Ядерные реакции

Ядерные реакции

Ядерные реакции

    Ядерные реакции под действием нейтронов занимают особое место в ядерной физике. Из-за того, что нейтрон не имеет электрического заряда, он свободно проникает в любые атомные ядра и вызывает ядерные реакции.

Рассмотрим сначала свойства нейтрона.     Нейтрон был открыт после предсказания Резерфорда, сделанного в 1920 году.

    В опытах Бете и Беккера (1930 год) ядра бериллия облучались α-частицами и было зарегистрировано нейтральное излучение, природа которого не была определена.

α + Be → нейтральное излучение (какое?, γ?).

В опытах Жолио-Кюри (1932 год) α-частицы направлялись на бериллиевую мишень, а затем на парафиновую, чтобы определить природу нейтрального излучения. После парафиновой мишени наблюдался выход протонов. Схема опыта показана ниже.

α + Be →  парафин → p

    Регистрировались протоны отдачи с Ер = 4.3 МэВ. Возник вопрос: под действием каких частиц они образовывались?
    Если бы они вызывались γ-квантами, то энергия γ-квантов Еγ должна была быть ~ 50 МэВ. γ-кванты с такой энергией не могли появиться из указанной реакции.

    Чедвик проанализировал эти эксперименты и предположил, что в результате реакции вылетают нейтральные частицы с массой, сравнимой с массой протона. Далее он поставил опыт в камере Вильсона и наблюдал ядра отдачи азота.

Он сравнил эти результаты с результатами опытов Жолио-Кюри, в которых регистрировались протоны отдачи из парафина, и определил массу этой нейтральной частицы из законов сохранения энергии

и импульса

m1v = m1v1 + mpvp;

где N − ядро азота; v1 − скорость нейтральной частицы после столкновения; m1 − масса нейтральной частицы. Она оказалась близкой к массе протона

m1 ≈ mp.

Таким образом, стало ясно, что в опытах Жолио-Кюри протекала реакция, в которой испускались нейтральные частицы − нейтроны:

α + 9Ве → 12С+ n.

Они, попадая на парафин, выбивали протоны отдачи с энергией Ер = 4.3 МэВ.

    Свойства нейтрона, полученные из многочисленных экспериментов, представлены ниже:
    масса − mnc2 = 939.5 МэВ, mn = 1.008665 а. е. м.,
    магнитный момент − μn = −1.91μя,     спин − J = ћ/2,

    время жизни − τn = (10.61 ±0.16) мин,

    среднеквадратичный радиус − = (0.78 ± 0.18)·10-2 фм2.

    Ядерные реакции не только дают новые сведения о природе и свойствах ядерных сил, но и практически используются в народном хозяйстве и в военном деле. Это в первую очередь относится к ядерным реакциям под действием нейтронов при низких энергиях.

11.4 Источники нейтронов

    Источники нейтронов − это различные ядерные реакции.

Рис. 88: Спектр нейтронов.

    1. Используется смесь радия с бериллием (иногда полония с бериллием), где протекает реакция

α + 9Ве → 12С+ n + 5.5 МэВ.

    Кинетическая энергия нейтрона Т распределена по спектру (рис. 88).

    При распаде Ra образуются α-частицы с энергией 4.8 МэВ и 7.7 МэВ. Они вступают в реакцию с 9Ве и генерируют поток нейтронов. Разброс по энергии нейтронов связан с тем, что α-частицы разных энергий создают нейтроны разных энергий. Ядро углерода 12C образуется в основном и возбужденном состояниях.

    Выход нейтронов ~ 107 нейтронов на 1 г Ra в секунду. Одновременно испускаются γ-лучи.

    2. Другие источники нейтронов − фотоядерные реакции (γ,n), в которых получаются медленные и монохроматические нейтроны.

γ + 2H → p + n, Q = -2.23 МэВ.

    Используется ThC» (208Tl). Он испускает γ-кванты с Еγ ~ 2.62 МэВ и Еn ~ Ер; Тn ~20 кэВ.

    3.  Фоторасщепление Be фотонами с энергией Еγ = 1.78 МэВ

γ + 9Ве → 8Ве + n, Q = -1.65 МэВ; Тn ~ 100 кэВ.

    4. Вылет нейтронов под действием ускоренных дейтонов с Ed = 16 МэВ в реакции

2H + 9Be → 10B + n + 4.3 МэВ.

    Еn = 4 МэВ, выход 106 нейтронов в секунду.

    5.  Реакция 2H + 2H → 3Не + n + 3.2 МэВ,
    D + D (лед из тяжелой воды), i?n = 2.5 МэВ.

    6.  Облучение дейтонами трития

2H + 3H → 4Не + n + 17.6 МэВ.

    Поскольку эта реакция экзотермическая, дейтоны ускоряются до энергии Ed = 0.3 МэВ в газоразрядных трубках. Образуются монохроматические нейтроны с Еn ~ 14 МэВ.
    Этот источник нейтронов используется в геологии.

    7.  В реакциях срыва под действием дейтонов с Ed ~ 200 МэВ на тяжелых ядрах образуются n с
Еn ~ 100 МэВ.

11.5 Ядерные реакторы, цепная ядерная реакция

    Самый мощный источник нейтронов − ядерные реакторы − устройства, в которых поддерживается управляемая цепная реакция деления.
    В  реакторе происходит деление ядер U и образуются нейтроны с Еn от 0 до 13 МэВ, интенсивность источника 1019 нейтронов/с см2.

Процесс деления идет под действием нейтронов, беспрепятственно проникающих в ядра из-за отсутствия кулоновского потенциального барьера.

    При делении ядра образуются радиоактивные осколки и испускается 2-3 n, которые снова вступают в реакцию с ядрами U; идет цепной процесс (рис. 89).

n + 235U → 236U → 139La + 95Мо + 2n

Рис. 89: Иллюстрация деления ядра 235U.

    Для описания процесса деления 235U используется модель жидкой капли, в которой работает формула Вайцзеккера. После попадания нейтрона в ядро урана происходит конкуренция между поверхностной энергией нового ядра и энергией кулоновского расталкивания. В итоге под действием кулоновских сил ядро делится на два более легких ядра.
    Энергия Q, освобождающаяся при делении ядра (A,Z)

(A,Z) → 2(A/2,Z/2) + Q,

вычисляется с использованием формулы Вайцзеккера

Q = 2ε(A/2,Z/2) − ε(A,Z) = (1 − 21/3)·асим·A2/3 + (1 − 22/3)·акул·Z2·A-1/3;

Q (МэВ) = -4.5A2/3 + 0.26·Z2A-1/3, ε −  удельная энергия связи: Есв/А. Для ядра 235U Q = 180 МэВ.

Рис. 90: Потенциальная энергия ядра в зависимости от расстояния до центра ядра (сплошная кривая), E0 − основное состояние, E0 + Еа − возбужденное состояние, Еа − энергия активации.

    Для того, чтобы ядро разделилось, в него должна быть внесена энергия Е > Еа, где ЕаРис.

90: Потенциальная энергия ядра в зависимости от расстояния до центра ядра (сплошная кривая), E0 − основное состояние, E0 + Еа − возбужденное состояние, Еа − энергия активации (рис. 90).

    Мерой способности ядер к делению служит отношение энергии кулоновского отталкивания протонов к энергии поверхностного натяжения:

где Z2/A − параметр деления, чем он больше, тем легче ядро делится; Z2/A = 49 критическое значение параметра деления.     Иллюстрация процесса деления ядра приведена на рис. 91.

    В ядерном реакторе процесс деления ядер многократно повторяется в результате образования многих поколений деления.

В 1-м акте деления 235U возникает в среднем 2.4 нейтрона. Время жизни одного поколения ~ 10 с. Если происходит рождение K поколений, то образуется ~ 2K нейтронов через время ~ 2·10-6 с. Если K = 80, число нейтронов будет 280 ~ 1024 − это приведет к делению 1024 атомов (140 г урана).

Выделяющаяся при этом энергия 3·1013 вт равна энергии, образующейся при сжигании 1000 тонн нефти.

Рис. 91: Процесс деления ядра, протекающий в ядерном реакторе.

    В реакциях деления энергия выделяется в виде тепла. Отвод тепла из реактора осуществляется теплоносителем, к которому предъявляются особые требования. Он должен обладать большой теплоемкостью, слабо поглощать нейтроны и иметь низкую химическую активность. Не будем обсуждать конструктивные особенности элементов ядерного реактора.

Заметим только, что при попадании тепловых нейтронов на ядро 235U образуются быстрые нейтроны, а реакция идет только на медленных нейтронах. Следовательно, необходимо замедлить быстрые нейтроны. Это происходит в замедлителе. В качестве замедлителя используется углерод или тяжелая вода.

Остановка процесса деления реализуется с помощью ядер кадмия, которые захватывают образующиеся нейтроны. Таким образом, в конструкцию ядерного реактора обязательно входит замедлитель нейтронов (углерод) и кадмиевые стержни, поглощающие образующиеся нейтроны.
    В реакторах используется природный уран 238U (99.3%) и обогащенный 235U (0.7%).

235U делится под действием тепловых нейтронов. 238U используется в реакторах на быстрых нейтронах.

    Процессы, происходящие в реакторе, характеризуются следующими вероятностями:     ν − количество образованных быстрых нейтронов;     ε − коэффициент размножения быстрых нейтронов;     Р − вероятность нейтрону дойти до тепловой энергии;     ƒ − вероятность захвата нейтрона в процессе замедления;

    σt/σtot − вероятность вызвать реакцию деления.

Произведение этих вероятностей дает оценку коэффициента размножения k тепловых нейтронов в ядерном реакторе:

    Цепная реакция идет, если k > 1; входящие в коэффициент размножения величины имеют следующие значения: ν = 2.47; ε = 1.02; Р = 0.89; ƒ = 0.88; σt/σtot = 0.54.
    Таким образом, k∞ = 1.07 для реактора бесконечных размеров. В реальных условиях кэф < k∞, т.к. часть нейтронов уходит из реактора.
    В реакторах на быстрых нейтронах (239Ри и 238U) происходит следующий процесс:

    В результате этой реакции воспроизводится 239Рu. Образовавшийся плутоний вступает в реакцию с нейтроном: n + 239Рu, образуется ν = 2.41 нейтронов.
    Число ядер 239Ри удваивается через каждые 7-10 лет.
    Реакция деления атомных ядер используется для получения атомной энергии. Ядерные реакторы работают на многих атомных электростанциях.

11.6 Реакции слияния, синтез легких ядер

    Другим источником атомной энергии может служить синтез легких атомных ядер. Легкие ядра связаны менее прочно, и при их слиянии в тяжелое ядро выделяется больше энергии.

Кроме того, термоядерные реакции чище из-за отсутствия сопровождающих их радиоактивных излучений, чем цепные реакции деления.

    Для получения термоядерной энергии могут быть использованы следующие реакции синтеза:

d + d = 3He + n + 4 МэВ, d + d = t + р + 3.25 МэВ,

d + t = 4Не + n + 17.б МэВ,

3Не + d = 4Нe + р + 18.3 МэВ,
6Li + 2di = 2 4Не + 22.4 МэВ. J

Рис. 92: Зависимость эффективного сечения слияния ядер от их кинетической энергии. σƒ − сечение реакции.

    Энергия ядер, вступающих в реакцию, должна быть достаточной для преодоления кулоновского потенциального барьера. На рис. 92 показана энергетическая зависимость сечений некоторых реакций. Как видно из рисунка, синтез ядер дейтерия d и трития t является наиболее предпочтительным.

В этой реакции синтеза низок кулоновский потенциальный барьер и велико сечение взаимодействия при малых энергиях сливающихся ядер. Для протекания реакции необходимо иметь достаточную концентрацию этих ядер в единице объема и достаточную температуру разогретой плазмы.

    Число актов слияния Rab в единицу времени в единице объема определяется соотношением

Rab = na·nb·wab(T).
wab(T) = σab·vab,

где na, nb − число ядер a, b; σab − эффективное сечение реакции, vab − относительная скорость частиц в плазме, Т − температура. В результате реакции освобождается энергия

W = Rab·Qab·τ,

где Rab − число актов слияния, Qab − энергия, выделившаяся в 1 акте, τ − время.
    Пусть na = nb = 1015 ядер/см3, Т = 100 кэВ. Тогда W ~ 103 вт/см3 с.

    В самоподдерживающейся термоядерной реакции должно выделяться больше энергии, чем идет на нагрев и удержание плазмы.

Затраты на нагрев na = nb = 2n частиц до температуры Т: 3n·kТ: k − постоянная Больцмана. Таким образом, надо удовлетворить условию:

n2·wab·Qab·τ > 3nkТ

(высвобождающаяся энергия > энергии нагрева).
    Лоусон сформулировал следующее условие для реакции слияния d + t:

nτ > 1014 с·см-3,

где nτ − параметр удержания. На рис. 93 показана зависимость этого параметра от температуры. Реакция идет, если nτ > ƒ(T). Температура Т ~ 2·108 K соответствует энергии 10 кэВ. Минимальное значение параметра удержания nτ = 1014 с/см3 для реакции d + t достигается при температуре 2·108 K.

Рис. 93: Зависимость параметров удержания от температуры. Заштрихованная область ƒ(Т) − зона управляемого термоядерного синтеза для реакции d + t. • − значения параметров, достигнутые на различных установках к 1980 году.

    Для других реакций:

    Удержание плазмы, имеющей необходимые условия для протекания реакции, реализуется в установках типа Токамак с помощью магнитного поля. Такие установки работают в России и в ряде других стран. Как видно из рис.

93, режим управляемого термоядерного синтеза пока не достигнут.     Делаются попытки получить необходимые для термоядерного синтеза условия с помощью лазерных установок.

В этом случае небольшой объем, в котором заключены ядра дейтерия и трития, обжимается со всех сторон лазерным излучением. При этом ядра дейтерия и трития нагреваются до нужной температуры. Лазерный термояд требует введения коэффициента 100, т.к.

велика бесполезная энергия, идущая на накачку лазера.

    Попытки осуществить управляемый термоядерный синтез в лабораторных условиях наталкиваются на ряд трудностей.

  1. 1.  До сих пор не удается получить устойчивый режим высокотемпературной плазмы.
  2. 2.  Велики энергетические потери в плазме даже из-за малых концентраций примесей атомов с большими Z.
  3. 3.  Не решена «проблема первой стенки» в Токамаке, ограничивающей плазму реактора (поток нейтронов ее разрушает).
  4. 4.  В природе отсутствует радиоактивный тритий t с периодом полураспада Т1/2 = 12.5 лет, поэтому существует проблема воспроизводства трития в реакции

n + 7Li = α + t + n.

    До сих пор не удалось преодолеть эти трудности и получить управляемую термоядерную реакцию синтеза.
    В естественных условиях реакции термоядерного синтеза протекают на Солнце и в звездах.

Литература

  1. 1.  Широков Ю.М., Юдин Н.П. Ядерная физика. -М.: Наука, 1972.
  2. 2.  Капитонов И.М. Введение в физику ядра и частиц. -М.: УППС, 2002.

Источник: http://nuclphys.sinp.msu.ru/astro/astro11.htm

1. Радиоактивность

Самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, при котором происходит испускание элементарных частиц, называется радиоактивностью.

Если нам известна одна из частиц, получившаяся при распаде, то можно вычислить и другую частицу, поскольку во время ядреной реакции соблюдается, так называемый, баланс масс ядерной реакции.

Суть ядерной реакции схематически можно выразить так:

Реагенты, вступающие в реакцию → Продукты, получившиеся в результате реакции

Ядерная реакция считается сбалансированной, если сумма атомных номеров элементов в левой части выражения будет равна сумме атомных номеров элементов, полученных после реакции. Это же условие должно соблюдаться и для сумм массовых чисел. Предположим, что происходит ядерная реакция: изотоп хлора (хлор-35) бомбардируется нейтроном с образованием изотопа водорода (водород-1):

3517Cl + 10n → 3516Х + 11H

Какой Х-элемент будет находиться в правой части уравнения реакции?

Исходя из баланса масс ядерной реакции, атомный номер неизвестного элемента будет равен 16. В Периодической таблице под этим номером находится элемент сера (S). Т.о.

, можно сказать, что в результате нашей ядерной реакции при бомбардировке изотопа хлора (хлор-35) нейтроном получается изотоп водорода (водород-1) и изотоп серы (сера-35).

Этот процесс называют еще ядерным превращением.

3517Cl + 10n → 3516S + 11H

При помощи подобных ядерных превращений ученые научились получать искусственные изотопы, которые не встречаются в природе.

2. Почему изотопы распадаются?

В ядре атома находятся протоны (положительно заряженные частицы), которые сконцентрированы в очень малом пространстве.

Ранее мы говорили, что в ядре атома действуют некие удерживающие силы (так называемый, «ядерный клей»), которые не дают одноименно заряженным нейтронам разорвать ядро атома.

Но иногда энергия отталкивания частиц превосходит энергию склеивания, и ядро раскалывается на части — происходит радиоактивный распад.

Ученые установили, что все химические элементы, в ядре которых более 84 протонов (под этим порядковым номером в таблице находится полоний — Ро), являются нестабильными и время от времени подвергаются радиоактивному распаду. Однако, существуют изотопы, в ядре которых меньше 84 протонов, но они также являются радиоактивными.

Дело в том, что о стабильности изотопа можно судить по соотношению количества протонов и нейтронов атома. Изотоп будет нестабилен, если разность между количеством протонов и нейтронов велика (много протонов и мало нейтронов, либо мало протонов и много нейтронов).

Изотоп элемента будет устойчивым, если количество нейтронов и протонов в его атоме примерно равно.

Поэтому, неустойчивые изотопы, подвергаясь радиоактивному распаду, превращаются в другие элементы. Процесс превращения будет идти до тех пор, пока не образуется устойчивый изотоп.

3. Период полураспада

Когда же происходит радиоактивный распад атома неустойчивого элемента? Это может произойти в любой момент: через пару мгновений, или через 100 лет. Но, если выборка атомов по определенному элементу достаточно велика, то можно вывести определенную закономерность.

Время, необходимое для распада половины атомов в статистической выборке определенного химического элемента, называется периодом полураспада изотопа и обозначается символом t1/2

Процесс полураспада является экспоненциальным процессом:

Ниже в таблице приведены данные периода полураспада для некоторых радиоактивных изотопов

ИзотопПериод полураспадаБезопасный период
Криптон-94 Радон-222 Йод-131 Кобальт-60 Водород-3 Углерод-14 Уран-235Рений-187 1,4 секунды 3,8 суток 8 суток 5,2 года 12,3 года 5730 лет 4,5 млрд.лет70 млрд.лет 14 секунд 38 суток 80 суток 52 года 123 года 57300 лет 45 млрд.лет700 млрд.лет

Период полураспада необходимо знать для того, чтобы определить время, когда радиоактивный элемент станет безопасен — это произойдет, когда его радиоактивность упадет настолько, что ее нельзя будет обнаружить, т.е., через 10 периодов полураспада.

4. Цепная ядерная реакция

В 30-х годах прошлого столетия ученые начали пытаться управлять ядерными реакциями. В результате бомбардирования (обычно нейтроном) ядро атома тяжелого элемента делится на два более легких ядра. Например:

23592U + 10n → 14256Ba + 9136Kr + 310n

Такой процесс называется расщеплением (делением) ядра. В результате высвобождается колоссальное количество энергии. Откуда она берется? Если очень точно измерить массы частиц до реакции и после нее, то окажется, что в результате ядерной реакции часть массы бесследно исчезла. Такую потерю массы принято называть дефектом массы. Исчезающее вещество превращается в энергию.

Великий Альберт Эйнштейн вывел свою знаменитую формулу: E = mc2, где

Е — количество энергии;

m — дефект массы (исчезнувшая масса вещества);
с — скорость света = 300 000 км/с

Поскольку скорость света является очень большой величиной самой по себе, а в формуле она возводится в квадрат, то даже ничтожно малое «исчезновение массы» приводит к высвобождению достаточно большого количества энергии.

Из приведенного выше уравнения расщепления урана-235 видно, что в процессе деления ядра расходуется один электрон, а получается сразу три.

В свою очередь, эти три, вновь полученных электрона, встретив на «своем пути» три ядра урана-235, произведут очередное расщепление, в результате чего получится уже 9 нейтронов и т.

д… Такой непрерывно нарастающий каскад расщеплений называется цепной реакцией.

Цепная реакция возможна только с теми изотопами, при расщеплении которых создается избыток нейтронов. Так цепная реакция с изотопом урана (уран-238) невозможна, т.к. высвободится только один нейтрон:

23892U + 10n → 14256Ba + 9136Kr + 10n

Изотопы, участвующие в цепной реакции, называются расщепляемыми изотопами

Для ядерных реакций используют изотопы урана (уран-235) и плутона (плутон-239).

Чтобы ядерная реакция смогла протекать самостоятельно, требуется определенное количество расщепляемого вещества, называемое критической массой.

В противном случае число избыточных нейтронов будет недостаточным для осуществления ядерной реакции. Масса расщепляемого вещества меньше критической называется субкритической.

Источник: https://prosto-o-slognom.ru/chimia/10_yadernaya_reakcija.html

Конспект

Ядерные реакции

Раздел ОГЭ по физике: 4.4. Ядерные реакции. Ядерный реактор. Термоядерный синтез

Превращение ядер одного элемента в ядра другого элемента происходит не только в процессе радиоактивного распада.

Такое превращение может происходить при взаимодействии ядер элементов друг с другом или с такими частицами, как альфа-частицы, электроны, протоны, нейтроны.

Превращение исходного атомного ядра при взаимодействии с какой-либо частицей в другое ядро, отличное от исходного, называют ядерной реакцией.

Силы притяжения, связывающие протоны и нейтроны в ядре, называются ядерными силами. Свойства ядерных сил:

  1. зарядовая независимость – ядерное (сильное) взаимодействие между двумя протонами, двумя нейтронами или между протоном и нейтроном одинаково;
  2. короткодействующий характер – ядерные силы быстро убывают с расстоянием; радиус их действия порядка 10–15 м;
  3. насыщаемость – ядерные силы могут удерживать друг возле друга в ядре ограниченное количество нуклонов; с ростом числа нуклонов ядра становятся менее стабильными.

Энергия, которая необходима для полного расщепления ядра на отдельные нуклоны, называется энергией связи.

Измерения показали, что масса покоя ядра М всегда меньше суммы масс покоя нуклонов (протонов и нейтронов), входящих в состав, на величину Δm, называемую дефектом массы: Δm = (Zmp + Nmn) – М.

Энергия связи атомного ядра Есв равна произведению дефекта масс на квадрат скорости света: Есв = Δmс2.

Массу ядер удобно выражать в атомных единицах массы: 1 а.е.м. = 1,67 • 10–27 кг.

Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом. При записи ядерных реакций используются законы сохранения заряда и массового числа (числа нуклонов).

Например, осуществлена ядерная реакция , в результате которой получен изотоп натрия и некоторая частица, которую нужно определить. Находим сумму массовых чисел в левой части уравнения. Она равна 26. Вычитаем из этого числа массовое число изотопа натрия: 26 – 22 = 4.

Следовательно, массовое число неизвестной частицы равно 4. Определяем зарядовое число: сумма зарядовых чисел в левой части равенства равна 13, следовательно, зарядовое число неизвестной частицы 13 – 11 = 2. Таким образом, массовое число образовавшейся в результате реакции частицы 4, а зарядовое число 2.

Это — альфа-частица. Уравнение имеет вид: 

Термоядерный синтез

Термоядерный синтез — это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются.

Тяжелое атомное ядро может распасться на два-три более легких —  это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно —  поэтому они отталкиваются друг от друга.

Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов.

Именно такие реакции и называются термоядерными.

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается — таким образом, ядро не остывает. На Земле же термоядерные реакции можно провести лишь в специальных установках (импульсные системы, квазистационарные системы, токамак, торсатрон).

В ходе ядерных и термоядерных реакций выделяется  огромное количество энергии, которую можно использовать в различных целях — можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях.

Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции.

К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (тяжёлый водород, обозначается символами D и 2H — стабильный изотоп водорода с атомной массой, равной 2) и тритий (сверхтяжёлый водород, обозначается символами T и 3H — радиоактивный изотоп водорода), а в более отдалённой перспективе гелий-3  и бор-11.

Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X. Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция).

Конспект урока «Ядерные реакции. Ядерный реактор».

Источник: https://uchitel.pro/%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B5-%D1%80%D0%B5%D0%B0%D0%BA%D1%86%D0%B8%D0%B8-%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9-%D1%80%D0%B5%D0%B0%D0%BA%D1%82%D0%BE%D1%80/

Booksm
Добавить комментарий