Закон Кирхгофа

Второй закон Кирхгофа

Закон Кирхгофа

Господа, всем привет!

Сегодня мы рассмотрим второй закон Кирхгофа. Он чуть сложнее, чем первый закон Кирхгофа, который мы уже рассматривали ранее, поэтому я сперва дам общую формулировку, а потом мы постараемся аккуратно разобраться во всем этом деле. 

Итак, второй закон Кирхгофа гласит, что алгебраическая сумма ЭДС, действующих в контуре равна алгебраической сумме падений напряжения в ветвях контура.

Может быть сложновато для восприятия, если вы читаете это в первый раз, не спорю. Но сейчас попробуем разобраться более детально во всем этом. Для начала давайте определим, что же такое контур электрической цепи, где эти самые ЭДС действуют.

Пожалуй, это тот случай, когда проще нарисовать картинку, чем объяснять словами. Взглянем на рисунок 1.

Рисунок 1 – Контура в схеме

На нем мы можем видеть три контура: я обозначил их красным, оранжевым и синим цветами. То есть контур –  это некоторая замкнутая часть электрической цепи, состоящая из нескольких ветвей.

То есть что говорит второй закон Кирхгофа? У нас есть большая и сложная электрическая схема. В ней много различных контуров. Будем рассматривать подробно один из этих контуров, любой на выбор.

И вот если мы в этом контуре сложим ЭДС всех источников, какие там есть, то их сумма будет равна сумме падений напряжения на всех сопротивлениях этого контура. И это верно для любого контура в нашей схеме. Довольно интересный факт.

И если про первый закон Кирхгофа можно говорить, что он интуитивно очевиден, то здесь, вообще говоря, это не совсем так. А поскольку он не очевиден на первый взгляд, тем больше поводов показать его верность математически.

Господа, прошу обратить внимание на рисунок 2. На нем изображен один из контуров какой-то сложной электрической схемы.

Рисунок 2 – Контур схемы

Почему он именно такой, можете вы спросить? Да просто так! Я рисовал его так, как подскажет фантазия в тот момент. Вы можете смело заявить, что ваша фантазия лучше и нарисовать какой-либо другой контур с другими компонентами. Потом повторите все действия, которые я буду производить над этим контуром, и в конечном счете у вас должен получиться точно такой же результат, как и у меня.

Первым делом давайте зададимся направлением обхода контура. Это некоторое направление в контуре, которое мы принимаем за положительное. Можно в какой-то степени назвать это аналогом осей координат в математике. Направление обхода контура у нас по часовой стрелке, и я показал его синей стрелочкой на рисунке 2.

Следующим шагом нам надо расставить предполагаемое направление токов в каждой ветви. Тут опять же все целиком отдается вашей фантазии. На данном этапе можно рисовать любое направление токов. Если мы угадали – отлично, если нет – в конце всех расчетов получим ток с другим знаком. Я расставил на рисунке 2 все токи черными стрелками и рядом с ними подписал их величины (I1…I4).

А теперь внимание, господа. Пришло время вспомнить то выражение, ради получения которого я написал предыдущую статью. На всякий случай, если вдруг кто забыл, напоминаю его

Оно означает, что если потенциалы на концах ветви равны φ1 и φ2, то их разность равна ЭДС источника в ветви минус произведение тока в ветви на сопротивление в ветви.

Применим это выражение для каждой ветви нашего контура, изображенного на рисунке 2. Поскольку у нас в контуре четыре ветви, то всего мы получим четыре уравнения. Резонный вопрос – а как быть со знаками при записи этих уравнений? Правила тут два.

  • Если направление работы источника напряжения совпадает с направлением обхода контура, то берем его со знаком плюс. Если не совпадает – со знаком минус. Совсем просто: если стрелка в источнике напряжения совпадает со стрелкой обхода, то Е в уравнении пишется без изменения знака, если стрелки в разные стороны – то надо поставить минус перед E.
  • Если направление тока, которое мы сами выбрали чуть раньше, совпадает с направлением обхода, то в нашем уравнении перед произведением тока на сопротивление так и остается знак минус. Если они направлены в разные стороны, то знак минус меняем на плюс.

Пользуясь этими простыми правилами, запишем уравнения для каждой ветви.

Очевидно, что если в цепи нет источника ЭДС, то у нас не будет первого слагаемого в правой части. А если нет сопротивления, то не будет второго слагаемого в правой части. Собственно, это и видно из составленных уравнений.

Господа, надеюсь вы помните, что с уравнениями в одной системе можно творить всякие интересные штуки? Например, можно все их сложить между собой (правые и левые части). Легко заметить, что при сложении всех этих четырех уравнений в левой части будет нолик, то есть все потенциалы волшебным образом самоликвидируются. Сделаем это! Получим

А теперь давайте перенесем все слагаемые с ЭДС в одну сторону, а с током и сопротивлением – в другую. Имеем

А имеем мы, собственно, второй закон Кирхгофа. Все честно, как я и писал в начале – алгебраическая сумма ЭДС, действующих в контуре равна алгебраической сумме падений напряжения в ветвях контура.

Надеюсь, господа, после статьи про закон Ома у вас не возникает вопросов, почему произведение тока на сопротивление – это падение напряжения на сопротивлении?  Если возникает – срочно, очень срочно, прямо сейчас пройдитесь по этой ссылке и разрешите эти вопросы!

А что же все-таки тут понимается под словом алгебраическая сумма? Это словосочетание нам уже встречалось. Это значит, что складывать надо с учетом знака.

А как выбирать правильно этот самый знак? Господа, взгляните еще разок на рисунок 2. Там у нас задано направление обхода контура и направление токов. Все это мы выбирали (я бы даже сказал придумывали) сами.

Ну и направление работы источника еще видно по его графическому изображению.

Так вот, если направление работы источника ЭДС совпадает с направлением обхода контура, то мы ему приписываем знак плюс, а если не совпадает – минус. Аналогично и для правой части. Если направление тока совпадет с направлением обхода, то мы пишем произведение тока на сопротивление со знаком плюс. Иначе – со знаком минус.

Специально для труЪ-математиков привожу запись второго закона Кирхгофа с использованием хитрых значков суммирования. Вне всякого сомнения, если вы будете использовать эту запись, то произведете впечатление человека, который шарит в теме!

Здесь у нас N источников c ЭДС Ei и M ветвей с сопротивлениями Rj и токами Ij. Разумеется, суммирование идет все так же с учетом знаков.

Может возникнуть резонный вопрос: «Как же так? Получается, я сам все придумываю: и направление обхода, и направление токов и это значит, что знак может получиться любой.

Поверну стрелку тока в другую сторону и сразу знак у слагаемого поменяется! Но ведь в реальной схеме токи всегда текут в своем направлении вне зависимости от того, что я там нарисую на листочке! Какое-то противоречие!» Господа, вопрос весьма справедливый. Но предлагаю разобраться в нем в следующей статье.

Сохраним некоторую интригу на текущий момент, как принято во всяких этих сериальчиках . А сейчас – спасибо, что прочитали статью, огромной вам всем удачи, и пока!

Вступайте в нашу группу

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Источник: http://myelectronix.ru/postoyannyy-tok/34-vtoroy-zakon-kirkhgofa

Законы Кирхгофа

Закон Кирхгофа

Для расчета сложных цепей (содержащих два и более источников энергии) применяют методы, которые основаны на двух законах Кирхгофа.

Законы применимы как для анализа цепей, так и для расчетов элементов и определения параметров цепей. В сложных цепях выделяют контуры, узлы (геометрические узлы, см.

предыдущий рисунок, имеющие одинаковые потенциалы, объединяются в один), ветви (участки цепи между узлами — см. сложную цепь ниже).

Первый закон Кирхгофа:алгебраическая сумма токов, сходящихся в узле, равна нулю, т.е. .

При составлении уравнений пользуются правилом: если ток входит в узел, то его в уравнение подставляют со знаком «+», если выходит — «-»:

,

то есть сумма токов приходящих к узлу цепи равна сумме токов уходящих из узла.

Второй закон Кирхгофа: алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжений на сопротивлениях этого контура:

.

Приведем правила составления уравнений по второму закону Кирхгофа. Для примера возьмем схему замещения электропитания автомобиля, см. рисунок. На схеме Е1 и Е2 соответственно ЭДС аккумуляторной батареи и электрического генератора, а Е3 — противо ЭДС стартерного электродвигателя. Ri сопротивления соединительных проводников.

Цепь содержит три контура, однако уравнения по второму закону составляются только для независимых контуров. Независимым называется контур, который содержит хотя бы одну ветвь, не вошедшую в предыдущие контуры. Независимых контуров в приведенной цепи два.

Уравнения составляют в следующей последовательности:

− произвольно выбираем направление токов ветвях (направления токов обозначены стрелками);

− составляем уравнения по первому закону Кирхгофа для узлов. Количество уравнений n должно быть равно количеству узлов m без одного (n=m-1). Например, для верхнего узла:

;

− произвольно задаемся направлением обхода контуров (например, против часовой стрелки);

− составляем уравнения по второму закону Кирхгофа для независимых контуров.

При составлении пользуются правилами: если направление ЭДС совпадает с направлением обхода контура, то в уравнение она подставляется со знаком «+», в противном случае с «-»; если направление тока в сопротивлении совпадает с направлением обхода контура, то падение напряжения подставляется со знаком «+», в противном случае со знаком «-».

Таким образом, для контуров I и II:

.

Получена система из трех уравнений, решая которую получим значения искомых токов.

Если в результате решения один из токов окажется отрицательным, то этот ток имеет направление, противоположное избранному на схеме. Кроме того, правильность вычисления токов можно проверить, составив уравнение по первому закону Кирхгофа (1.3) для узла схемы:

.

В качестве примера рассмотрим цепь, схема которой приведена на рис. 4. Схема цепи содержит 6 ветвей (m=6) и 4 узла: a, b, c, d (n=4). По каждой ветви проходит свой ток, следовательно число неизвестных токов равно числу ветвей, и для определения токов необходимо составить m уравнений.

При этом по первому закону Кирхгофа (1.3) составляют уравнения для (n–1) узлов. Недостающие m–(n–1) уравнения получают по второму закону Кирхгофа (1.4), составляя их для m–(n–1) взаимно независимых контуров. Рекомендуется выполнять операции расчета в определенной последовательности.

Рис. 4

1. Обозначение токов во всех ветвях. Направление токов выбираем произвольно, но в цепях с источниками ЭДС рекомендуется, чтобы направление токов совпадало с направлением ЭДС.

2. Составление уравнений по первому закону Кирхгофа. Выбираем 4–1=3 узла (a, b, c) и для них записываем уравнения:

узел a: I1 — I2 — I3 = 0;

узел b: I2 — I4 + I5 = 0;

узел c: I4 — I5 + I6 = 0.

3. Составление уравнений по второму закону Кирхгофа. Необходимо составить 6–3=3 уравнения. В схеме на рис. 4 выбираем контура I, II, III и для них записываем уравнения:

контур I: E1 = I1(r01 + R1) + I3R3;

контур II: 0 = I2R2 + I4R4 + I6R7 — I3R3;

контур III: -E2 = -I5(r02 + R5 + R6) — I4R4.

4. Решение полученной системы уравнений и анализ результатов. Полученная система из шести уравнений решается известными математическими методами.

Если в результате расчетов численное значение тока получено со знаком «минус», это означает, что реальное направление тока данной ветви противоположно принятому в начале расчета.

Если в ветвях с ЭДС токи совпадают по направлению с ЭДС, то данные элементы работают в режиме источников, отдавая энергию в схему. В тех ветвях, где направления тока и ЭДС не совпадают, источники ЭДС работает в режиме потребителя.

5. Проверка правильности расчетов. Для проверки правильности произведенных расчетов можно на основании законов Кирхгофа написать уравнения для узлов и контуров схемы, которые не использовались при составлении исходной системы уравнений:

узел d: I3 + I6 — I1 = 0

внешний контур схемы: E1 — E2 = I1(r01 + R1) + I2R2 — I5(r02 + R5 +R6) +I6R7.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/3_206827_zakoni-kirhgofa.html

Закон Кирхгофа: первый и второй закон для тока и напряжения

Закон Кирхгофа

В статье мы расскажем про законы Кирхгофа с иллюстрацией и формулой. Первый и второй закон Густава Кирхгофа.

Вступление

Закон Ома является одним из самых фундаментальных законов электрической науки, но из-за своей простоты он может быть не очень полезен при решении вопросов, касающихся сложных электрических цепей.

Закон Кирхгофа, сформулированный немецким физиком Густавом Кирхгофом (1824-1887) в 1847 году, представляет собой инструмент для анализа как простых, так и очень сложных электрических цепей.

Эти законы позволяют определить значения и направление токов, протекающих по электрической цепи, а также разность потенциалов (напряжений) между выбранной парой точек в цепи. В основном они являются законами сохранения заряда и электрической энергии применительно к электрическим цепям и описываются следующим образом.

Первый закон Кирхгофа для тока

Также известный под другими именами, такими как Закон Кирхгофа для тока, это закон сохранения заряда. В нем просто говорится, что в любой точке или соединении в электрической цепи общая величина тока, поступающего в это соединение, равна общей величине тока, который покидает это соединение.

Предположим, что есть электрическая цепь, которая имеет точку, обозначенную на рисунке 1, показанном ниже.

 Точка соединения действует как точка встречи для четырех проводников, каждый из которых проводит ток в направлении, указанном черными наконечниками стрел.

 Согласно закону Кирхгофаобщая сумма тока, входящего в соединение, должна быть равна току, выходящему из него. Это может быть математически представлено следующим образом

Ia = Ib + Ic + Id

Где I — ток в каждом из проводников a, b, c и d соответственно.

В этой точке также следует отметить, что конденсатор представляет собой устройство, которое используется для накопления заряда в виде электростатической силы в диэлектрическом материале, окруженном пластинами проводника с обеих сторон.

 Есть некоторые исключения из первого правила Кирхгофа, если конденсатор присутствовал в каком-либо из узлов, но лучше не вдаваться в такие детали на этом базовом уровне.

 Следовательно, для всех практических целей в других ситуациях применяется закон Кирхгофа.

Первый закон Кирхгофа — применение

Чтобы продемонстрировать, как правильно применять первый закон Кирхгофа, мы будем использовать простой пример. На рисунке ниже показана электрическая цепь, состоящая из превосходного источника электродвижущей силы и двух резисторов с сопротивлениями R1 и R2.

Простая электрическая цепь, состоящая из двух узлов (точки B и D), трех ветвей, соединяющих узлы — левого (BAD), центрального (BD) и правого (BCD) и трех ячеек, образующих комбинацию ветвей, образующих замкнутый контур — слева (BADB), справа (BCDB) и большое ушко (ABCDA).

Ток интенсивности I, исходящий из источника ЭДС, имеет то же значение в левой ветви (BAD), ток I 1 — в средней ветви (BD), а ток I 2 — в правой ветви (BCD).

 Сосредоточим внимание на узле B: электрический заряд поступает в этот узел от источника ЭДС вместе с током I и течет с токами I 1 и I 2 , протекающими через резисторы R 1 и R 2соответственно, Общий заряд в узле B не изменяется, поэтому в соответствии с первым законом Кирхгофа сумма токов, протекающих в этот узел, должна быть равна сумме токов, протекающих из этого узла, которые мы можем записать так: 

I=I 1 + I 2

Точно такое же выражение, как и выше для узла B, получаем узел D. В узел D влияют токи I 1 и I 2 , и ток протекает с интенсивностью I, являющейся суммой этих двух токов: 

I 1 + I 2 = I

чтобы вычислить, сколько стоят значения этих токов, мы будем использовать второй закон Кирхгофа.

Второй закон Кирхгофа для напряжения

Алгебраическая сумма потенциальных изменений в замкнутой электрической цепи равна нулю.

Этот закон применяется, когда используется напряжениями вместо тока в отличие от первого закона и, следовательно, также известен как Закон Кирхгофа для напряжения.

 В нем говорится, что в замкнутой цепи алгебраическая сумма произведений токов и сопротивлений всех проводников плюс алгебраическая сумма ЭДС равна нулю.

 Пожалуйста, обратите внимание на слово «алгебраическая», которое просто означает, что значение имеет не только количество этих токов и напряжений, но и их направление. Это приводит нас к следующему вопросу, касающемуся определения знака напряжений и тока в замкнутой цепи, который объясняется следующим образом.

Напряжение — в случае ЭДС батареи повышение напряжения обозначается знаком + ve, а падение напряжения — знаком -ve. Этот знак не зависит от направления тока в этой конкретной ветви. Напротив, падение ИК-сопротивления на резисторе зависит исключительно от направления тока независимо от любой ЭДС, присутствующей в ветви.

Ток — выбор направления тока для целей расчета с использованием закона Кирхгофа в основном является делом удобства и может осуществляться как по часовой стрелке, так и против часовой стрелки, НО после выбора направления его необходимо придерживаться, в противном случае это приведет к путанице и неправильному расчеты.

Второй закон Кирхгофа — применение

Теперь давайте поговорим о практическом применении второго закона Кирхгофа, а именно об определении токов I , I 1 и I 2, протекающих через электрическую цепь, показанную на рисунке ниже. Предположим, что ЭДС источника составляет ε = 12 В, а сопротивление (сопротивление) резисторов равно R 1 = 10 Ом и R 2.

= 20 Ом. Для начала давайте проанализируем ситуацию еще раз: источник ЭДС «прокачивает» электрические заряды между отрицательным и положительным полюсами.

Направление движения этих носителей и, следовательно, направление тока определяется стрелкой, направленной от положительного полюса к отрицательному полюсу, поэтому в случае нашей схемы это по часовой стрелке.

Этот ток, обозначенный I , после подачи на узел B делится на ток I 1 , который протекает через резистор R 1, и на ток I 2 , который протекает через резистор R 2, Эти резисторы соединены параллельно, то есть их начало и конец соединены вместе с помощью одних и тех же проводов, к которым одинаковая разность потенциалов равна ЭДС источника ε. Чтобы упростить эту схему, мы заменим резисторы R 1 и R 2 эквивалентным резистором R 12 , что позволит нам определить ток I, генерируемый источником ЭДС (определение этого тока возможно, потому что этот ток не разветвляется на другие токи в цепи),

Эквивалентная электрическая цепь, в которой резисторы R 1 и R 2 параллельно заменены резистором R 12.

Сопротивление R заменителя резистора 12 стоимость , используя следующее уравнение (см последовательно и параллельно, соединяющие резисторы ) 

Следующим шагом является применение второй закон Кирхгофа к такой упрощенной электрической цепи.

Правильное использование этого закона состоит в обходе всего контура в направлении или против часовой стрелки (выбор за нами), уделяя пристальное внимание потенциальным изменениям, встречающимся на этом пути. На данный момент мы должны сохранить два основных правила для анализа электрических цепей:

  1. Когда мы анализируем цепь в направлении протекания тока, изменение потенциала источника ЭДС составляет + ε. В противном случае, т.е. когда мы анализируем цепь в направлении, противоположном направлению потока тока, изменение потенциала источника равно -ε.
  2. Когда мы анализируем цепь в направлении протекания тока, изменение потенциала при прохождении через резистор составляет -IR. В противном случае потенциальное изменение равно + IR.

Изменение потенциала при прохождении через резистор, равное ± ИК, вытекает из определения электрического сопротивления: R = U / I. Отметим, что согласно рисунку выше положительный полюс источника ЭДС подключен к верхнему концу резистора R 12, а отрицательный полюс — к его нижнему концу.

 Это означает, что верхний конец резистора имеет более высокий потенциал, чем его нижний конец, и поэтому изменение потенциала при прохождении через резистор от конца с более высоким потенциалом к ​​концу с более низким потенциалом равно -IR (имеется уменьшение потенциала).

 В противном случае, то есть, когда движение нагрузок происходит от отрицательного полюса к положительному полюсу, изменение потенциала равно + IR, поскольку происходит увеличение электрического потенциала.

Используя эту информацию, давайте воспользуемся вторым законом Кирхгофа, минуя цепь в направлении потока тока, то есть по часовой стрелке, начиная с точки A: 

начиная и заканчивая анализ цепи в точке A, мы, конечно, должны получить тот же потенциал V A (мы вернемся к этому та же точка), что подтверждается приведенной выше формулой. После уменьшения величины V A мы получим: 

где из преобразования из тока я получаю: 

(полностью равное значение тока, которое я получу после прохождения этой цепи в направлении против часовой стрелки) 

Зная значение тока I мы можем вернуться к первой цепи с двумя параллельно подключенными резисторами, чтобы вычислить ток I1 и I2. Записав второе право Кирхгофа для левой сетки (BADB) и начав анализ в точке A, двигаясь в направлении потока тока, мы получим: 

где из преобразования мы получим значение тока I 1 : 

чтобы найти ток I 2, мы будем использовать первый закон Кирхгофа. Мы знаем, что ток интенсивности I после подачи в узел B делится на ток I 1 и I 2 , таким образом:

Источник: https://meanders.ru/zakon-gustava-kirhgofa-princip-sohranenija-zarjada-v-jelektrotehnike.shtml

Первый и второй закон Кирхгофа — доступное объяснение

Закон Кирхгофа
Для расчетов задач по электротехнике в физике есть ряд правил, часто используют первый и второй закон Кирхгофа, а также закон Ома. Немецкий ученый Густав Кирхгоф имел достижения не только в физике, но и в химии, теоретической механике, термодинамике.

В электротехнике используется закономерность, которую он установил для электрической цепи, из двух соотношений. Законы Кирхгофа (также их называют правилами) описывают распределение токов в узлах и падений напряжений на элементах контура.

Далее мы попытаемся объяснить простым языком, как применять соотношения Кирхгофа для решения задач.

Первый закон Кирхгофа

Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».

Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.

I1=I2+I3

Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:

Комплексная форма учитывает и активную и реактивную составляющие.

Второй закон Кирхгофа

Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома».

Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах».

Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности:

Вот картинка, иллюстрирующая вышесказанное:

Тогда:

Методы расчетов по первому и второму законам Кирхгофа

Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему:

Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке:

Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений.

https://www.youtube.com/watch?v=LzqkLKOyid8

Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков.

Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2:

Для второго:

Для третьего:

Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае.

IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура.

Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично.

Рассмотрим еще одну цепь:

Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений.

Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1):

I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго:

Для третьего:

Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно:

Nуравнений=nузлов-1

Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях.

Теперь перейдем к построению уравнений по второму правилу. Для первого контура:

Для второго контура:

Для третьего контура:

Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи.

Вывод. Главное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи.

Законы Кирхгофа для магнитной цепи

В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.

Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:

F=w*I

Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:

Um=H*I

Или магнитный поток через магнитное сопротивление:

Um=Ф*Rm

L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость.

Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:

То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?

Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM­­ ­­(магнитных напряжений).

Магнитный поток равен:

Для переменного магнитного поля:

Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.

В качестве примера рассмотрим такой контур:

Тогда для ABCD получится такая формула:

Для контуров с воздушным зазором выполняются следующие соотношения:

Сопротивление магнитопровода:

А сопротивление воздушного зазора (справа на сердечнике):

Где S — это площадь сердечника.

Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:

Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи.

Источник: https://samelectrik.ru/pervyj-i-vtoroj-zakon-kirxgofa-dostupnoe-obyasnenie.html

Booksm
Добавить комментарий