температуры устанавливается определенная равновесная концентрация электронов и дырок

Примесная проводимость • Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а полупроводники — примесными полупроводниками. • Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефектами.

• при введении в кремний примерно 0, 001 ат. % бора его проводимость увеличивается примерно в 106 раз.

Электронная примесная проводимость

• Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов примеси, называемого примесным уровнем. • этот уровень располагается вблизи дна зоны проводимости

• в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов, носителями тока являются электроны; • возникает электронная примесная проводимость (проводимость nтипа). • Полупроводники с такой проводимостью называются электронными (или полупроводниками n-типа).

• Примеси, являющиеся источником электронов, называются донорами, • а энергетические уровни этих примесей — донорными уровнями.

Дырочная примесная проводимость

• Ввведение трехвалентной примеси в решетку кремния приводит к возникновению в запрещенной зоне примесного энергетического уровня А, не занятого электронами • этот уровень располагается выше верхнего края валентной зоны

• В полупроводниках с примесью, валентность которой на единицу меньше валентности основных атомов, носителями тока являются дырки • возникает дырочная проводимость (проводимость р-типа). • Полупроводники с такой проводимостью называются дырочными (или полупроводниками р-типа).

• Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами, • а энергетические уровни этих примесей — акцепторными уровнями.

• В отличие от собственной проводимости, осуществляющейся одновременно электронами и дырками примесная проводимость полупроводников обусловлена в основном носителями одного знака

p-n-переход • Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом

• Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в р-полупроводник, где их концентрация ниже, дырки же наоборот.

• В n-полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов • В р-полупроводнике из-за ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов

• Эти объемные заряды образуют у границы двойной электрический слой •

• Если приложенное к p-n-переходу внешнее электрическое поле совпадает с направлением поля контактного слоя, то запирающий слой расширится и его сопротивление возрастет.

• Направление внешнего поля, расширяющего запирающий слой, называется запирающим • В этом направлении электрический ток через p-n-переход практически не проходит

• Если приложенное к p-n-переходу внешнее электрическое поле направлено противоположно полю контактного слоя , то оно вызывает движение электронов в nполупроводнике и дырок в pполупроводнике к границе p-n-перехода навстречу другу • В этой области они рекомбинируют, толщина контактного слоя и его сопротивление уменьшаются.

• В этом направлении электрический ток проходит сквозь p-n-переход в направлении от p-полупроводника к nполупроводнику;

Лазер •

• Спонтанное излучение — излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое. • Спонтанное излучение различных атомов происходит некогерентно, так каждый атом начинает и заканчивает излучать независимо от других.

Индуцированное излучение

• Индуцированное (вынужденное) излучение — излучение возбужденных атомов под действием падающего на них света. • При индуцированном излучении, частота, фаза, поляризация и направление распространения оказываются такими же, как и у волны, падающей на атом.

Принцип действия лазера. • В 1940 г. советский физик В. А. Фабрикант указал на возможность использования явления вынужденного излучения для усиления электромагнитных волн. Российские ученые Н. Г. Басов и А. М. Прохоров и американский физик Ч. Таунс, создавшие в 1954 г.

квантовый генератор излучения, работающий в сантиметровом диапазоне, были удостоены в 1964 г. Нобелевской премии по физике. • Первый лазер, работающий на кристалле рубина в видимом диапазоне, был создан в 1960 г. американским физиком Т. Мейманом.

• Слово «лазер» образовано начальными буквами английских слов light amplification by stimulated emission of radiation («усиление света с помощью вынужденного излучения»).

• Лазер — источник излучения, усиливаемого в результате индуцированного излучения. • Усиление излучения, падающего на среду, возникает тогда, когда интенсивность индуцированного излучения превысит интенсивность поглощенного излучения. • Это произойдет в случае инверсной населенности, если в возбужденном состоянии находится больше частиц, чем в основном n 2 > n 1.

• Инверсная населенность энергетических уровней — неравновесное состояние среды, при котором концентрация атомов в возбужденном состоянии больше, чем концентрация атомов в основном состоянии.

• Спонтанные переходы являются фактором, препятствующим накоплению атомов в возбужденном состоянии. Этим можно пренебречь, если возбужденное состояние метастабильно.

• Метастабильное состояние — возбужденное состояние электрона в атоме, в котором он может находиться достаточно долго (например, 10 -3 с) по сравнению с обычным возбужденным состоянием (10 -8 с).

Принцип действия рубинового лазера • Рубин представляет собой кристалл оксида алюминия Аl 203, в котором часть атомов алюминия замещена ионами хрома Cr 3+. • С помощью мощного импульса лампывспышки («оптической накачки») ионы хрома переводятся из основного состояния Е 1 в возбужденное Е 2.

• Через 10 -8 с ионы, передавая часть энергии кристаллической решетке, переходят на метастабильный энергетический уровень Е 2< Е 3, на котором они начинают накапливаться. • Малая вероятность спонтанного перехода с этого уровня в основное состояние приводит к инверсной населенности: n 2> n 1. • Случайный фотон с энергией hν = Е 2 -Е 1 может вызвать лавину индуцированных когерентных фотонов.

Основные элементы лазера • оптический резонатор, состоящий из полностью отражающего зеркала (1) и частично пропускающего (около 50%) выходного зеркала (2) • активная среда (3) • устройство накачки (4)

• Индуцированное излучение, распространяющееся вдоль оси цилиндрического кристалла рубина, многократно отражается от его торцов и быстро усиливается. • Один из торцов рубинового стержня делают зеркальным, а другой — частично прозрачным. Через него выходит мощный импульс когерентного монохроматического излучения красного цвета с длиной волны 694, 3 нм.

Основные свойства лазеров • • Монохроматичность Когерентность Малая угловая расходимость Высокая мощность излучения

Источник: https://present5.com/zonnaya-teoriya-tverdyx-tel-energeticheskie-zony-v/

Зонная теория твердых тел

Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Квантовая физика описывает состояния электронов в атоме согласно схеме из четырех квантовых чисел. Квантовые числа описывают допустимые состояния, которые электроны могут принимать в атоме.

Используя аналогию с амфитеатром, квантовые числа описывают, сколько доступно рядов и мест.

Отдельные электроны могут быть описаны комбинацией квантовых чисел, как зритель в амфитеатре, занимающий конкретные ряд и место.

Как и зрители в амфитеатре, перемещающиеся между рядами и сиденьями, электроны могут изменять свое состояние, учитывая наличие доступных мест, которые они могут занять, и доступной энергии.

Уровень оболочки тесно связан с количеством энергии, которой обладает электрон: «прыжки» между уровнями оболочек (и даже подоболочек) требуют передачи энергии.

Если электрон перемещается на оболочку более высокого порядка, то требуется передача дополнительной энергии электрону от внешнего источника.

Используя аналогию с амфитеатром, человеку необходимо больше энергии, чтобы перейти на более высокий ряд сидений, так как ему необходимо подняться на большую высоту, противодействуя силе тяжести. И наоборот, электрон «перепрыгивающий» на более низкую оболочку отдает часть своей энергии, как человек, прыгающий вниз на нижний ряд сидений; излишки энергии выделяются в виде тепла или звука.

Не все «прыжки» равнозначны. Прыжки между разными оболочками требуют существенного обмена энергией, а прыжки между подоболочками или орбиталями требуют обменов меньшим количеством энергии.

Когда атомы объединяются в вещество, наиболее удаленные оболочки, подоболочки и орбитали сливаются, обеспечивая большее количество доступных энергетических уровней, доступных электронам. Когда большое количество атомов расположены близко друг к другу, эти доступные энергетические уровни образуют почти непрерывную зону, в которой электроны могут перемещаться, как показано на рисунке ниже.

Перекрытие электронных зон в элементах металлов.

Ширина этих зон и их близость к существующим электронам определяют, как будут подвижны эти электроны при воздействии электрического поля.

В металлических веществах пустое перекрытие зон и зоны, содержащие электроны, означают, что электроны одного атома могут перейти к тому, что обычно было состоянием более высокого уровня, под воздействием небольшого количества дополнительной энергии (или вовсе без нее).

Таким образом, внешние электроны или, как говорят, «свободные» готовы перемещаться по мановению электрического поля.

Перекрытие зон происходит не во всех веществах, независимо от того, сколько атомов близки друг к другу.

В некоторых веществах остается значительный разрыв между верхней зоной, содержащей электроны (так называемой валентной зоной) и следующей зоной, которая пуста (так называемой зоной проводимости). Смотрите рисунок ниже.

В результате валентные электроны «связаны» с их атомами и не могут стать подвижными в веществе без значительного количества прикладываемой энергии. Эти вещества называются диэлектриками.

Разделение электронных зон в изолирующих материалах.

Материалы, которые попадают в категорию полупроводников, обладают узким разрывом между валентной зоной и зоной проводимости. Таким образом, количество энергии, необходимой для перемещения валентного электрона в зону проводимости, где он станет подвижным, весьма мало (рисунок ниже).

Разделение электронных зон в полупроводниковых материалах, (a) множество близко расположенных атомов полупроводника все еще приводит к значительной запрещенной зоне,

(b) множество близко расположенных атомов металла для сравнения.

При низких температурах небольшая тепловая энергия способна выдавить валентные электроны от запрещенной зоны, и полупроводниковый материал начинает действовать больше как диэлектрик. При высоких температурах количества окружающей тепловой энергии становится достаточно, чтобы заставить электроны преодолеть разрыв, и материал увеличивает свою электрическую проводимость.

Трудно предсказать проводящие свойства вещества, исследуя конфигурации электронов его атомов. Хотя лучшие металлические проводники электричества (серебро, медь, золото) все обладают внешней s-подоболочкой с одним электроном, необязательно, что есть связь между проводимостью и количеством валентных электронов:

ЭлементУдельное сопротивление (ρ), Ом·мм2/м при 20°CКонфигурация электронов
Серебро (Ag)0,01624d105s1
Медь (Cu)0,0183d104s1
Золото (Au)0,0235d106s1
Алюминий (Al)0,02953p1
Вольфрам (W)0,0555d46s2
Молибден (Mo)0,0544d55s1
Цинк (Zn)0,0593d104s2
Никель (Ni)0,0873d84s2
Железо (Fe)0,0983d64s2
Платина (Pt)0,1075d96s1

Конфигурации электронных зон, создаваемых соединениями различных элементов, с трудом можно связать с электронными конфигурациями их составных элементов.

Итоги

Для удаления электрона из валентной зоны в более высокую свободную зону (зону проводимости) требуется энергия. Большая энергия требуется для перемещения между оболочками, меньшая – между подоболочками.

Валентная зона и зона проводимости в металлах перекрываются, и для перемещения электрона требуется малое количество энергии. Металлы являются отличными проводниками.

Большой разрыв между валентной зоной и зоной проводимости в диэлектрике требует большого количества энергии, чтобы перенести электрон из валентной зоны. Таким образом, диэлектрики не проводят электрический ток.

Полупроводники обладают небольшим разрывом между валентной зоной и зоной проводимости. Чистые полупроводники не являются ни хорошими диэлектриками, ни хорошими проводниками.

Оригинал статьи:

Теги

ОбучениеЭлектронЭлектроника

Источник: https://radioprog.ru/post/105

Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Зонная теория твердых тел, энергетические уровни и формирование энергетических зон

Основываясь лишь на модели электронного газа невозможно объяснить тот факт, что одни вещества представляют собой проводники, вторые полупроводники, а третьи изоляторы. Стоит принимать во внимание взаимодействие между атомами и электронами. Предположим, что кристаллическая решетка металла или полупроводника сформирована как результат сближения атомов.

Связь с атомными ядрами валентных электронов атомов металлов проявляет себя гораздо слабее, чем связь с подобными электронами полупроводников. При условии сближения атомов электроны приходят во взаимодействие. В результате валентные электроны разрывают свою связь с атомами металла, что делает их свободными, обладающими возможностью перемещаться по всему металлу.

Определение 1

В полупроводниках, по причине существенно более сильной связи электронов с ядрами атомов, для того, чтобы разорвать связь валентного электрона нужно сообщить ему так называемую энергию ионизации.

Для разных полупроводников величина энергии ионизации может колебаться от 0,1 до 2 эВ, в то же время средняя кинетическая энергия теплового движения атома близка к 0,04 эВ.

Количество атомов, энергия которых выше или эквивалентна энергии ионизации, относительно невелико. Соответственно, свободных электронов в полупроводниках не много.

С увеличением температуры, число атомов с энергией ионизации повышается, а это значит, что растет и электрическая проводимость полупроводника.

За процессом ионизации всегда идет сопровождение в виде обратного процесса, а именно рекомбинация. В условиях состояния равновесия среднее число актов ионизации эквивалентно количеству актов рекомбинации.

Понятие о зонной теории

Определение 2

Квантовая теория электропроводности твердых тел основывается на так называемой зонной теории твердых тел, которая заключается в изучении энергетического спектра электронов.

Определение 3

Данный спектр подразделяется на разделенные запрещенными промежутками зоны.

В случае, если в верхней зоне, где определяется присутствие электронов, они не заполняют каждое из квантовых состояний (в пределах зоны может быть проведено перераспределение энергии и импульса), то данное вещество представляет собой проводник.

Подобная зона носит название зоны проводимости, вещество — проводника электрического тока, тип проводимости такого вещества является электронным.

Если в зоне проводимости находится большое количество электронов и свободных квантовых состояний, то значение электропроводности велико.

Электроны в условиях зоны проводимости при прохождении электрического тока определяются как носители заряда. Процесс движения подобных электронов может быть описан с помощью законов квантовой механики.

Если проводить сравнение с общим количеством электронов, то число таких электронов может считаться малым.

Энергетические уровни

Энергетические уровни валентного электрона в одном изолированном атоме могут быть представлены таким образом, как это проиллюстрировано на рисунке 1. Снизу вверх по вертикали на рисунке 1 откладываются: величины полной энергии электрона, а также отмечаются минимальная энергия электронов проводимости Ec с наибольшим значением энергии связанных электронов Ev.

Вероятные значения энергий электронов заполняют собой некоторую область или же так называемую зону энергии W≥Ec. Такая зона представляет собой зону проводимости. Энергии электронов связи формируют другую зону с W≤Ev. Приведенная зона носит название зоны валентных электронов или, другими словами, валентной зоны.

Данные зоны разделены энергетическим промежутком с шириной, определяемой с помощью следующего выражения: Eg=Ec−Ev.

Такой энергетический промежуток представляет собой зону запрещенных энергий. В условиях отсутствующих примесных атомов, а также дефектов решетки, стационарные движения электронов с энергией внутри запрещенной зоны не представляются возможными.

Рисунок 1

Определение 4

Процесс разрыва химической связи, который провоцирует возникновение электрона проводимости и положительной дырки, носит название электронного перехода.

Определение 5

Валентная зона — зона проводимости (смотрите рисунок 1 цифра 1).

Обратный процесс определяется как рекомбинация электрона проводимости и положительной дырки (электронный переход 2, рисунок 1). В условиях существования атомов примеси вероятно возникновение дискретных разрешенных уровней энергии как ,например, уровень Ed, проиллюстрированный на рисунке 1.

Данные уровни могут существовать не во всем объеме кристалла, а лишь в местах нахождения атомов примеси (такие уровни определяются как локальные). Каждый из локальных уровней производит энергию электрона, в случае его нахождения на примесном атоме.

Локальные электронные уровни дают возможность дополнительных электронных переходов. Как пример, ионизация донора с образованием электрона проводимости проиллюстрирована на рисунке 1 в виде электронного перехода 3.

Роль обратного ему процесса захвата электрона на атом донора играет электронный переход 4 из зоны проводимости на незаполненный уровень донора.

Образование энергетических зон

Из решения задачи о движении электрона в поле периодического потенциала можно сделать вывод, что имеет место система зон разрешённых энергий (рисунок 2). Каждая из зон ограничивается снизу некоторой энергией Wmin или, другими словами, дном зоны, а сверху так называемым потолком зоны Wmax.

Данные зоны разделены полосами запрещенных энергий. Ширина разрешенных зон в условиях увеличения энергии возрастает. Возможно перекрытие друг друга широкими зонами, такое явление провоцирует образование единой сложной зоны.

Предположим, что существует N изолированных атомов, которые никоим образом не взаимодействуют. В каждом из таких атомов энергия электронов может претерпевать изменения только в виде скачка, таким образом, она характеризуется совокупностью резких, дискретных уровней энергии.

В данной системе невзаимодействующих атомов роль каждого атомного энергетического уровня играет N совпадающих уровней энергии. Сократим расстояние между атомами до формирования кристаллической решетки. Атомы начинают взаимодействовать друг с другом, а уровни энергии изменяются.

Ранее совпадающие N уровней энергии начинают разниться. Подобная система несовпадающих уровней энергии носит название разрешенной зоны энергий.

Выходит, что энергетические зоны возникают в качестве результата расщепления дискретных уровней энергии электрона в атомах, вызванного действием атомов решетки.

Количество энергетических уровней в каждой из зон крайне большое (порядка числа атомов в кристалле), энергетические уровни расположены довольно близко.

Таким образом, в некоторых случаях можно принять, что внутри зон энергия электрона претерпевает непрерывные изменения (как это происходит в классической теории). Однако тот факт, что количество уровней конечно, имеет принципиальное значение.

Совокупность энергетических уровней, на которые расщепляется кратный уровень, представляет собой так называемую энергетическую зону или, другими словами, зону кристалла. Зона,возникающая как результат расщепления N-кратного вырожденного основного уровня, носит название основной зоны, все остальные зоны определяются как зоны возбуждения.

Замечание 1

Энергетические зоны не могут быть отождествлены с пространственными зонами, областями пространства, в которых находится электрон.

В рамках зонной теории принимается тот факт, что электрон движется в постоянном электрическом поле, которое формируется ионами и остальными электронами. Ионы обладают сравнительно большими массами и считаются неподвижными. Электроны учитываются суммарно. Они определяются в виде отрицательно заряженной жидкости, которая заполняет пустующее пространство между ионами.

В подобной модели роль электронов заключается в компенсации заряда ионов. Электрическое поле модели периодично в пространстве, место периодов занимают пространственные периоды решетки. Задание сводится к задаче о движении одного электрона в постоянном периодическом поле. Решение данной задачи в квантовой механике приводит к зонной структуре энергетических уровней.

Пример 1

Дайте описание зонных структур металлов, диэлектриков и полупроводников.

Решение

Электрические свойства тел зависимы от ширины запрещенной энергетической зоны и различий в заполнении разрешенных зон. Существование в разрешенной зоне свободных энергетических уровней является необходимым условием возникновения проводимости. На данный уровень поле сторонних сил может перенести электрон.

Зону, которая является пустой или же заполнена лишь частично определяется как зона проводимости. В свою очередь, зона, заполненная электронами полностью, носит название валентной. Металлы, диэлектрики и полупроводники отличаются в области степени заполнения валентной зоны электронами, а также шириной запретной зоны.

У металлов зона проводимости является частично заполненной и обладает свободными верхними уровнями. При условии T=0 валентные электроны попарно заполняют нижние уровни валентной зоны. Локализованным на верхних уровнях электронам для того, чтобы перевести их на более высокие уровни достаточно подвести энергию 10-23-10-22 эВ.

У диэлектриков первая, являющаяся незаполненной зона, отделена от целиком заполненной нижней зоны с помощью широкой запрещенной зоны. Чтобы перевести электрон в свободную зону необходимо сообщить энергию большую или же эквивалентную ширине запретной зоны. Ширина запрещенной зоны диэлектриков является равной нескольким электрон вольтам.

Тепловое движение не имеет возможности перевести в свободную зону большое количество электронов. У кристаллических полупроводников ширина запрещенной зоны между полностью заполненной валентной зоной и первой незаполненной зоной довольно мала.

Если ширина запретной зоны эквивалентна нескольким десятым эВ, энергии теплового движения хватает для того, чтобы перевести электроны в свободную зону проводимости. При этом вероятен переход электрона внутри валентной зоны на освободившиеся уровни.

Пример 2

Перечислите основные предположения зонной теории.

Решение

В качестве основных предположений зонной теории можно привести следующие:

  • Ионы в узлах кристаллической решетки рассматриваются как неподвижные, так как они имеют относительно большую массу.
  • Ионы являются источниками электрического поля. Это поле действует на электроны. Размещение положительных ионов является периодическим, так как они находятся в узлах идеальной кристаллической решетки.
  • Взаимодействие электронов заменяют эффективным внешним полем. Электроны взаимодействуют в соответствии с законом Кулона. Это предположение позволяет заменить многоэлектронную задачу задачей с одним электроном.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/elektrodinamika/zonnaja-teorija-tverdyh-tel/

Booksm
Добавить комментарий