Законы электростатики

Законы электростатики

Законы электростатики

Определение 1

Электростатика является разделом физики, направленным непосредственно на изучение свойств и взаимодействий неподвижных (относительно инерциальной системы отсчета) электрически заряженных тел (частиц), обладающих электрическим зарядом.

Электрический заряд представляет собой физическую величину, характеризующую свойство тел (частиц) к вхождению в электромагнитные взаимодействия, и определяющую значения сил и энергий при подобных взаимодействиях. В Международной СЕ в качестве единицы измерения электрического заряда выступает кулон (Кл).

Различают несколько видов электрических зарядов:

  • положительные;
  • отрицательные.

Тело представляет собой электрически нейтральное в случае равенства суммарного заряда отрицательно заряженных частиц в составе тела и суммарного заряда положительно заряженных частиц.

В качестве стабильных носителей электрических зарядов выступают элементарные частицы и также античастицы, а носителями положительного заряда выступают позитрон и протон (отрицательного – антипротон и электрон).

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Закон Кулона

Замечание 1

Закон Кулона считается в физике основным законом электростатики, определяющим величину и направление силы взаимодействия между двумя точечными неподвижными зарядами.

Под точечным зарядом понимается заряженное тело, чей размер многократно меньше расстояния его возможного влияния на остальные тела. В таких условиях ни размеры, ни форма заряженных тел оказываются практически неспособными повлиять на взаимодействия между ними.

Рисунок 1. Закон Кулон. аАвтор24 — интернет-биржа студенческих работ

Впервые закон Кулона экспериментально был доказан в 1773 г. Кавендишем, использовавшим с этой целью сферический конденсатор.

Ученому удалось показать факт отсутствия внутри заряженной сферы электрического поля.

Это, в свою очередь, означало изменение силы электростатического взаимодействия в обратной пропорциональности квадрату расстояния, при этом результаты исследований Кавендиша так и не были опубликованы.

В 1785 г. Ш. Кулоном был установлен закон (благодаря специальным весам). Опыты этого ученого способствовали установлению закона, поразительно напоминающего закон всемирного тяготения. Сила взаимодействия в вакууме двух точечных неподвижных заряженных тел оказывается прямо пропорциональной произведению модулей заряда и обратно пропорциональной квадрату расстояния между ними.

Закон сохранения электрического заряда

Согласно принципам закона сохранения электрического заряда, алгебраическая сумма электрических зарядов каждой частицы из изолированной системы останется неизменной, несмотря на происходящие в ней процессы.

Электрический заряд абсолютно любой частицы (системы частиц) считается целым кратным элементарному электрическому заряду (по величине равному заряду электрона) или приобретает нулевое значение.

Рисунок 2. Закон сохранения электрического заряда. Автор24 — интернет-биржа студенческих работ

В качестве одного из подтверждений закона по сохранению электрического заряда выступает строгое равенство электрических зарядов (по абсолютной величине) электрона и протона. Исследование движения атомов (молекул), а также микроскопических тел в электрических полях только подтверждает электрическую нейтральность вещества и непосредственно равенство зарядов протона и электрона.

Закон сохранения заряда также подтверждают и простые опыты с электризацией тел.

Так, если закрепить на стержне электрометра металлический диск, положить на него прослойку из сукна и поставить сверху такой же диск, с ручкой из диэлектрика, можно наблюдать следующий результат.

При совершении нескольких движений верхним диском по изоляционной прослойке можно заметить, что стрелка электрометра отклоняется, свидетельствуя таким образом о появлении на сукне и диске, соприкасающимся с ним, электрического заряда.

Если прикоснуться потом вторым диском (потертым о сукно) к стержню второго электрометра, можно наблюдать отклонение стрелки электрометра приблизительно на такой же угол, что и стрелка первого электрометра.

Это будет означать, что при электризации каждый диск получил равный по модулю заряд. Если далее соединить электрометры металлическим стержнем, то можно увидеть, как стрелки приборов каются вниз.

Нейтрализация зарядов стала свидетельством того, что они были равными по модулю, но противоположными по знаку (и поэтому в сумме давали нулевое значение).

Закон сохранения заряда в 1750 г. установил Б. Франклин. Им же было введено понятие об отрицательных и положительных зарядах.

Элементарные частицы могут рождаться и исчезать, претерпевая различные превращения. При этом возникновение и исчезновение элементарных частиц происходит всегда парным образом (парами с противоположными зарядами).

Согласно многочисленным наблюдениям превращений элементарных частиц, закон сохранения заряда постоянно находит свое подтверждение.

Таким образом, он служит выражением одного из фундаментальных свойств электрического заряда.

Существование двух родов электрических зарядов

В 1733 г. ученый из Франции Ш. Дюфе установил факт существования электрических зарядов в двух родах: стеклянном и смоляном. Разноименные заряды склонны к притяжению, а одноименные – к отталкиванию.

Так, согласно опытам, смоляное электричество возникало на янтаре, а стеклянное – на поверхности стекла, драгоценных камней, шерсти животных. В 1747 г. ученый Б. Франклин предложил называть «положительным» стеклянное электричество, обозначая его знаком «+» (плюс), а смоляное – отрицательным (знак «минус»).

В момент соприкосновения электризоваться всегда будут оба тела. Это можно проследить на некоторых примерах:

  • в паре эбонит + мех электризация эбонита будет отрицательной, а меха – положительной;
  • если взять пару металл + шерсть, то отрицательно заряженным окажется металл, а мех- положительно заряженным;
  • в паре металл + каучук наблюдается положительная электризация металла, а каучук – отрицательно электризуется. Главными носителями положительных зарядов оказываются протоны, а отрицательных – электроны.

Источник: https://spravochnick.ru/fizika/zakony_elektrostatiki/

Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор

Законы электростатики

Проект Карла III Ребане и хорошей компанииРаздел недели: Тепловые величины: теплоемкость, теплопроводность, температуры кипения, плавления, пламени…
Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Физика для самых маленьких. Шпаргалки. Школа. / / Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Электрический заряд Q [Кл]: это физическая величина, характеризующая свойство тел вступать в электрическое взаимодействие. Одноименные заряды отталкиваются, а разноименные заряды притягиваются
  • Элементарный заряд: e=1,6*10-19 Кл это минимальная порция заряда, котрая может передаваться от одного тела к другому (заряд протона или электрона)
  • Электрическое поле: это создаваемый любым электрическим зарядом материальный объект, непрерываный в пространстве, проявляющийся в том, что действет на другие заряды.
  • Проводник: это материал, по которому заряд может свободно перемещаться от одного тела к другому.
  • Диэлектрик: это материал, по которому электрический заряд при обычных условиях перемещаться не может.
  • Закон сохранения электрического заряда: в замкнутой системе алгебраическая (с учетом знаков +/-) сумма зарядов остается постоянной
  • Закон Кулона: сила взаимодействия двух точечных зарядов (=кулоновская сила) направлена вдоль прямой, соединяющей заряды, прямо пропорциональна модулю зарядов и обратно пропорциональна квадрату расстояния между ними:
  • Принцип суперпозиции для электрических зарядов: результирующая сила, действующая на данный заряд q1 со стороны нескольких зарядов q2…..qn, равна геометрической сумме (= векторной сумме) сил F12+….F1n, действующих на данный заряд со стороны каждого из зарядов:
  • Взаимодействие между заряженными частицами осуществляется посредством электрического поля и осуществляется с конечной скоростью
  • Напряженность электрического поля [В/м]: E (векторная величина) это отношение силы F (векторной величины) с которой поле действует на точечный заряд q (скалярной величины), к этому заряду (с учетом знака заряда):
  • Напряженность электрического поля единичного точечного заряда Q: на расстоянии r от него (напрямую следует из закона Кулона):
  • Принцип суперпозиции электрических полей: если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых E1,E2,….En, то результирующая напряженность электрического поля в этой точке равна векторной сумме отдельных напряжённостей:
  • Потенциальная энергия: заряда q в однородном электростатическом поле напряженности E:
    • ,
    • где d — расстояние до плоскости, где потенциальная энергия принимается равной нулю
  • Потенциал электростатического поля в точке [В]: это отношение потенциальной энергии заряда в поле, к этому заряду (с учетом знака заряда):
    • Вариант 2: это работа по перемещению единичного положительного заряда из данной точки в бесконечность
  • Напряжение = Разность потенциалов между точками: это отношение работы поля при перемещении заряда из начальной точки в конечную к этому заряду ( с учетом знака заряда):
    • Численно (но не по размерности) это работа поля по перемещению единичного положительного заряда из одной точки в другую
  • Связь разности потенциалов и напряженности: в однородном поле:
    • где U это разность потенциалов между точками, которые cвязаны вектором перемещения Δd, совпадающим по направлению с вектором E
  • Электроемкость двух проводников: это отношение заряда Q одного из проводников к разности потенциалов U между этим проводником и соседним:
  • Конденсатор: это система двух проводников (обкладок конденсатора), разделенных слоем диэлектрика, толщина которого мала по отношению к размерам обкладок
  • Напряженность поля плоского конденсатора:
  • Электроемкость плоского конденсатора:
  • Энергия заряженного конденсатора:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.

Источник: https://dpva.ru/Guide/GuidePhysics/PhysicsForKids/ElectroStatics/

ЭЛЕКТРОСТАТИКА. Законы электростатики

Законы электростатики

1. Электростатика – раздел теории электричества, изучающий взаимодействие неподвижных друг относительно друга электрических зарядов.

Основные понятия – электрический заряд и электростатическое, то есть не изменяющееся во времени электрическое поле. Источником электростатического поля является электрические заряды.

Без электрических зарядов электростатическое поле не существует.

Основные законы электростатики были открыты в XVIII и XIX столетиях. Они выполняются достаточно строго также в тех случаях, когда заряды двигаются друг относительно друга со скоростями, много меньшими скорости света в вакууме.

К основным законам электростатики относятся закон существования двух родов электрических зарядов, закон сохранения заряда, закон квантованности электрических зарядов, закон Кулона.

2. Закон существования двух родов электрических зарядов. В 1733 г. француз Шарль Дюфе установил, что «существуют два рода электрических зарядов – стеклянное и смоляное. Разноименные заряды притягиваются, одноименные – отталкиваются».

Смоляное электричество появлялось на янтаре, а стеклянное – на стекле, на драгоценных камнях, на шерсти животных. В 1747 г. американец Бенджамин Франклин предложил называть стеклянное электричество положительным и обозначать знаком «+» (плюс), а смоляное – отрицательным и обозначать знаком «–» (минус).

При соприкосновении всегда электризуются оба тела. В паре эбонит+мех эбонит электризуется отрицательно, мех – положительно. В паре металл+шерсть металл заряжается отрицательно, шерсть – положительно. В паре металл+каучук металл электризуется положительно, каучук – отрицательно. Основными носителями положительных зарядов являются протоны, отрицательных – электроны.

3. Закон сохранения электрического заряда. Он был осознан по совокупности физических фактов в XVIII веке.

Алгебраическая сумма электрических зарядов любой изолированной (или замкнутой) системы остается постоянной, какие бы процессы не происходили внутри этой системы. Полный заряд такой системы есть релятивистский инвариант.

Его величина не зависит от выбора системы отсчета и от скорости движения зарядов. Изолированной считается здесь такая система, через границы которой не проникает вещество. Свет может входить и выходить из системы.

Вначале закон сохранения заряда был открыт по аналогии с законами сохранения импульса и механической энергии.

Поэтому он мог рассматриваться как постулат, которому подчинялись без исключения все электрические опыты. Начиная с XX в.

после наблюдения актов аннигиляции частиц с античастицами (электрон+позитрон) закон сохранения заряда может считаться уже эмпирическим законом, доказанным прямым экспериментом.

4.Закон квантованности (дискретности) электрических зарядов (XIX в.). Делимость электрических зарядов ограничена неким минимальным зарядом e, называемым элементарным. Зарядов, меньших элементарного, в природе нет. Положительный e+ и отрицательный e– элементарные заряды равны по абсолютной величине, |e+|=|e–|.

Идея дискретности электрических зарядов появилась после опытов Майкла Фарадея по электролизу (1834 г.).

Из них следовало, что количество отложившегося на электродах вещества во всех случаях пропорционально величине электрического заряда, прошедшего через электролит.

Этот факт можно объяснить лишь тем, что каждая отложившаяся на электроде частица вещества переносит одну и ту же порцию электрического заряда.

В 1881 г. Герман Гельмгольц сделал такую оценку, а Джозеф Томсон в 1897 г. в опытах с катодными лучами подтвердил идею существования атомов электричества – электронов и измерил их удельный заряд. Абсолютную величину элементарного заряда впервые определил с высокой точностью в 1909 г. американец Роберт Милликен.

Схема одного из вариантов установки Милликена показана на рис.1.

Сквозь отверстие O в верхней пластине горизонтально расположенного плоского воздушного конденсатора внутрь него попадали капельки распылявшегося масла. Под действием ионизирующего излучения источника S (препарат радия в свинцовом контейнере) капельки могли приобретать и терять электрический заряд.

Если на конденсатор подать напряжение U, то из множества капель в поле зрения микроскопа М можно выделить ту, которая движется кверху со скоростью, приемлемой для визуального наблюдения. Раз капля движется вверх, то это значит, что она имеет некоторый заряд q. Измерения выполнялись так:

а. Пластины конденсатора замыкались между собой накоротко (переключатель Пк ставился в левое по рис.1 положение). Электрическое поле в конденсаторе исчезало.

Капля под действием силы тяжести падала равномерно вниз со скоростью v1. Сила тяжести уравновешивалась силой вязкого сопротивления воздуха FS1 (рис.2-а).

Уравнение движения капли в проекции на вертикальную ось ОY имеет вид: –mg + FS1 = 0. (2.1)

б. На конденсатор подавалось напряжение U (переключатель Пк ставился в правое по рис.1 положение). Капля начинала двигаться вверх в электрическом поле напряжённостью E=U| d со скоростью v2 (рис.2-б). Уравнение движения капли в проекции на ось Y имеет вид:

–mg–FS2+qE=0. (2.2)

Так как FS1= 6πhrv1, а FS2= 6πhrv2, где h – вязкость воздуха, а r – радиус капли, то система уравнений принимает вид:

. (2.3)

Разделив 2-е уравнение на 1-е, получаем заряд капли . (2.4)

Милликен наблюдал некоторые капли в течение нескольких десятков минут, многократно поднимая их вверх, измеряя скорость подъема v2, а затем измеряя скорость v1 опускания капли.

Если напряжение U на конденсаторе не менять, то коэффициент перед скобкой остается постоянным. Поэтому при перезарядке капли в случае дискретного изменения заряда q скорость подъёма капли должна изменяться тоже ступенчато.

Для вычисления абсолютного заряда капли нужно из формулы (2.4) исключить ее вес. Это можно сделать, используя режим свободного падения капли с плотностью ρ. Так как mg = (4πr3| 3)ρg = 6πhrv1, то, выразив отсюда радиус капли и подставив его в выражение веса капли, получаем: и . (2.5)

В итоге всех экспериментов после исследования тысяч капель Милликен нашел величину минимального заряда. Его современное значение составляет

e = (1,6021892±0,0000046)·10−19 Кл.

Опыты, выполненные в 60-е годы XX в. с атомными пучками цезия и с молекулярным водородом, показали, что отрицательный и положительный элементарные заряды если и отличаются по абсолютной величине между собой, то не более чем на 10−20e.

В макроскопической электростатике дискретность зарядов не имеет практического значения. Дифференциальные объемы заряженных тел обычно содержат огромное количество элементарных зарядов. Это позволяет считать изменение зарядов непрерывным.

Однако в строении материи и в физическом портрете Вселенной дискретность зарядов играет решающую роль.

5.Закон Кулона. В 1785 г. Шарль Кулон, изучая взаимодействие маленьких заряженных шариков, сформулировал закон их взаимодействия.

Два точечных заряда q1 и q2 взаимодействуют друг с другом в вакууме с силой, пропорциональной произведению зарядов и обратно пропорциональной квадрату расстояния между ними. . (2.6)

Здесь r – расстояние между зарядами, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F взаимодействия зарядов направлена вдоль прямой, проходящей через заряды.

Чтобы задать направление силы и написать закон Кулона в векторной форме, нужно определить положение одного заряда относительно другого. Если — вектор, проведенный от заряда q1 к заряду q2 (рис.3-а), то сила действия заряда q1 на заряд q2 равна

. (2.7)

Направление действия силы определится направлением вектора (рис.3-б).

Отношение есть единичный вектор. Он указывает направление силы, не меняя ее величины.

Если взаимодействующие заряды находятся в диэлектрике, то есть в веществе, не проводящем электричество, то сила уменьшается по сравнению с вакуумом в ε раз.

Величину ε называют диэлектрической проницаемостью среды.

Формула закона Кулона в однородной бесконечно протяженной диэлектрической среде в системе единиц СИ имеет вид: . (2.8)

В вакууме ε = 1, в диэлектриках ε > 1, в металлах ε = ∞, в сверхпроводниках ε < 0.

Размерный коэффициент ε0 называют электрической постоянной. Она связана со скоростью света c и вычисляется через нее с точностью, с которой измерена скорость света.

.

Единица заряда q в СИ – кулон (Кл).

Современный опыт позволяет утверждать, что закон Кулона справедлив в интервале расстояний по кр. мере от 10−16 до 105 м.

6. Опыты Кулонапо изучению взаимодействия зарядов включали в себя изучение взаимодействия одноименных зарядов и изучение взаимодействия разноименных зарядов.

а. Взаимодействие одноименных зарядов исследовалось Кулоном с помощью изобретенных им крутильных весов (рис.4-а).

К подвижной головке 1 на тонкой серебряной проволоке 2 подвешено коромысло 3 из стекла. На одном конце коромысла крепился бузиновый шарик 5 диаметром около 5 мм.

Рядом с ним на металлическом стержне 9 неподвижно укреплен точно такой же шарик 6. На другом конце коромысла закреплен бумажный диск 4, игравший роль противовеса и демпфера.

На головке 1 и на стеклянном сосуде 7 нанесены круговые шкалы 8 и 10 с ценой деления 1°.

В основу количественных измерений Кулон положил экспериментально доказанный им закон кручения упругих проволок , (2.9)

где М – момент силы, закручивающий проволоку, j – угловая деформация кручения проволоки, d и l – диаметр и длина проволоки. Коэффициент k зависит от материала и профиля сечения проволоки.

Измерения сводились к двум группам ответов.

1-я группа ответов.Проверка зависимости F~ 1çr2.

В нейтральном состоянии шарики 5 и 6 слегка касаются между собой. Угол деформации проволочной нити j = 0.

Через металлический стержень 9 от заряженного тела заряжается шарик 6. Заряд распределяется поровну между шариками 5 и 6. Шарики расходятся на расстояние r, которое можно определить из угла j1 поворота коромысла и его плеча R (рис.4-б).

Равновесию соответствует равенство моментов: (2.10)

Если постепенно закручивать нить, вращая головку 1 по часовой стрелке (по рис. 1а) и приближая шарик 5 к шарику 6, то для какого-то другого расстояния r2 уравнение моментов принимает вид: (2.11)

Разделив второе уравнение на первое, получаем: (2.12)

Кулон установил, что с уменьшением расстояния r между шариками в 2 раза, сила электрического отталкивания возрастала в 4 раза, при уменьшении расстояния в 3 раза, сила возрастала в 9 раз и так далее. Отсюда следует, что электрическая сила отталкивания между шариками обратно пропорциональна квадрату расстояния между ними, F~1/r2

2-я группа опытов. Проверка пропорциональности силы F произведению величин зарядов, F ~ q1q2.

Через металлический стержень 9 от заряженного тела заряжался шарик 6. Заряды распределяются поровну, на каждом из шариков 5 и 6 заряд q. Шарики расходятся на расстояние r1, коромысло поворачивается на угол j1, нить закручивается на угол j1. Заземленным проводником снимается заряд с неподвижного шарика 6.

Шарик 5 подходит к шарику 6, заряд с подвижного шарика делится поровну, на каждом из шариков заряд 2. Шарики расходятся на угол j много меньший прежнего угла j1. Вращением головки 1 против часовой стрелки (по рис. 4-а) подвижный шарик возвращается на прежнее расстояние r1. Угол закручивания нити стал j 2.

Снимается заряд с неподвижного шарика и снова, после деления заряда пополам, подвижный шарик возвращается на прежнее расстояние. Повторяя эту процедуру несколько раз, Кулон установил, что после каждого деления сила отталкивания шаров уменьшается в 4 раза. Это доказывает зависимость F ~ q1q2.

Действительно F1= kq2, где k – коэффициент пропорциональности. После первого деления сила F2 = (kqç2)2, и F2çF1 = (1ç2)2 = 1ç4. После второго деления F3çF2 = k(4)2çkq2 =

= (1ç4)2 = 1ç16 и так далее.

Так была доказана зависимость F ~ q1q2çr2 для сил отталкивания.

8. Взаимодействие разноименных зарядов Кулон изучал, положив в основу опытов колебания маятника.

Как установил Гюйгенс в 1673 г. период колебаний математического маятника определяется формулой , (2.13)

где l – длина нити маятника, g – ускорение силы тяжести. Из закона всемирного тяготения Ньютона следует, что , (2.14)

где G – гравитационная постоянная, M – масса Земли, R – ее радиус. Подставив (2.14) в (2.13) получаем . (2.15)

Период маятника пропорционален расстоянию от маятника до центра тяготения.

Если электрические силы притяжения изменяются с расстоянием также как и силы тяготения, то есть по закону F ~ 1çr2, то период колебаний маятника под действием электрических сил будет так же зависеть от расстояния, как и период математического маятника.

Схема второй установки Кулона показана на рис.5. Большой медный шар 1 диаметром около 35 см. на изолирующей подставке заряжался. Рядом с шаром на тонкой шелковой нити 2 подвешивалось коромысло 3 из натертой воском соломинки длиной 43мм.

На конце коромысла, близком к шару, приклеен диск 4 из позолоченной бумаги, на противоположном конце – шарик-противовес.

Диск 4 заряжался малым зарядом противоположного знака и отклонялся от положения равновесия. Коромысло 3 начинало колебаться. Далее измерялось время 15 колебаний при разных расстояниях d между центром шара 1 и диском 4.

Опыты показали, что и для разноименных зарядов зависимость F ~ 1çr2выполняется с точностью до 10%.

Дата добавления: 2018-05-10; просмотров: 1583;

:

Источник: https://poznayka.org/s104934t1.html

Booksm
Добавить комментарий