Закон гармонических колебаний

Закон гармонических колебаний

Закон гармонических колебаний

Колебаниями в физике считают не только периодические или почти периодические движения тел, при которых тело множество раз повторяет движение около положения равновесия.

Определение 1

Колебанием считают любой периодический или почти периодический процесс, при котором тот или иной физический параметр повторяется точно или почти точно спустя равные или почти равные отрезки времени.

Электромагнитные колебания

Пусть прямоугольная рамка вращается в однородном магнитном поле с постоянной угловой скоростью $\omega$. Магнитный поток через поверхность этой рамки будет равен:

$Ф=BS\cos \alpha (1),$

где $S$ — площадь рамки; $\alpha$ — угол между нормалью к плоскости рамки и направлением вектора магнитной индукции $\vec B$.

Если рамка вращается равномерно, то угол $\alpha$ можно определить как:

$\alpha=\omega t (2),$

тогда поток магнитного поля равен:

$Ф=Ф_0\cos (\omega t) (3),$

где введено обозначение: $Ф_0=BS$.

При таком вращении рамки в ней возбуждается электродвижущая сила индукции $\varepsilon_i$, которая в соответствии с законом Фарадея равна:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

$\varepsilon_i =-\frac{dФ}{dt}(4).$

Принимая во внимание выражение (2), ЭДС индукции получаем равную:

$\varepsilon_i =\varepsilon_0\sin (\omega t) (5),$

где $\varepsilon_0$ — постоянная величина, называемая амплитудой ЭДС.

Электрический ток, который возникает в рамке, изменяется в соответствии с законом:

$I=I_0\sin (\omega t) (6),$

где $ I_0=const$ — амплитуда индукционного тока.

Уравнения (3), (5) и (6) – законы, описывающие колебания электромагнитных величин.

Общность законов для колебаний разной природы

Специальные закономерности колебательных явлений, которые определяют не мгновенные значения параметров, описывающих состояние колебательной системы, а характеризуют колебания как процесс в целом, не зависят от физической природы величин, выполняющих колебания. Данные законы исследует теория колебаний. Она исповедует единый подход к процессам колебаний, имеющих разную физическую природу.

Определение 2

Колебания считают периодическими, если величины всех переменных физических параметров, при помощи которых описывают состояние колебательной системы, повторяются спустя равные промежутки времени. Минимальный промежуток времени, соответствующий этому условию называют периодом ($T$).

В течении времени, равному периоду колебательная система выполняет одно полное колебание.

Если колебание является периодическим, то связь параметра, совершающего колебания и времени будет удовлетворять условию:

$s(t)=s(t+T) (7).$

Периодические колебания называют гармоническими, если их описывают при помощи функции:

$s(t)=s_m\sin (\omega t+ \varphi) (8),$

где

  • величина, равная $\omega = \frac{2\pi}{T}$ называется циклической (круговой) частотой гармонических колебаний;
  • $s_m=const>0$ — наибольшее значение параметра $s$, называемое амплитудой колебаний;
  • $Ф=\omega t+ \varphi $ — фаза колебаний (изменяется во времени);
  • $\varphi=const=Ф(t=0)$ — начальная фаза колебаний.

Выражению (8) можно поставить в соответствие следующее эквивалентное равенство:

$s(t)=s_m\cos (\omega t+ \varphi_1) (9),$

где $\varphi_1=\varphi-\frac{\pi}{2}.$

Дифференциальный закон колебаний

Выражение (8) показывает, что первая и вторая производные во времени от параметра $s(t)$ тоже выполняют гармонические колебания, причем они имеют частоту $\omega$:

$\dot{s}=s_m\omega \cos(\omega t+\varphi)= s_m\omega \sin (\omega t+\varphi+\frac{\pi}{2})(10).$

$\ddot{s}=-s_m\omega2\sin (\omega t+\varphi )= -s_m\omega2\sin (\omega t+\varphi +\pi)(11).$

В выражении (10) для $\dot{s}$:

  • амплитуда колебаний составляет $s_m\omega$;
  • начальная фаза колебаний равна $\varphi+\frac{\pi}{2}.$ Это означает, что разность фаз колебаний параметра $s$ и $\dot{s}$ не изменяется и она равна $\frac{\pi}{2}$. Скорость изменения величины $\dot{s}$ опережает колебания $s$ на величину, равную $\frac{\pi}{2}$.

Из уравнения (11) мы сделаем вывод о том, что:

  • амплитуда колебаний $\ddot{s}$ равна $A\omega2$;
  • начальная фаза колебаний $\ddot{s}$ равна $\varphi+\pi$. Разность фаз колебаний параметра $s$ и $\ddot{s}$ не изменяется в течении времени и составляет $\pi$.

Запишем уравнение (11) в виде:

$\ddot{s}+\omega2 s=0 (12),$

где мы перенесли в левую часть значение второй производно от $s$ и учли равенство (8).

Мы получили дифференциальное уравнение второго порядка, которому удовлетворяет гармоническая функция $s$ (8).

Общим решением уравнения (12) является линейная комбинация тригонометрических функций:

$s=A_1\sin(\omega t)+A_2\cos (\omega t)(13),$

где значения постоянных величин $A_1$ и $A_2$ находят из начальных условий для $s$ и $\dot{s}$:

  • $A_1=\frac{1}{\omega}(\frac{ds}{dt})$ при $t=0$;
  • $A_2=s(t=0)$.

Общее решение (13) дифференциального закона колебаний (12) обычно представляют как:

$s=A\sin (\omega t+\varphi)(14),$

где амплитуда колебания $A=\sqrt{A_12+A_22}$; $\varphi= arctg (\frac{A_2}{A_1}).$

Вывод: физическая величина $s$ выполняет гармонические колебания только, если она удовлетворяет уравнению (12), которое именуют дифференциальным уравнением гармонических колебаний.

Экспоненциальная форма записи гармонических колебаний

Применяя известную формулу Эйлера для комплексных чисел:

$e{i\alpha}=\cos \alpha +i\sin \alpha,$

где $i=\sqrt{-1}$,

гармонические колебания

$s=A\sin (\omega t+\varphi)=A\cos (\omega t+\varphi-\frac{\pi}{2})$

можно представить в виде экспоненты:

$\tilde{s}=Ae{i(\omega t+\varphi_1)}(15).$

В выражении (15) физическим смыслом обладает только действительная часть комплексного выражения для $\tilde{s}$, обозначим ее как Re $\tilde{s}$:

Re $\tilde{s}=s=A\sin (\omega t+\varphi)(16).$

Графическое изображение колебаний

Гармонические колебания можно изображать не только при помощи синусоиды или косинусоиды. Их изображают с помощью вектора, совершающего вращательные движения на плоскости.

С этой целью из начала координат на плоскости проводится вектор $\vec A$, длина которого равна амплитуде колебаний. Угол между этим вектором и осью $X$ равен фазе колебаний в рассматриваемый момент времени $t$.

Данный угол увеличивается с ходом времени, при этом вектор $\vec A$ совершает равномерное вращение около начала координат с угловой скоростью $\omega$.

Проекция $\vec A$ на ось $Y$ выполняет гармонические колебания в соответствии с законом:

$A_y=s=A\sin (\omega t+\varphi).$

Данный вариант изображения гармонических колебаний назван методом векторных диаграмм. Его применяют при сложении колебаний одного направления.

Источник: https://spravochnick.ru/fizika/garmonicheskie_kolebaniya/zakon_garmonicheskih_kolebaniy/

Гармонические колебания. Характеристики гармонических колебаний

Закон гармонических колебаний

Данная тема посвящена гармоническим колебаниям и их характеристикам.

Окружающий нас мир наполнен разнообразными колебательными дви­жениями и процессами: колеблются ветки деревьев и кузов автобуса при движении. Колебания струн под руками умелого музыканта вызывают колебания воздуха, и слышится прекрасная музыка.

Кроме того, многие важнейшие процессы внутри организма человека явля­ются колебательными: сердце человека в спокойном состоянии совершает око­ло одного колебательного движения в секунду, под действием повторяющихся нервных импульсов каждая мышца в теле человека непрерывно то сокращается, то растягивается.

Таким образом, колебанием называется процесс, при котором какая-либо физическая величина, характеризующая этот процесс, последовательно изменяется то в одну, то в другую сторону около некоторого своего среднего значения. Например, на качелях, подвешенных на веревках, человек отклоняется то вперед и вверх, то назад и вверх от положения равновесия. Говорят, что качели являются колебательной системой.

Таким образом, механической колебательной системой называется совокупность тел, в которой могут происходить колебательные процессы.

Наиболее простыми механическими колебательными системами являются: вертикаль­ный пружинный маятник, который образуют Земля, штатив, пружина и груз; физический маятник, образованный Землей, штативом и шариком на нити; и горизонтальный пружинный маятник — это два штатива, две пружи­ны и шарик.

Колебательный процесс в системе может происходить под действием как внутренних, так и внешних сил. Если колебания в системе происходят только под действием внутренних сил, то их называют свободными колебаниями.

А если колебания тела повторяются через определен­ный промежуток времени, то их называют периодическими.

Рассмотрим условия, которые необходимы для того, чтобы в системе могли возникнуть свободные колебания:

1) Необходимо наличие положения устойчивого равновесия.

2) Необходимо наличие у тела избыточной механической энергии по сравнению с ее энергией в положении устойчивого равновесия, так как самопроизвольно (то есть без внешнего воздействия) система не может выйти из положения равновесия.

3) на тело должна действовать возвращающая сила, то есть сила, всегда направленная к положению устойчивого равновесия.

4) В идеальных колебательных системах должны отсутствоватьсилысопротивления.

Теперь рассмотрим некоторые важные характеристики колебательного движения.

Периодом колебания называется промежуток времени, в течение которого совершается одно полное колебание.

Частота колебаний — это величина, об­ратная периоду, равная числу колебаний, совершенных системой за одну секунду.

В СИ период измеряется в секундах, а частота — в герцах.

Смещением называется любое откло­нение физической величины от ее значе­ния в положении равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени.

Амплитудой называется максималь­ное смещение тела от положения равновесия.

Простейшим видом колебаний являются гармоническиеколебания. Термин «гармонические колебания» впервые был введен в науку швейцарским физиком Даниилом Бернулли. Гармоническими называются колебания, при которых какая-либо величина изменяется с тече­нием времени по закону синуса или косинуса.

Например, гармонические колебания фи­зического маятника можно зарегистрировать следующим способом. В качестве груза взять небольшой стакан с песком, который мо­жет высыпаться через очень маленькое отверстие снизу.

Если под колеблющимся маятником двигать равномерно по столу бумажную ленту, то полученная на бумаге кри­вая представляет собой синусоиду или косинусоиду в зависи­мости от выбора начального момента времени наблюдения (момента отсчета времени).

Чтобы установить основные кинематические признаки гармонических коле­баний, рассмотрим их математическую модель на примере изменения физичес­ких величин, характеризующих движение материальной точки по окружности с постоянной угловой скоростью. Начало координат поместим в центре окружности радиуса R. Пусть в начальный момент времени материальная точка находилась в положении M0 и ее радиус-вектор составлял с осью Ox угол j0.

Через промежуток времени t точка переместится в положение M, а ее радиус-вектор при этом повернется на угол Dj и составляет в данный момент с осью Ox угол

Запишем теперь координаты точки в этот момент времени

Теперь расположим перпендикулярно друг к другу два экрана и будем освещать движущийся шарик. На вер­тикальном экране тень от шарика будет двигаться вдоль оси Oy по закону:

То есть совершать колебания возле начала координат. На горизонтальном экране тень шарика будет двигаться вдоль оси Ox по закону:

И также совершать колебания около начала координат.

Величина, стоящая под аргументом синуса или косинуса, или, в вы­бранной системе отсчета, угол между радиус-вектором и осью абсцисс называется фазойколебания.

Начальная фаза колебания j0 характеризует положение точки в началь­ный момент времени.

Тогда мгновенные значения координат x и y, можно рассматри­вать как смещения шарика от нулевого значения, а модуль амплитудного значения для обеих координат равен радиусу окружности.

Таким образом, кинематический закон любого гармоническогодвижения можно представить в виде:

Следовательно, графически зависимость смещения колеблющейся точки от времени изображается косинусоидой или синусоидой.

В записанных уравнениях w — это циклическая (или круговая) частота, которая показывает, сколько колебаний совершает материальная точка за 2p секунд. Соответственно, в системе СИ она измеряется в радианах на секунду.

Рассмотрим, как изменяются проекции скорости и ускорения колеблющейся точки со временем для случая, когда начальная фаза колебаний равна нулю.

Начнем со скорости. Для этого найдем первую производную по времени от кинематического закона гармонических колебаний.

В полученном выражении произведение циклической частоты и амплитуды колебаний — это есть амплитуда проекции скорости на ось координат.

Таким образом видим, что при гармонических колебаниях проекция скорости тела на координатную ось тоже изменяется по гармоническому закону с той же частотой, но с другой амплитудой и опережает по фазе смещение на p/2.

Теперь рассмотрим ускорение. Для этого найдем производную от проекции скорости по времени.

Величина, равная произведению квадрата циклической частоты и амплитуды колебаний, является амплитудой проекции ускорения.

Как видно из формулы, при гармонических колебаниях проекция ускорения опережает смещение по фазе на p. Говорят, что проекция ускорения изме­няется с течением времени в противофазе изменению координаты.

Учитывая кинематический закон гармонического движения получим, что при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, то есть направлено в сторону, противоположную смещению.

Так как проекция ускорения — это вторая производная от смещения по времени, то последнее соотношение можно записать в виде:

Это уравнение называется уравнением гармонических колебаний.

Рассмотрим процесс превращения энергии при гармонических колебаниях на примере идеального горизонтального пруженного маятника. Горизонтальный уровень, на котором находится маятник, выбираем за нулевой уровень отсчета потенциальной энергии маятника в поле силы тяжести.

Если вывести тело из положения равновесия, например, сжав пружину на некоторую величину, то сообщается этому телу некоторый запас потенциальной энергии.

После прекращения внешнего воздействия, тело придет в движение. При движении к положению равновесия его потенциальная энергия убывает, а кинетическая наоборот, возрастает, так как деформация пружины уменьшается, а скорость движения тела увеличивается. В момент прохождения телом положения равновесия его потенциальная энергия равна нулю, а вот кинетическая энергия будет максимальна.

После прохождения положения равновесия скорость тела начинает уменьшаться, а пружина растягивается. Следовательно, кинетическая энергия тела начинает убывать, а потенциальная наоборот — возрастать. В точке максимального отклонения тела его кинетическая энергия равна нулю, а потенциальная — максимальна.

Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно.

Полная механическая энергия такой колебательной системы равна сумме его кинетической и потенциальной энергий.

Если смещение материальной точки, совершающей колебания, изменяется с течением времени по гармоническому закону, то, как известно, и скорость тела изменяется также по гармоническому закону. Следовательно, кинетическую и потенциальную энергию колеблющегося тела можно задать следующими функциями

Из этих формул видно, что кинетическая и потенциальная энергии изменяются тоже по гармоническому закону, с одинаковой амплитудой и в противофазе друг с другом.

А вот полная механическая энергия системы, равная сумме кинетической энергии тела и упругой энергии пружины, остается неизменной и равной начальной максимальной потенциальной энергии, либо его кинетической энергии в момент прохождения положения равновесия.

В реальных условиях на маятник всегда действуют силы сопротивления, поэтому полная энергия уменьшается, и свободные колебания маятника с течением времени затухают, то есть их амплитуда уменьшается до нуля. Такие колебания называются затухающими.

Основные выводы:

Рассмотрели, какое движение называется колебательным и что называют свободными колебаниями. Повторили основные характеристики колебательного движения. Вспомнили, какие колебания называются гармоническими и рассмотрели, какие превращения энергии происходят при гармонических колебаниях.

Источник: https://videouroki.net/video/36-garmonichieskiie-koliebaniia-kharaktieristiki-gharmonichieskikh-koliebanii.html

Гармонические колебания — характеристика, закон и формулы

Закон гармонических колебаний

Чтобы записать закон гармонических колебаний математическим способом, используются следующие формулы: х (t)= A sin (wt+f) и х (t)= A cos (wt+f). Через x вычисляется изменяющаяся величина. Для времени используется t. Трактовка остальных постоянных параметров:

  • А — амплитуда колебаний (АК);
  • w — циклическая частота колебаний (ЦЧК);
  • (wt+f) — полная фаза;
  • f — начальный период.

В дифференциальном виде уравнение гармонических колебаний записывается следующим образом: d²x/dt²+w²x=0. Нетривиальное решение такого примера — гармоническое колебание (ГК) с зависимостью от величины w.

Если точка двигается по окружности равномерно, тогда любая её проекция на прямую будет лежать в этой плоскости. Условия, при которых могут происходить изменения, — воздействие силы тяготения небольшого груза, подвешенного на длинной нити.

На практических занятиях по физике ученики используют маятник. Вместо нити может применяться пружина либо иное тело.

Для него характерны малые амплитуды. ГК под воздействием силы упругости способствует изменению состояния пружины. Аналогичные движения совершает балансир в механических часах. Если рассматривать материальную точку, она выполняет КГ в положении равновесия. При периодических колебаниях (ПК) движение характеризуется координатой.

Чтобы отобразить пружинные колебания, используется график, на котором показывается смещение тела со временем. На практике устанавливается к маятнику карандаш, а за ним бумажная лента. Последнее тело будет равномерно колебаться за счет перемещения. Можно провести опыт с помощью математического маятника.

В любом случае график ГК — синусоида либо косинусоида. По нему осуществляется определение характеристик вынужденного либо свободного колебания. В уравнении координата тела зависит от времени. На первом интервале косинус максимален, а синус равен нулю.

Если исследование начинать из положения полного равновесия, график повторяет синусоиду. При максимальном отклонении описывается косинус. Значение волны в разных точках определяется по формуле: w=π/2.

Ускорение и сила достигают максимальных пределов при нахождении тела в крайних точках. В таком положении существует вероятность, что колебания могут затухать.

Скорость в крайних положениях равняется нулю. При прохождении равновесия она достигает максимума. Если проанализировать момент возникновения движения, уравнение зависимости, можно прийти к выводу, что скорость максимальна при тригонометрическом множителе -1 либо 1. Значение показателя вычисляется по формуле: Vmax=Aw.

Применение маятников

Для вычисления энергии гармонических колебаний используются на практике разные приборы, включая осциллятор. Он представлен в виде математического маятника со специальной механической системой.

Последние элементы находятся в невесомости, в однородном поле сил тяготения. Период незначительных вертикальных колебаний не зависит от амплитуды. Параметр вычисляется по следующей формуле: T=2π √l/g.

Если для опыта используется физический маятник, твердое тело смещается в поле конкретных сил относительно материальной точки, которая не является центром масс тела. Когда учитывается неподвижная ось, колебания перпендикулярны направлению действия сил и не проходят через центр масс тела. В некоторых точках значение равняется нулю либо достигают максимума.

Чтобы найти значение стоячей волны, потребуется рассмотреть колебания в системе с амплитудой узловой. Подобное явление наблюдается в результате отражения волны от преграды. Для расчёта учитывается количество фаз, частота, коэффициент затухания волны в точке отражения. Подобные колебания создают струны, воздух в трубе.

В среде могут встречаться и бегущие волны, которые подводят энергию к точкам её излучения/поглощения. Если строить график при создании движений в электромагнитном поле, учитываются особенности соответствующей волны.

Процесс считается последовательным. При этом у него установлена тесная связь с вектором напряжения, магнитным полем. Одновременно изменяется магнитное поле, провоцирующее колебания в электрическом поле. Чтобы теоретически описать природные явления, используется монохроматическая волна.

Отличие этой модели заключается в том, что в спектр входит только одна составляющая по частоте волна:

  • строго гармоническая;
  • имеет постоянную частоту;
  • имеет начальную фазу;
  • имеет амплитуду.

Для дисперсии света также характерны ГК. В процессе разложения света участвуют фазовые скорости и преломление в абсолютном значении. Теория открыта Ньютоном в 1672 году.

Классификация системы

Свободные колебания выполняются под воздействием внутренних сил системы после её вывода из равновесия. Чтобы движения были гармоническими, нужно описать линейное уравнение. В системе нет диссипации энергии. При её ненулевом значении в системе после возбуждения приходит затухание.

Вынужденные движения совершаются под влиянием внешней силы, но с периодическим характером. Чтобы процесс был гармоническим, потребуется привести колебательную систему в линейную. При этом внешняя сила может меняться периодически как гармоническое колебание. В таком случае зависимость времени от силы будет носить синусоидальный характер.

Часто маленькие ГК вынужденного и свободного типа происходят в настоящих системах. Они могут принимать форму стандартных колебаний либо близким к ним движениям. В 1822 году Фурье открыл широкий класс функций периодического класса, который раскладывается на сумму тригонометрических составных компонентов. Таким способом формируется ряд Фурье.

Согласно такому утверждению, любое периодическое движение представлено в виде суммы ГК с соответствующими амплитудами, начальными фазами и частотами. К слагаемым этой суммы относится гармоническое колебание, характерна минимальная частота. Она называется основной. Само колебание считается первичной гармоникой либо главным тоном. Частоты других слагаемых, ГК, кратны основной частоте.

Такие колебания называются максимальными гармониками либо обертонами. Они могут быть первичными, вторичными.

Приборы, функционирующие по такому принципу, обладают свойством линейности. Ученые установили связь воздействия и отклика, что называется устойчивой характеристикой системы.

Подобная информация позволяет исследовать прохождение смещений, скачков, произвольных колебаний.

Если в задаче используется ускорение при свободном падении, учитывается постоянная величина g. Она равна 9.8. Другие формулы применяются в зависимости от неизвестных величин, заданных параметров.

Практические учебники издаются по отдельным темам, разделам физики. Так как уравнение повторяет график синуса или косинуса, поэтому в практические занятия входят математические упражнения. Для некоторых координат характерны конкретные значения. Уравнение решается любым возможным математическим способом.

Источник: https://nauka.club/fizika/garmonicheskie-kolebaniya.html

Гармонические колебания

Закон гармонических колебаний

к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

В технике и окружающем нас мире часто приходится сталкиваться с процессами, которые называют колебательными.

Колебательный процесс — периодический или почти периодический процесс, который повторяется через одинаковые или почти одинаковые промежутки времени.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механические колебания — движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 1).

Рисунок 1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными.

Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями.

Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными. Простейшим видом колебательного процесса являются гармонические колебания.

Гармонические колебания — это такие колебания, которые описываются уравнением:

Здесь x — смещение тела от положения равновесия, xm — амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω — циклическая или круговая частота колебаний, t — время. Величина, стоящая под знаком косинуса φ = ωt + φ0 называется фазой гармонического процесса. При t = 0 φ = φ0, поэтому φ0 называют начальной фазой.

Период колебаний — есть минимальный интервал времени, через который происходит повторение движения тела, процесса.

Частота колебаний — есть Физическая величина, обратная периоду колебаний.

Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты — герц (Гц), названная в честь немецкого физика Генриха Герца. Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:

На рис. 2 изображены положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить экспериментально при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Рисунок 2. Стробоскопическое изображение гармонических колебаний. Начальная фаза φ0 = 0. Интервал времени между последовательными положениями тела τ = T / 12.

Рис. 3 иллюстрирует изменения, которые происходят на графике гармонического процесса, если изменяются либо амплитуда колебаний xm, либо период T (или частота f), либо начальная фаза φ0.

Рисунок 3. Во всех трех случаях для синих кривых φ0 = 0: а – красная кривая отличается от синей только большей амплитудой (x'm > xm); b – красная кривая отличается от синей только значением периода (T' = T / 2); с – красная кривая отличается от синей только значением начальной фазы ( рад).

При колебательном движении тела вдоль прямой линии (ось OX) вектор скорости направлен всегда вдоль этой прямой. Скорость v = vx движения тела определяется выражением

В математике процедура нахождения предела отношения при Δt → 0 называется вычислением производной функции x(t) по времени t и обозначается как или как x'(t) или, наконец, как . Для гармонического закона движения вычисление производной приводит к следующему результату:

Появление слагаемого +π / 2 в аргументе косинуса означает изменение начальной фазы. Максимальные по модулю значения скорости v = ωxm достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = ax тела при гармонических колебаниях:

следовательно, ускорение a равно производной функции v(t) по времени t, или второй производной функции x(t). Вычисления дают:

Знак минус в этом выражении означает, что ускорение a(t) всегда имеет знак, противоположный знаку смещения x(t), и, следовательно, по второму закону динамики сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0). На рис. 4 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Рисунок 4. Графики координаты x(t), скорости v(t) и ускорения a(t) тела, совершающего гармонические колебания.

к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

Знаете ли Вы, почему «черные дыры» — фикция?Согласно релятивистской мифологии, «чёрная дыра — это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер — гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда».На самом деле миф о черных дырах есть порождение мифа о фотоне — пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.Отсюда родились сказки о «радиусе Шварцшильда», «черных дырах Хокинга» и прочих безудержных фантазиях пропагандистов релятивизма.Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:»Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми.» [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. — М., Наука, 1985]

Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон — это квантованная электромагнитная волна, то есть даже не объект, а процесс.

А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы).

Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАРыцари теории эфира

Источник: http://bourabai.kz/physics/harmonic.html

2.1. Гармонические колебания

Закон гармонических колебаний

В технике и в окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями.

Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Механическими колебаниями называются периодические (или почти периодические) изменения физической величины, описывающей механическое движение (скорость, перемещение, кинетическая и потенциальныая энергия и т. п.).

Если в какой-либо точке среды, в которой близко расположенные атомы или молекулы испытывают силовое воздействие, возбужден процесс механических колебаний, то этот процесс будет с конечной скоростью, зависящей от свойств среды, распространяться от точки к точке. Так возникают механические волны. Примерами такого процесса являются звуковые волны в воздухе.

Как и колебания, волновые процессы различной физической природы (звук, электромагнитные волны, волны на поверхности жидкости и т. д.) имеют много общего. Распространение волн различной физической природы можно описывать с помощью одинаковых математических уравнений. В этом проявляется единство материального мира.

Механические колебания

Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f (t).

Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 2.1.1).

Рисунок 2.1.1.

Механические колебательные системы

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными.

Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями.

Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными (см. §2.5).

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением

Здесь x – смещение тела от положения равновесия, xm – амплитуда колебаний, т. е. максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний, t – время.

Величина, стоящая под знаком косинуса φ = ωt + φ0 называется фазой гармонического процесса. При t = 0 φ = φ0, поэтому φ0 называют начальной фазой. Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T.

Физическая величина, обратная периоду колебаний, называется частотой колебаний:

Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты – герц (Гц). Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:

На рис. 2.1.2 изображены положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить экспериментально при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Рисунок 2.1.2.

Стробоскопическое изображение гармонических колебаний. Начальная фаза φ0 = 0. Интервал времени между последовательными положениями тела τ = T / 12

Рис. 2.1.3 иллюстрирует изменения, которые происходят на графике гармонического процесса, если изменяются либо амплитуда колебаний xm, либо период T (или частота f), либо начальная фаза φ0.

Рисунок 2.1.3.

Во всех трех случаях для синих кривых φ0 = 0: а – красная кривая отличается от синей только большей амплитудой (x'm > xm); b – красная кривая отличается от синей только значением периода (T' = T / 2); с – красная кривая отличается от синей только значением начальной фазы ( рад).

При колебательном движении тела вдоль прямой линии (ось OX) вектор скорости направлен всегда вдоль этой прямой. Скорость υ = υx движения тела определяется выражением

В математике процедура нахождения предела отношения при Δt → 0 называется вычислением производной функции x (t) по времени t и обозначается как или как x'(t) или, наконец, как . Для гармонического закона движения Вычисление производной приводит к следующему результату:

Появление слагаемого + π / 2 в аргументе косинуса означает изменение начальной фазы. Максимальные по модулю значения скорости υ = ωxm достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0).

Аналогичным образом определяется ускорение a = ax тела при гармонических колебаниях:
следовательно, ускорение a равно производной функции υ (t) по времени t, или второй производной функции x (t).

Вычисления дают:

Знак минус в этом выражении означает, что ускорение a (t) всегда имеет знак, противоположный знаку смещения x (t), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0).

На рис. 2.1.4 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Рисунок 2.1.4.

Графики координаты x (t), скорости υ (t) и ускорения a (t) тела, совершающего гармонические колебания

Модель. Гармонические колебания




Лучшие школы, лагеря, ВУЗы за рубежом
Hqd электронные сигареты купить спб
hqd
gosmoke.ru
Математика, Аннглийский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.

Источник: https://physics.ru/courses/op25part1/content/chapter2/section/paragraph1/theory.html

Booksm
Добавить комментарий