Затухающие колебания в контуре и их уравнение

Свободные колебания в LC-контуре. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение

Затухающие колебания в контуре и их уравнение

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Электромагнитными колебаниями называются переодические изменения во времени значений силы тока и напряжения в электрической цепи, а также обусловленные этим взаимосвязанные колебания электрического и магнитного полей, которые описывают соответственно векторы Еи Н. Наиболее распространенной электрической цепью, в которой возникают такие колебания, является электрический колебательный контур, содержащий последовательно соединенные конденсатор емкостью С, катушку индуктивностью L и резистор сопротивлением R, рис.1.

— С+ I=dq/dt

— +

φ2 φ1> φ2

R L

K Ec =-LdI/dt

I

Рис.1.

Если сопротивление R мало (R→0) электрический контур является идеальным (LC – контур). При R≠0 часть электрической энергии будет расходоваться на нагревание проводников и будет наблюдаться затухание колебательных процессов.

Свободные колебания в LC-контуре.Колебания электрического тока в контуре можно вызвать, либо сообщив обкладкам конденсатора некоторый начальный заряд, либо возбудив в индуктивности ток. Воспользуемся первым способом. При разомкнутом ключе зарядим конденсатор.

Между обкладками конденсатора возникнет электрическое поле, энергия которого WC = q2/2C. После замыкания ключа К емкость начнет разряжаться и в контуре потечет электрический ток.

В результате энергия электрического поля будет уменьшаться, зато возникнет и начнет увеличиваться энергия магнитного поля, обусловленного током, текущим через индуктивность. Энергия магнитного поля WL=LI2/2.

Если R = 0, то в момент когда напряжение на конденсаторе, заряд, а следовательно и энергия WC обращаются в нуль, энергия магнитного поля, а следовательно и ток достигают наибольшего значения (начиная с этого момента ток течет за счет э.д.с. самоиндукции).

В дальнейшем ток уменьшается и, когда заряды на обкладках конденсатора достигнут первоначального значения q (но противоположных знаков), сила тока станет равной нулю. После этого те же процессы начнут протекать в обратном направлении, контур вернется в исходное состояние и весь цикл повторится снова и снова. Колебания электрического тока (заряда, напряжения) сопровождаются взаимными превращениями энергий электрического и магнитного полей.

Будем обходить контур против часовой стрелки. При возрастании значения заряда на положительно заряженной обкладке конденсатора сила тока

I = dq/dt. (1)

Для расчета электрической цепи запишем закон Ома

IR = φ1 – φ2 + EC. (2)

Поскольку разность потенциалов между обкладками φ1 – φ2 =q/C, а э.д.с. самоиндукции Ec =-LdI/dt, то равенство (2) можно переписать в виде дифференциального уравнения второго порядка по отношению к заряду q=q(t):

Ld2q/dt2 +Rdq/dt + q/C = 0. (3)

Если учесть, что R = 0,ииспользовать стандартные обозначения для собственной частоты ω0 гармонических колебаний:

ω0 = 1/√LC, (4)

то уравнение (3) примет вид

d2q/dt2 + ω02q = 0. (3а)

Решением уравнения (3а) является функция

q = qmcos(ω0t + α). (5)

Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0 = 1/√LC, которая называется собственной частотой контура, она соответствует собственной частоте гармонического осциллятора.

Из (4) получаем выражение для периода колебаний (формула Томсона):

T = 2π√(LC). (6)

Используя известную формулу q = UC и (5), запишем выражение для напряжения на конденсаторе:

U = (1/C)qmcos(ω0t + α) = Um cos(ω0t + α). (7)

Продифференцировав функцию (5) по времени, получим выражение для силы тока в контуре:

I = — ω0qm sin(ω0t + α) = Im cos(ω0t + α + π/2). (8)

Из (8) видно, что сила тока опережает по фазе напряжение на конденсаторе на π/2. Сопоставление формул (5), (7) и (8) показывает, что в момент, когда ток достигает наибольшего значения, заряд и напряжение обращаются в нуль, и наоборот, как мы уже это установили ранее, основываясь на энергетических соображениях.

Um=qm/C, Im = ω0qm, Um = Im√(L/C).

Свободные затухающие колебания. Поскольку всякий реальный контур обладает активным сопротивлением R≠0, то введя обозначение β=R/(2L) уравнение (3) можно переписать следующим образом

d2q/dt2 + 2βdq/dt + ω02q = 0. (9)

(9) – дифференциальное уравнение свободных затухающих колебаний.

При условии, что β

Источник: https://studopedia.su/10_126575_svobodnie-kolebaniya-v-LC-konture-svobodnie-zatuhayushchie-kolebaniya-differentsialnoe-uravnenie-zatuhayushchih-kolebaniy-i-ego-reshenie.html

Затухающие колебания

Затухающие колебания в контуре и их уравнение

Все реальные контуры содержат электрическое сопротивление . Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в тепло, и колебания становятся затухающими (рис. 17.2).

Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям пружинного маятника при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: . Коэффициент в этой формуле аналогичен сопротивлению в электрическом контуре.

Дифференциальное уравнение свободных затухающих колебаний в контуре, который состоит из катушки индуктивности , конденсатора и резистора , имеет вид

, (17.7)

где — коэффициент затухания.

Рис. 17.2

Напряжение на конденсаторе резонансного контура в случае затухающих колебаний

, (17.8)

где — начальное напряжение на конденсаторе. Скорость затухания зависит от электрического сопротивления контура. Интервал времени

, (17.9)

в течение которого амплитуда колебаний уменьшается в раза, называется временем затухания (рис. 17.2).

Добротность колебательного контура зависит от всех параметров контура , и :

, . (17.10)

Здесь — период затухающих колебаний, Видно, что добротность пропорциональна числу полных колебаний , совершаемых системой за время затухания .

Добротность электрических контуров, применяемых в радиотехнике, составляет величину порядка нескольких десятков и даже сотен единиц.

Вычислим отношение и

. (17.11)

Оно, как и в механике, называется декрементом затухания, а его логарифм

(17.12)

логарифмическим декрементом затухания. Из соотношения (17.12) найдем коэффициент затухания

. (17.13)

Частота затухающих колебаний

, ( < ). (17.14)

Отметим, что частота свободных затухающих колебаний в контуре с не очень высокой добротностью несколько меньше собственной резонансной частоты идеального контура с теми же значениями и . Но при (5÷10) этим различием можно пренебречь.

17.3. Вынужденные колебания в контуре

Рассмотрим последовательный резонансный контур, содержащий резистор , катушку индуктивности и конденсатор . К контуру подключен источник синусоидальной ЭДС (рис. 17.3). Установившиеся колебания, возникающие в контуре под действием синусоидальной ЭДС, называютсявынужденными колебаниями.

Рис. 17.3

Установившиеся вынужденные колебания всегда происходят на частоте внешней ЭДС . Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и, несмотря на наличие потерь , не дает колебаниям затухнуть.

Запишем второй закон Кирхгофа для схемы на рис. 17.3:

(17.15)

Учтем, что напряжения на элементах контура , и связаны с током в контуре зависимостями:

, , , (17.16)

и преобразуем (17.15) к виду

. (17.17)

Поскольку

, , (17.18)

перепишем (17.18) в виде

. (17.19)

Введя, как и ранее, обозначения: – коэффициент затухания контура, – собственная резонансная частота свободных колебаний контура, – период свободных колебаний, получим каноническое дифференциальное уравнение вынужденных синусоидальных колебаний в резонансном контуре при действии ЭДС :

. (17.20)

Дальнейший анализ проведем на комплексной плоскости ( , ), где . Любое комплексное число на плоскости ( , ) изображают в виде вектора. По оси абсцисс комплексной плоскости (ось ) откладывают действительную часть комплексного числа, а по оси ординат (ось ) – мнимую часть. В качестве примера на рис. 17.4 (а) изображено число .

Рис. 17.4

Из курса математики известна формула Эйлера:

, . (17.21)

Комплексное число также изображают на комплексной плоскости рис. 17.4 (б) вектором, по модулю равным единице, и составляющим угол с осью вещественных чисел (осью ). Положительный угол отсчитывают против часовой стрелки, отрицательный угол — по часовой стрелке.

Для анализа вынужденных колебаний,т.е. решения уравнения (17.20), воспользуемся методом комплексных амплитуд, суть которого изложена в [6]. Любую косинусоидальную или синусоидальную функцию времени можно представить при помощи операций вычисления вещественной или мнимой частей комплексной величины:

, (17.22)

, (17.23)

где — комплексная амплитуда колебаний. Величину также изображают на комплексной плоскости вектором (рис. 17.4 (с)).

В соответствии с методом комплексных амплитуд для решения уравнения (17.20) ищем ток в виде:

, (17.24)

где — комплексная амплитуда тока.

Учитывая, что

, (17.25)

получим выражения для амплитуды и фазы тока вынужденных синусоидальных колебаний в последовательном резонансном контуре:

, . (17.26)

Полное сопротивление последовательного резонансного контура, его модуль и фаза

, ,

. (17.27)

Отсюда сопротивление резистора , сопротивление индуктивности и сопротивление конденсатора для синусоидальных колебаний:

, , . (17.28)

Комплексные амплитуды напряжений , , на элементах контура и комплексная амплитуда тока связаны законом Ома:

, , . (17.29)

Соотношения между комплексными амплитудами напряжений и токов удобно анализировать с помощью векторных диаграмм(рис. 17.5). Из формул (17.29) следует, что вектор напряжения на резисторе и ток в резисторе совпадают по фазе, вектор напряжения на индуктивности опережает ток в индуктивности на 90º, а вектор напряжения на конденсаторе отстает от тока в конденсаторе на 90º.

Рис. 17.5

На рис. 17.6 показаны резонансные кривые колебательного контура по току (17.26), т.е. зависимость амплитуды тока от частоты внешней синусоидальной ЭДС при разных потерях в контуре .

Явление резкого возрастания амплитуды тока при равенстве частоты внешнего воздействия и собственной резонансной частоты свободных колебаний контура называется резонансом.Зависимости на рис. 17.

6 называются также амплитудно-частотными характеристиками (АЧХ).

Рис. 17.6

Видно, что чем меньше сопротивление потерь в контуре, тем выше и острее резонансная характеристика. Степень “остроты” определяется добротностью колебательной системы:

, (17.30)

где — характеристическое сопротивление контура. Добротность обычных колебательных контуров 10<

Источник: https://helpiks.org/4-51350.html

Затухающие колебания в контуре и их уравнение

Затухающие колебания в контуре и их уравнение

Определение 1

В реальном мире любые колебания в системе, где нет источника энергии, являются затухающими. Рассмотрим реальный контур, сопротивление которого отлично от нуля.

Примером простейшей системы, которую рассматривают в таком случае может служить контур включают сопротивление $(R)$, конденсатор емкостью $C$, катушку индуктивности $L$, тогда такой контур имеет вид указанный на рис.1.

Колебания в таком контуре являются затухающими.

Рисунок 1.

Причиной затухания колебаний в таком контуре является наличие сопротивления. Его существование ведет к тому, что в контуре происходят потери энергии на выделение джоулева тепла. В механике аналогом сопротивления являются силы трения.

Затухающие колебания характеризуют коэффициентом затухания ($\beta $), равным:

Из выражения (1) видно, что $\beta $ является характеристикой контура. Иногда для характеристики затухания используют логарифмический декремент затухания ($\delta $), который равен:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

где $a\left(t\right)$- амплитуда какой — либо величины (заряда, силы тока и т.д.). $\delta $ равен количеству колебаний ($N_e$) за время, в течение которого амплитуда уменьшается в e раз:

Для $RLC$ контура:

где $\omega $ — частота.

Если затухание небольшое ($\delta \ll 1$), то полагают, что $\beta \ll {\omega }_0$ (${\omega }_0=\sqrt{\frac{1}{LC}}-собственнная\ частота$), тогда $\omega \approx {\omega }_0$. В таком случае:

Рассматривая затухающие колебания, колебательный контур характеризуют его добротностью ($O$). Он равен:

Для слабого затухания добротность можно выразить как:

Также при слабом затухании электрических колебаний добротность можно выразить через отношение энергий:

где $W$ — энергия контура, $\triangle W$- уменьшение энергии контура за одно колебание.

Уравнение затухающих колебаний

Обратимся вновь к контуру, который изображен на рис.1. Изменение заряда ($q$) на конденсаторе в таком контуре описывается дифференциальным уравнением вида:

Если сопротивление, которое входит в состав контура $R\[q(t)=A_0e{\left(-\beta t\right)}{sin \left(\omega t+{\alpha }_0\right)=A_0e{\left(-\beta t\right)}{cos \left(\omega t+{\alpha '}_0\right)=0\left(10\right)\ },\ }\]

где $\omega =\sqrt{\frac{1}{LC}-\frac{R2}{4L2}} \cdot \beta =\frac{R}{2L}$. Амплитуда равна:

В том случае, если при $t=0$ заряд на конденсаторе равен $q_0$, тока в цепи нет, то для $A_0$ можно записать:

Начальная фаза колебаний (${\alpha }_0$) равна:

При $R >2\sqrt{\frac{L}{C}}$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Сопротивление, при котором колебания превращаются в апериодический разряд конденсатора называется критическим ($R_k$). Величина $R_k$ определяют условием:

График функции (10) изображают как на рис.2.

Рисунок 2.

Пример 1

Задание: Запишите закон убывания энергии, запасенной в контуре $(W(t))$, если $W(t=0)=W_0,$ колебания являются затухающими. Коэффициент затухания колебаний в контуре равен $\beta $. Собственная частота ${\omega }_0.\ $

Решение:

В качестве отправной точки для решения задачи используем уравнение изменения заряда на конденсаторе в $RLC$ -контуре в виде:

\[q\left(t\right)=q_0e{\left(-\beta t\right)}{cos \left(\omega t+{{\alpha }'}_0\right)=q_0e{\left(-\beta t\right)}cos\left(\omega t\right)\left(1.1\right)\ },\]

в выражении (1.1) мы предположили, что при $t=0,\ {{\alpha }'}_0=0$. Используя выражение:

\[I=\frac{dq}{dt}\left(1.2\right).\]

Найдем $I(t)$, получим:

\[I(t)=-{\omega }_0q_0e{\left(-\beta t\right)}sin\left(\omega t+\alpha \right)\left(1.3\right),\]

где $tg\alpha =\frac{\beta }{\omega }.$

Следовательно, электрическая энергия контура ($W_q$) имеет вид:

\[W_q=\frac{q2}{2C}=\frac{{q_0}2}{2C}e{\left(-2\beta t\right)}cos2\left(\omega t\right)=W_0e{\left(-2\beta t\right)}cos2\left(\omega t\right)\ \left(1.4\right).\]

Магнитная энергия контура ($W_m$) равна:

\[W_m=\frac{L}{2}{\omega_0}2{q_0}2e{\left(-2\beta t\right)}sin2\left(\omega t+\alpha\right)=W_0e{\left(-2\beta t\right)}sin2\left(\omega t+\alpha\right)\left(1.5\right).\]

Полная энергия равна:

\[W=W_q+W_m=W_0e{\left(-2\beta t\right)}\left(cos2\left(\omega t\right)+sin2\left(\omega t+\alpha \right)\right)=W_0e{\left(-2\beta t\right)}\left(1+\frac{\beta }{{\omega }_0}{sin \left(2\omega t+\alpha \right)\ }\right),\]

где $sin\alpha =\frac{\beta}{\omega_0}.$

Ответ: $W(t)=W_0e{\left(-2\beta t\right)}\left(1+\frac{\beta }{{\omega }_0}{sin \left(2\omega t+\alpha \right)\ }\right).$

Пример 2

Задание: Используя результат Примера 1, запишите выражение для энергии, запасенной в контуре ($W(t)$), если колебания затухают в контуре очень медленно. Изобразите график убывания энергии запасенной в контуре.

Решение:

Если колебания в контуре затухают медленно, то это значит:

\[\frac{\beta }{{\omega }_0}\ll 1\ \left(2.1\right).\]

Следовательно, выражение для энергии, запасенной в контуре:

\[W(t)=W_0e{\left(-2\beta t\right)}\left(1+\frac{\beta }{{\omega }_0}{sin \left(2\omega t+\alpha \right)\ }\right)(2.2)\]

можно преобразовать к виду:

\[W\left(t\right)=W_0e{\left(-2\beta t\right)}\left(2.3\right),\]

так как выполняется условие (2.1), ${sin \left(2\omega t+\alpha \right)\ }\le 1,\ $значит:

\[{\frac{\beta }{{\omega }_0}sin \left(2\omega t+\alpha \right)\ll 1.\ }\]

Рисунок 3.

Ответ: $W\left(t\right)=W_0e{\left(-2\beta t\right)}$. Энергия контура убывает по экспоненте.

Источник: https://spravochnick.ru/fizika/elektromagnitnye_kolebaniya/zatuhayuschie_kolebaniya_v_konture_i_ih_uravnenie/

Электрический колебательный контур. Затухающие колебания

Затухающие колебания в контуре и их уравнение

Электрическим колебательным контуром называют замкнутую цепь, состоящую из конденсатора С и катушки индуктивности L (рис. 9.8). Периодически повторяющиеся изменения силы тока в катушке и напряжения на конденсаторе при отсутствии внешних воздействий называются свободными колебаниями.

При подключении к обкладкам заряженного конденсатора (рис. 9.8а) катушки индуктивности в ней возникает ток.

Если электрическое сопротивление катушки пренебрежимо мало, то энергия электрического поля Wе заряженного конденсатора начинает превращаеться в энергию магнитного поля Wм.

Мгновенной раз­рядке конденсатора препятствует ЭДС самоиндукции, сдер­живающая процесс возрастания силы тока в катушке.

В тот мо­мент, когда конденсатор полностью разрядится, сила тока в катушке и энергия магнитного поля достигнут максимальных (амплитудных) значений (рис. 9.8б).

После разрядки конденсатора ток в катушке убывает, но это приводит к уменьшению магнитного потока, что вызывает появ­ление в катушке ЭДС самоиндукции и индукционного тока.

Сейчас на­правление индукционного тока таково, что он препятствует умень­шению магнитного потока.

Конденсатор заряжается индукционным током катушки. Когда ток исчезнет, конденсатор окажется заряженным до первоначального значения заряда, но противоположного знака (рис. 9.8в).

После этого происходит следующий процесс перезарядки конденсатора током, протекающим в противоположном направлении (рис. 9.8г), и возврат в исходное состояние после совершения одного полного колебания (рис. 9.8д).

В верхней части рисунка показаны значения времени соответ­ству­ющих состояний, выраженные в долях периода

, где w0 – круговая (циклическая) частота колебаний в контуре.

Из закона сохранения энергии следует, что при отсутствии в контуре сопротивления максимальное значение энергии We электрического поля заряжен­ного конденсатора равно максимальному значению энергии магнитного поля Wм катушки: , откуда можно получить связь амплитудных значений тока в катушке и напряжения на конденсаторе: . Это отношение имеет размерность сопротивления, поэтому величину называют волновым, или характеристическим сопротивлением контура.

Рис. 9.9. Реальный колебательный контур

В реальном электрическом контуре из-за потерь энергии на нагревание проводников и диэлектриков энергия магнитного и электрического полей по­степенно превращается во внутреннюю энергию. Свободные электромагнитные колебания в контуре оказываются затухающими.

Потери энергии в контуре можно учесть путем введения активного сопротивления (рис. 9.9).

Поскольку потери в диэлектрике конденсатора малы, это сопротивление практически равно активному сопротивлению катушки индуктивности.

Считая направление тока, заряжающего конденсатор, положительным, запишем закон Ома для участка цепи от отрицательно заряженной обкладки конденсатора 1 до положительно заряженной 2. В соответствии с (2.13) получаем: .

Направление обхода контура от точки 1 к точке 2 совпадает с направлением тока, поэтому произведение iR положительно. ЭДС самоиндукции по правилу Ленца отрицательна.

Так как потенциал отрицательно заряженной пластины меньше, чем потенциал положительной, разность потенциалов (j1- j2) отрицательна: , где q – заряд на конденсаторе. Изменение заряда конденсатора вызывается током, поэтому .

С учетом вышеизложенного на основании закона Ома можно записать:

, или

, (9.8)

где b = R/2L – коэффициент затухания, — собственная частота[1].

Дифференциальное уравнение (9.8) подобно уравнению, полученному для механического пружинного маятника (см. раздел «Механика»). Решение данного уравнения имеет вид: , (9.9)

Рис. 9.10. Колебания заряда на конденсаторе в контуре с потерями

где q0 — амплитуда тока в начальный момент времени,

(9.10)

— частота затухающих колебаний. Из (9.9) следует, что уменьшение амплитуды со временем происходит по экспоненциальному закону (рис. 9.10). Частота затухающих колебаний меньше частоты собственных колебаний w0. Из (9.

10) следует, что при большом затухании (b ³ w0) частота становится мнимой величиной. Это означает, что колебательного процесса не происходит и заряд конденсатора уменьшается до нуля без перезарядки.

Такой процесс называется апериодическим.

Выразим условие перехода от колебательного процесса к апериодическому через параметры цепи. Имеем: (R/2L)2 ³ 1/LC или .

Степень затухания колебаний принято характеризовать логариф­мичес­ким декрементом затуханияl. Он равен логарифму натуральному двух амплитуд через период Т:

или (9.11)

Еще одной характеристикой контура является добротность. Она связана с логарифмическим декрементом затухания соотношением . Нетрудно показать, что при малом затухании, когда b

Источник: https://studopedia.ru/12_178803_elektricheskiy-kolebatelniy-kontur-zatuhayushchie-kolebaniya.html

2.2. RLC-контур. Свободные колебания

Затухающие колебания в контуре и их уравнение


В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур (рис. 2.2.1).

Рисунок 2.2.1.Последовательный RLC-контур

Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер.

Закон Ома для замкнутой RLC-цепи, не содержащей внешнего источника тока, записывается в виде
где – напряжение на конденсаторе, q – заряд конденсатора, – ток в цепи.

В правой части этого соотношения стоит ЭДС самоиндукции катушки.

Если в качестве переменной величины выбрать заряд конденсатора q (t), уравнение, описывающее свободные колебания в RLC-контуре, может быть приведено к следующему виду:

Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0). Тогда

(*)

Здесь принято обозначение: Уравнение (*) описывает свободные колебания в LC-контуре в отсутствие затухания. По виду оно в точности совпадает с уравнением свободных колебаний груза на пружине в отсутствие сил трения (ч. I, § 2.2). Рис. 2.2.

2 иллюстрирует аналогию процессов свободных электрических и механических колебаний.

На рисунке приведены графики изменения заряда q (t) конденсатора и смещения x (t) груза от положения равновесия, а также графики тока J (t) и скорости груза υ (t) за один период колебаний.

Рисунок 2.2.2.Аналогия процессов свободных электрических и механических колебаний

Сравнение свободных колебаний груза на пружине и процессов в электрическом колебательном контуре позволяет сделать заключение об аналогии между электрическими и механическими величинами. Эти аналогии представлены в таблице 1.

Электрические величиныМеханические величины
Заряд конденсатораq (t)Координатаx (t)
Ток в цепиСкорость
ИндуктивностьLМассаm
Величина, обратная электроемкостиЖесткостьk
Напряжение на конденсатореУпругая силаkx
Энергия электрического поля конденсатораПотенциальная энергия пружины
Магнитная энергия катушкиКинетическая энергия
Магнитный потокLIИмпульс
Таблица 1

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний

Амплитуда q0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия. В частности, для процесса колебаний, который начнется в контуре (рис. 2.2.1) после переключения ключа K в положение 2, q0 = C, φ0 = 0.

При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:

Все реальные контуры содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими (рис. 2.2.3).

Рисунок 2.2.3.Затухающие колебания в контуре

Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: Fтр = – βυ.

Коэффициент β в этой формуле аналогичен сопротивлению R электрического контура.

Уравнение свободных колебаний в контуре при наличии затухания имеет вид

(**)

Физическая величина δ = R / 2L называется коэффициентом затухания.

Решением этого дифференциального уравнения является функция

которая содержит множитель exp (–δt), описывающий затухание колебаний.

Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания.

В § 2.4 части 1 было введено понятие добротности Q колебательной системы:
где N – число полных колебаний, совершаемых системой за время затухания τ. Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:

Для RLC-контура добротность Q выражается формулой

Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен.

Следует отметить, что собственная частота ω свободных колебаний в контуре с не очень высокой добротностью несколько меньше собственной частоты ω0 идеального контура с теми же значениями L и C. Но при Q ≥ (5÷10) этим различием можно пренебречь.

Модель. Свободные колебания в RLC-контуре




Лучшие школы, лагеря, ВУЗы за рубежом
Http hydraruzxpnew4af onion
http hydraruzxpnew4af onion
hydra-tor-onion.com
Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.

Источник: https://physics.ru/courses/op25part2/content/chapter2/section/paragraph2/theory.html

3. Затухающие колебания. Колебания. Физика. Курс лекций

Затухающие колебания в контуре и их уравнение

3.1. Механические затухающие колебания

3.2. Электромагнитные затухающие колебания

3.3. Характеристики затухающих колебаний

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения.

В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся.

Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения – общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие – дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие:

Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии.

Уравнение колебаний – решение дифференциального уравнения.

Амплитуда затухающих колебаний зависит от времени.

Частота и период зависят от степени затухания колебаний.

Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний.

3.1. Механические затухающие колебания

Механическая система: пружинный маятник с учетом сил трения. Силы, действующие на маятник:

Упругая сила. , где k – коэффициент жесткости пружины, х – смещение маятника от положения равновесия.

Сила сопротивления. Рассмотрим силу сопротивления, пропорциональную скорости v движения (такая зависимость характерна для большого класса сил сопротивления): . Знак «минус» показывает, что направление силы сопротивления противоположно направлению скорости движения тела. Коэффициент сопротивления r численно равен силе сопротивления, возникающей при единичной скорости движения тела:

Закон движения пружинного маятника – это второй закон Ньютона: ma = Fупр. + Fсопр.

Учитывая, что и , запишем второй закон Ньютона в виде:

.

Разделив все члены уравнения на m, перенеся их все в правую часть, получим дифференциальное уравнение затухающих колебаний:

Обозначим , где β – коэффициент затухания, , где ω0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. Это линейное дифференциальное уравнение второго порядка. Уравнение затухающих колебаний есть решение такого дифференциального уравнения: .

В приложении 1 показано получение решения дифференциального уравнения затухающих колебаний методом замены переменных.

Частота затухающих колебаний:

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний: .

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Для механической системы пружинного маятника имеем:

, . Амплитуда затухающих колебаний: , для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 3.1 и 3.2.

Рисунок 3.1 – Зависимость смещения от времени для затухающих колебаний

Рисунок 3.2 – Зависимости амплитуды от времени для затухающих колебаний

3.2. Электромагнитные затухающие колебания

Электромагнитные затухающие колебания возникают в электромагнитной колебательной систему, называемой LCR – контур (Рисунок 3.3).

Рисунок 3.3.

Дифференциальное уравнение получим с помощью второго закона Кирхгофа для замкнутого LCR – контура: сумма падений напряжения на активном сопротивлении (R) и конденсаторе (С) равна ЭДС индукции, развиваемой в цепи контура:

Падение напряжения:

— на активном сопротивлении: , где I – сила тока в контуре;

— на конденсаторе (С): , где q – величина заряда на одной из обкладок конденсатора.

ЭДС, развиваемая в контуре – это ЭДС индукции, возникающая в катушке индуктивности при изменении тока в ней, а следовательно, и магнитного потока сквозь ее сечение: (закон Фарадея).

Подставим значения UR, UC, в уравнение, отражающее закон Кирхгофа, получим:

.

Сила тока определяется как производная от заряда , тогда , и дифференциальное уравнение примет вид:

.

Обозначим , , получим в этих обозначениях дифференциальное уравнение затухающих колебаний в виде:

Решение дифференциального уравнения или уравнение колебаний для заряда на обкладках конденсатора имеет вид:

или

.

Амплитуда затухающих колебаний заряда имеет вид:

, где .

Частота затухающих колебаний в LCR – контуре:

.

Период затухающих электромагнитных колебаний:

.

Возьмем уравнение для заряда в виде , тогда уравнение для напряжения на обкладках конденсатора можно записать так .

Величина называется амплитудой напряжения на конденсаторе.

Ток в контуре меняется со временем. Уравнение для силы тока в контуре можно получить, используя соотношение и векторную диаграмму.

Окончательное уравнение для силы тока таково:

,

где — начальная фаза.

Она не равна α, так как сила тока изменяется не по синусу, что дала бы производная от заряда, а по косинусу.

Энергия колебаний в контуре складывается из энергии электрического поля

и энергии магнитного поля

Полная энергия в любой момент времени:

где W0 – полная энергия контура в момент времени t=0.

3.3. Характеристики затухающих колебаний

1. Коэффициент затухания β. Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону: .

Пусть за время τ амплитуда колебаний уменьшится в «e » раз («е» – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды Азат.(t) и Азат.(t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда

.

Промежуток времени τ, за который амплитуда уменьшается в «е» раз, называется временем релаксации.

Коэффициент затухания β – величина, обратно пропорциональная времени релаксации.

2. Логарифмический декремент затухания δ — физическая величина, численно равная натуральному логарифму отношения двух последовательных амплитуд, отстоящих по времени на период .

Если затухание невелико, т.е. величина β мала, то амплитуда незначительно изменяется за период, и логарифмический декремент можно определить так:

,

где Азат.(t) и Азат.(t+NT) – амплитуды колебаний в момент времени е и через N периодов, т.е.в момент времени (t + NT).

3. Добротность Q колебательной системы – безразмерная физическая величина, равная произведению величины (2π) νа отношение энергии W(t) системы в произвольный момент времени к убыли энергии за один период затухающих колебаний:

. Так как энергия пропорциональна квадрату амплитуды, то .

При малых значениях логарифмического декремента δ добротность колебательной системы равна

,

где Ne – число колебаний, за которое амплитуда уменьшается в «е» раз.

Так, добротность электромагнитной системы LCR – контура при малом затухании колебаний равна , а добротность пружинного маятника — .Чем больше добротность колебательной системы, тем меньше затухание, тем дольше будет длиться периодический процесс в такой системе.

4. При увеличении коэффициента β, частота затухающих колебаний уменьшает-ся, а период увеличивается. При ω0 = β частота затухающих колебаний становится равной нулю ωзат. = 0, а Тзат. = ∞. При этом колебания теряют периодический характер и называются апериодическими.

При ω0 = β параметры системы, ответственные за убывание колебательной энергии, принимают значения, называемые критическими. Для пружинного маятника условие ω0 = β запишется так:, откуда найдем величину критического коэффициента сопротивления:

.

Для LCR – контура условие позволяет вычислить критическое сопротивление контура, при котором колебания потеряют свою периодичность:

.

Источник: https://siblec.ru/estestvennye-nauki/kolebaniya/3-zatukhayushchie-kolebaniya

Booksm
Добавить комментарий