Законы квантовой механики

Квантовая механика для «чайников»

Законы квантовой механики
Квантовая механика

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики  или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться.

Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница.

Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят — квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то  величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений.  Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений.  Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.

Квантовая механика для «чайников»

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали  о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с. Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это  раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания.

Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит.

Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные «сходились».

Мир частиц

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Наименьшая порция энергии излучения атома

,

Где  h — постоянная Планка,  ню — частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль  развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами.

К делу присоединились Шредингер и Гейзенберг,  и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы.

Вполне возможно, что на смену ей придет более совершенная теория.

Макс Планк

При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической.

Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире.

Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще — все вокруг спокойно и понятно. Хочешь узнать положение  тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер.

Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе.

Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга.

Уравнение Шредингера

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны  некоего старшего ученого.

Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики.

И справился блестяще!  Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Уравнение Шредингера

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь  x — расстояние или координата частицы,   m — масса частицы, E  и U  — соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция  (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!

Эрвин Шредингер

Принцип неопределенности Гейзенберга

Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола.

Во всяком случае, мы точно дифференцируем  его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с  точностью измерить искомые величины.

Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы.

Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы. Математически это записывается так:

Принцип неопределенности Гейзенберга

Здесь  дельта x —  погрешность определения координаты,  дельта v — погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика. — Сэр, Вы знаете, с какой скоростью двигались?

— Нет, зато я точно знаю, где я нахожусь

Вернер Гейзенберг

Надеемся, что эта статья помогла Вам немного размять мозги, вспомнить хорошо забытое старое, а может быть и узнать что-то новое.  Здесь мы постарались рассказать о квантовой механике просто, понятно и по возможности интересно.

Конечно, данная тема не может быть раскрыта в рамках одной статьи, поэтому о парадоксах, нерешенных задачах, черных дырах и котах Шредингера мы поговорим в самое ближайшее время.  А пока, чтобы закрепить знания, предлагаем посмотреть тематическое видео.

Возможно вас также заинтересуют правила оформления чертежей по ЕСКД.

И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к нашим авторам – профессионалам, которые были взращены с квантовой механикой на устах!

Источник: https://Zaochnik-com.ru/blog/kvantovaya-mexanika-dlya-chajnikov/

Квантовая механика

Законы квантовой механики

На субатомном уровне частицы описываются волновыми функциями.

Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи.

Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк (см.

Постоянная Планка) для описания взаимодействия света с атомами.

Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе.

Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги).

Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера).

То есть некоторая неопределенность и неточность возможны — но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.

Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения.

Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение.

Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора.

Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие — без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.

О результатах этого взаимодействия можно утверждать лишь одно:

неопределенность пространственных координат × неопределенность скорости частицы > h/m,

или, говоря математическим языком:

Δx × Δv > h/m

где Δx и Δv — неопределенность пространственного положения и скорости частицы соответственно, h — постоянная Планка, а m — масса частицы.

Соответственно, неопределенность возникает при определении пространственных координат не только электрона, но и любой субатомной частицы, да и не только координат, но и других свойств частиц — таких как скорость.

Аналогичным образом определяется и погрешность измерения любой такой пары взаимно увязанных характеристик частиц (пример другой пары — энергия, излучаемая электроном, и отрезок времени, за который она испускается).

То есть если нам, например, удалось с высокой точностью измерили пространственное положение электрона, значит мы в этот же момент времени имеем лишь самое смутное представление о его скорости, и наоборот.

Естественно, при реальных измерениях до этих двух крайностей не доходит, и ситуация всегда находится где-то посередине. То есть если нам удалось, например, измерить положение электрона с точностью до 10–6 м, значит мы одновременно можем измерить его скорость, в лучшем случае, с точностью до 650 м/с.

Из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира.

Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией.

Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера, которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Картина квантовых событий в микромире, рисуемая уравнением Шрёдингера, такова, что частицы уподобляются отдельным приливным волнам, распространяющимся по поверхности океана-пространства.

Со временем гребень волны (соответствующий пику вероятности нахождения частицы, например электрона, в пространстве) перемещается в пространстве в соответствии с волновой функцией, являющейся решением этого дифференциального уравнения.

Соответственно, то, что нам традиционно представляется частицей, на квантовом уровне проявляет ряд характеристик, свойственных волнам.

Согласование волновых и корпускулярных свойств объектов микромира (см.

Соотношение де Бройля) стало возможным после того, как физики условились считать объекты квантового мира не частицами и не волнами, а чем-то промежуточным и обладающим как волновыми, так и корпускулярными свойствами; в ньютоновской механике аналогов таким объектам нет.

Хотя и при таком решении парадоксов в квантовой механике всё равно хватает (см. Теорема Белла), лучшей модели для описания процессов, происходящих в микромире, никто до сих пор не предложил.

См. также:

Источник: https://elementy.ru/trefil/20/Kvantovaya_mekhanika

Квантовая физика кратко и простыми словами! Как понимать объективную реальность?

Законы квантовой механики

Квантовая физика для чайников. Объективная реальность что это? Просто о сложном! Условность происходящего. История квантовой механики. Декогеренция.

Здравствуйте, уважаемые читатели!

Для лучшего понимания теории переговоров мы с Вами попытаемся ответить на сложные вопросы о природе объективной реальности.

Статья «Теория вероятности для начинающих. Байесовский метод.»

Квантовая физика. Условность происходящего.

Условно объективная реальность представлена для воспринимающего субъекта «ЗДЕСЬ И СЕЙЧАС». Объективная реальность в том виде, как ее понимает среднестатистический человек, далекий от квантовой физики, условна потому, что не доказана до настоящего времени ее безусловность.

Так, эксперименты в квантовой физике перевернули представления многих сторонников безусловной объективности реальности.

Как осуществляется выбор системы при наличии наблюдателя можно увидеть в экспериментах, а каковы причины, заставляющие систему менять свое состояние в зависимости от позиции наблюдателя — это остается без ответа, только гипотезы.

Необходимость углубляться в сложные вопросы квантовой теории продиктована еще одной сложнейшей проблемой современности, взаимосвязь мозга и сознания человека. Возможно кросс-подход окажется более правильным и поможет найти ответы.

Существуют интересные вопросы, которые Вы наверняка уже слышали:

— Собака виляет своим хвостом или хвост виляет собакой?

— Улыбка порождает радость или радость порождает улыбку?

— Мозг порождает сознание или сознание порождает мозг?

— Что первично: материя или дух?

На некоторые из них можно вполне определенно ответить уже сейчас, а на другие ответа нет, поскольку отсутствует парадигма, всеобъемлющая концепция, в рамках которой возможны ответы, не противоречащие обратной связи условной объективной реальности.

Хотя, для многих из нас представляется типичным ответ: конечно, собака виляет хвостом, а мозг порождает сознание. Улыбаемся тогда, когда уже есть радость.

При этом человек, ответивший подобным образом, будет находится в полной уверенности, потому что так подсказывает ему пресловутый здравый смысл и/или интуиция. Подчас, это самые страшные враги всего нового, что лежит за плоскостью нашего сознательного фокуса.

К тому же, очевидные ответы весьма часто вовсе не очевидны. И в тоже время они наши «большие друзья», позволяющие эволюционно адаптироваться к текущей реальности.

Некий наблюдатель сможет представить иные доводы. Например, когда у индивида удаляют часть мозга, в особенности корковые структуры, то сознание, понимаемое как осознание, исчезает как «луч солнца в черной дыре». А когда человек спит или находится под наркозом, т.е.

пребывает не в сознании, то его мозг функционирует без нарушений.

Анатомически мозг действительно на месте, а вот что происходит с ним в этот момент, какова его электрическая активность? И почему сознательная целевая когнитивная деятельность вызывает очаги возбуждения по всему мозгу, наблюдается гамма – активность, бета-активность, в то время, как мозг человека в состоянии глубокой медитации показывает не только другую картину на электроэнцефалограмме, например, тета — ритмы или дельта — ритмы, а и иное распределение по масштабу задействованных нейрональных групп?

Вряд ли можно пока объяснить механизм сознания через функционирование его материального субстрата – мозга. Накопленный научный материал позволяет проводить достоверные параллели между нейрофизиологией и психическими процессами, при этом сознание как осознание остается вне общего понимания.

В настоящее время ученые по всему миру работают над созданием единой теории, объединяющей сознание и мозг.

Возникают гипотезы, которые более или менее красиво пытаются устранить подобную научную дихотомию, при этом потребуется время, чтобы научное сообщество смогло консолидировано принять какую – либо, опираясь на эмпирическую доказательную базу, сложность получения которой является в том числе тормозом на пути согласия.

Статья «Сознание человека»

Статья «Как человек познает мир? Коннектом мозга. Когнитом Анохина.»

СМОТРЕТЬ ВИДЕО «Переговоры с закупщиком. Как договориться со сложным клиентом?!»

Нильс Бор и Вернер Гейзенберг.

В 1920 году Нильс Бор и Вернер Гейзенберг сформулировали ключевые положения квантовой механики. Данная интерпретационная версия на протяжении многих лет была самой популярной в мире. Ядром ее является волновая функция – математическая функция.

В ней присутствует информация о всех возможных состояниях квантовой системы, в которых она может находиться. Суть ее в том, что узнать состояние системы наверняка возможно только через наблюдение. Именно наблюдение квантовой системы переводит ее из многих состояний в одно, т. е. она становится традиционной.

Волновая функция системы позволяла произвести математические расчеты, которые определяли вероятность обнаружения системы в каком-либо состоянии.

Альберт Эйнштейн.

Данная теория далеко не всеми учеными разделялась. Альберт Эйнштейн критически отзывался о ней. Его знаменитое выражение: «Бог не играет в кости со Вселенной» отражало его позицию.

Менее известно выражение создателя квантовой механики Нильса Бора: «Альберт, перестань же ты, наконец, указывать богу, что ему делать!». Так, известен ЭПР-парадокс Эйнштейна-Подольского-Розена. Данный парадокс был сформулирован в 1935 году.

Он построен на мысленном эксперименте. Эйнштейн играл роль оппонента для создателей квантовой механики и тем самым внес вклад в ее развитие.

Ирония судьбы в том, что Эйнштейн получил Нобелевскую премию по физике не за открытие теории относительности, а за раскрытие феномена фотоэлектрического эффекта, в основе которого были квантовые представления, которые впоследствии стали настолько революционными в науке.

Эрвин Шредингер.

Эрвин Шредингер с целью продемонстрировать парадоксы, существующие в копенгагенской теории, предложил мысленный эксперимент.

Этот знаменитый на весь мир эксперимент называется «парадокс кота Шредингера».

Этот мысленный эксперимент показывает насколько существенная граница проходит между привычным классическим миром, к которому привык человек и квантовым миром, квантовой реальностью.

Итак, берем ящик, помещаем внутрь него кота, нестабильный (распадающийся) атом, ампулу с ядом, автоматическое устройство, которое разрушит ампулу под влиянием нестабильного атома, когда он распадется. В процессе нахождения кота в ящике атом распадается, при этом наблюдатель не знает, жив кот внутри ящика или нет, т.к. доступа нет.

Наблюдатель знает время периода полураспада, а время полного распада не известно и при этом нет никакой возможности понять, распался атом полностью или нет, пока ящик закрыт. У наблюдателя нет ответа на вопрос: жив кот или нет в тот или иной промежуток времени.

Первоначально атом не является полностью распавшимся, а впоследствии атом переходит в состояние суперпозиции.

Суперпозиция является суммой двух и более векторов состояний в квантовой механике, каждый из которых в свою очередь — это одно из состояний. Первое состояние – нераспавшийся атом и кот жив, второе состояние – вектор – распавшийся атом – кот мертв.

Первый вектор уменьшается во времени, а второй увеличивается. Кот пребывает в состоянии суперпозиции, т.е. одновременно мертв и одновременно жив. Когда наблюдатель откроет ящик, то, конечно кот не будет одновременно жив и мертв, а будет находиться в одном из состояний.

Если атом распадется, ампула будет разрушена, кот умрет, а если атом не распадется, ампула останется сохранной, кот будет живым. В этом и состоит парадокс. Пока наблюдатель не осознал реальность, она находится в суперпозиции, а когда осознал — реальность становится одним из векторных состояний.

До момента осознания квантовый мир состоит из двух параллельных миров, альтернативных друг для друга.

Юджин Вигнер.

Еще один мыслительный парадокс, описанный Вигнером, так и называется «Парадокс друга Вигнера». Ученый предложил ввести еще один элемент – передача информации от друга экспериментатора. Друг проводит эксперимент, в результате которого видит вспышку света.

До того момента, пока Вигнер не знает результатов эксперимента, он интерпретирует состояние системы как суперпозицию. После того, как друг сообщил Вигнеру информацию по зарегистрированной вспышке света, система для Вигнера становится классической.

При этом сам Вигнер не был непосредственным участником эксперимента. Его сознание выбрало данную альтернативу, которая была заранее выбрана как альтернатива его другом. Модель мира Вигнера оказалась смоделированной им в результате его сознательного выбора модели мира его друга.

Альтернатива в альтернативе, модель в модели.

Джон фон Нейман.

В копенгагенской интерпретации предполагалось, что на каждом временном отрезке, когда принимается решение, происходит событие, человек случайным образом выбирает тот или иной альтернативный мир, который он в состоянии фиксировать своими сенсорными системами, поэтому человек и не в состоянии сенсорно ощущать и воспринимать другие миры. Он всегда имеет дело с одним классическим миром. Такое представление является коллапсом волновой функции или редукцией состояния – выбор одного вектора состояния и исчезновение всех остальных векторов. Математически этот состояние было описано фон Нейманом. Это и позволяло на практике применять квантовую механику для решения квантовых механических задач. В этом ее относительная простота и ценность. Остальные миры просто перестают существовать. Это изменение происходит одномоментно и не имеет обратной силы, т.е. не может обратиться в исходное состояние. Соответственно человек, ограниченный одним классическим миром, фактически оказывается заложником и живет в иллюзии.

Заказывайте мой тренинг «Переговоры — Партнерство»

Квантовая физика. Декогеренция.

Впоследствии появилась теория декогеренции, которая нивелировала редукцию. Измерение состояния системы происходит в результате взаимодействия измерительного прибора и измеряемого объекта – другой системы. Измерительный прибор, в том числе система, которая окружает измеряемый объект являются измерительной системой.

Во время взаимодействия измерительной системы и измеряемого объекта происходит запутывание состояния двух систем, т.е. появляется квантовая корреляция. При этом, состояние измеряемой системы преобразуется, она переходит из «чистого состояния» в «смешанное состояние».

Вместо суперпозиции, где суммируются векторы, возникает смешение векторов, т.е. они никуда не исчезают, как это было представлено в копенгагенской интерпретации. Вектора остаются и происходит их перемешивание.

Сами вектора состояний претерпевают изменения с момента чистого состояния измеряемой системы как суперпозиции к моменту взаимодействия с измерительной системой. Измеряемая система подвергается декогеренции, т.е. измеряемая система теряет квантовую когерентность.

В 80-ых годах 20 века — это явление стало популярным и обсуждаемым в академических кругах. С 90 – ых годов обстоятельно описывается в научной литературе. В результате квантовая механика лишилась редукции состояний.

Декогеренция является проблемой, из-за которой срок разработки и запуска квантового компьютера раз за разом отодвигался. Квантовые исчисления неизбежно приводят к декогеренции, происходит смешение кубитов. Идея создания квантового компьютера была предложена Ричардом Фейнманом в далеком 1981 году.

Но только в последние два года миру были анонсированы квантовые компьютеры, мощность которых на текущий момент уже составляет 50 кубитов и даже 72 кубита (март 2018 г  — Google). Однако это не означает, что теперь «БОЛЬШОЙ БРАТ» (Джордж Оруэлл «1984») или «ОКО САУРОНА» (Дж. Р. Р.

Толкин) сможет за секунды определить, где находится любой живущий человек на планете. Связано это с квантовым ошибками, шумом, в результате чего возникают неточности в расчетах. И пока эта проблема не решена.

А значит МЫ (человечество) все еще находимся на неопределённом расстоянии до настоящего прорыва в области информационных технологий.

На сегодня это все! Продолжение про условно объективный мир и виртуальную реальность читайте здесь:

Статья «Сознание человека и квантовая физика. Какая связь?»

Статья «Виртуальная реальность человека. Субъективная картина мира.»

УМНЫЕ КНИГИ по современной поведенческой психологии, теории принятия решений, когнитивным иллюзиям, мотивации, лидерству, саморазвитию, ошибкам в мышлении Вы можете БЕСПЛАТНО скачать с моего сайта здесь: https://yakimovvlad.ru/knigi-psixologiya

Друзья, ставьте лайки, Ваша поддержка — это мощная штука, сохраняет мотивацию распространять знания бесплатно! И пишите комментарии! Это сложная тема и Ваше мнение заслуженно будет вкладом в образование людей! Очень многие читают комментарии и им это нравится, потому что разность мнений создают плодородную почву для ответов на вопросы о нашем замечательном мире!

Пожалуйста делитесь в социальных сетях этой статьей, помогите мне распространять знания БЕСПЛАТНО, ведь кому-то это может помочь в жизни справиться со сложной ситуацией! Спасибо, Вам!

С Вами был Ядро Владислав, тренер по переговорам! Пока и до встречи!

Источник: https://zen.yandex.ru/media/id/5c3b08d46d724700ab2e064f/5cc1bffcbfff6400b302106b

Законы квантовой механики

Законы квантовой механики

Квантовая механика представляет собой описание главных свойств и поведения конденсированных сред, молекул, ионов, атомов, а также иных систем с электронно-ядерным строением.

Замечание 1

Законы квантовой механики созданы с целью описания волновой функции, корпускулярно-волнового дуализма, соотношения неопределенностей, движения частицы.

Закон де Бройля

Свое количественное выражение принцип корпускулярно-волнового дуализма получает в законе де Бройля (о волновой функции).

Квантово-волновой дуализм характеризует свойства материальных микроскопических объектов. Так, они способны в одном случае проявлять свойства классических волн, а в другом — классических частиц.

Типичным примером объектов, демонстрирующих двойственное корпускулярно-волновое поведение, выступают свет и электроны. Такой принцип будет справедливым и в отношении более крупных объектов, однако, чем массивнее окажется объект, тем в гораздо меньшей степени наблюдаются его волновые свойства (здесь не идет речь про коллективное волновое поведение многих из частиц).

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Идея о волновой функции и корпускулярно-волновом дуализме была задействована, когда разрабатывалась механика квантов с целью интерпретации наблюдаемых в микромире явлений (с позиции классических концепций).

Квантовые объекты в действительности не представляют собой классические волны или частицы. Свойства как первых, так и вторых, они проявляют исключительно в зависимости от условий, проводимых над ними экспериментов. Корпускулярно-волновой дуализм не может объясняться в формате классической физики, его толкование возможно только в рамках квантовой механики.

Для любого объекта, одновременно демонстрирующего корпускулярные и волновые свойства, наблюдается определенная связь между импульсом $p$ и энергией $E$ (они свойственны этому объекту как частице) и его волновыми параметрами:

  • волновым вектором $k$;
  • длиной волны $\lambda$;
  • частотой $v$;
  • циклической частотой $\omega$.

Такую связь устанавливают определенные соотношения:

$p =\bar{h}k$

$E=\bar{h}\omega=hv$

Где $\bar{h}$ и $h=2\pi\bar{h}$ представляет редуцированную и обычную постоянную Планка соответственно.

Закон соотношения неопределенностей Гейзенберга

Из результатов и анализа многочисленных опытов с использованием микрочастиц вытекает принцип неопределенности Гейзенберга, представляя, в сущности, один из фундаментальных законов микромира.

Такой закон, с одной стороны, имеет большой философский смысл, а с другой – может практически применяться при осуществлении определенных расчетов. Физическая причина существования данного закона обусловлена двойственной природой материи.

Открытие закона о соотношении неопределенностей связано с именем В. Гейзенберга. В 1925 г. по приглашению Н. Бора он прибывает в Копенгаген, где сразу задается целью объяснить поведение электрона в атоме. В частности, Гейзенберга интересовал вопрос, почему электрон в атоме не подчиняется законам электродинамики.

Также физик искал ответы и на другие вопросы, например: почему электрон в момент своего движения не падает на ядро, если атом при этом не возбужден? В конечном итоге, он приходит к выводу, что такое понятие, как «траектория электрона в атоме» не обладает физическим смыслом. Другими словами, оно не может быть применимо к электрону в атоме.

Неопределенность значения импульса и координаты фотона определяются соотношением равенства:

$\delta p=\frac{\delta E}{c}$, где:

  • $\delta p$ — это величина проекции импульса
  • $E$ — энергия фотона.

Закон Шредингера

Закон Шредингера характеризует движение частицы в квантовой механике. Он направлен на определение значения волновой функции в каждой точке пространства в конкретный момент времени.

Закон Шредингера также важен в квантовой механике, как и второй закон Ньютона — в классической. Знание операторов физических величин и волновой функции для квантовой системы позволяет получать значения всех физических величин, которые характеризуют эту квантовую систему.

В силу недетерминированности квантовых механических предположений, этим вычисляемым физическим величинам присущ характер вероятности (они считаются статистическими средними). В нерелятивистском случае эволюцию квантовой системы описывает волновая функция, удовлетворяющая уравнению Шредингера:

$i\bar{h}\frac{\partial \psi}{\partial t}=H\psi$,

где $\psi(х,y,z,t)$ будет волновой функцией, а $H$ — оператором Гамильтона (для полной энергии системы).

Закон Шредингера сформулирован в 1925 г., а опубликован в 1926 году. Уравнение Шредингера постулирует метод аналогии с классической оптикой, на основании обобщения экспериментальных данных.

Уравнение Шредингера справедливо в отношении частиц без спина, перемещающихся со скоростям, значительно меньшими, чем скорость света. Если мы имеем дело с быстрыми частицами и теми, которые со спином, то будем использовать его обобщения (на основании уравнений Клейна-Гордона, Паули, Дирака и других.

Источник: https://spravochnick.ru/fizika/kvantovaya_mehanika/zakony_kvantovoy_mehaniki/

Booksm
Добавить комментарий