Высокочастотные токи. Скин-эффект

Скин эффект в проводнике — смерть для звука?

Высокочастотные токи. Скин-эффект

В погоне за максимальной достоверностью звука, аудиофилы начали яро пытаться подавить скин эффект в звуковых проводах. Но что на самом деле такое этот пресловутый скин эффект? Давайте выясним действительно ли это серьезное препятствие на пути качественного звука или же магия глянцевых журналов.

Что такое скин эффект?

Если вы не сильны в английском, то скин (skin) переводится как кожа или в данном случае скорее слой. В русскоязычной литературе, скин эффект называют поверхностным эффектом.

Говоря простым языком, скин эффект заключается в том, что протекающий по проводнику переменный ток, вытесняется к поверхности проводника с ростом частоты.

Чем выше частота сигнала F тем сильнее он вытесняется к поверхности и тем тоньше становится слой по которому он протекает. Этот слой называется скин слой. Красная область на рисунке — область по которой сигнал не течет.

Это приводит к тому, что скорость протекания сигнала на разной частоте различна. Происходит это потому, что для разных частот используется разная площадь поперечного сечения проводника, а разная площадь это разное сопротивление. Все это приводит к появлению фазовых искажений в сигнале.

Толщина скин слоя

Толщина скин слоя — это толщина слоя поверхности, углубившись на которую сигнал ослабевает в 2.71 раз (константа е). Говоря проще — это полезная площадь проводника, через которую сигнал проходит без изменений.

Представьте только. мы тратим колоссальные деньги на микросхемы и конденсаторы, а какой-то кусочек дешевого провода портит весь эффект. Грусть. печаль…

А какая частота считается высокой?

Как уже было сказано, скин эффект проявляется только на переменном сигнале и только на высоких частотах. До этого я специально обходил числовые значения частоты стороной. Но что же означает высокая частота?

Тут стоит заострить внимание на том, что под «высокими частотами» подразумеваются высокие по меркам электроники, а не человеческого слуха.

 Бороться с проявлением скин эффекта начинают на частотах выше 1МГц. Там может доходить и до того, что проводники делаются не сплошными, а полыми в виде трубок. Т.к.

в центральная часть проводника становится не просто ненужной, но еще и вредной для сигнала.

Конечно скин эффект проявляется и в слышимой области частот. Не зря же об этом пестрят все Хай-Энд издания. Но вот только хитрые маркетологи не говорит о том, насколько проявляется это влияние.

Скин эффект для конкретных частот

Сегодня существует довольно много онлайн калькуляторов, считающих толщину скин слоя для конкретной частоты. Мне приглянулся этот. На нем и будем считать.

А теперь давайте узнаем толщину скин слоя для максимальной слышимой частоты. Считается что мы слышим в лучшем случае до 20кГц. Но есть данные, что в улитке слухового аппарата есть специальные волоски, погруженные в лимфу, которые чувствуют частоты до 100кГц. Эти частоты, хоть мы их и не слышим влияют на восприятие слышимого диапазона…

Да не важно) вообщем, для 100 кГц толщина скин слоя составляет 0.2 мм.

Если взять провод с радиусом равным толщине скин слоя, то на скин эффект можно наплевать. Ибо его толщина это весь провод.

Толщину проводков, применяемых в наушниках можно посмотреть зарезав одни из своих наушников или, например, в статье «как починить наушники без паяльника». Сегодня уже практически стандарт делать такие провода из литцендрата.

Литцендрат это многожильный провод, каждая жилка которого имеет отдельную лаковую изоляцию.

Так что толщина каждого проводка много меньше полученного результата. Вот таким нехитрым образом страницы красивых журналов нас красиво разводят.

Может другие эффекты?

Конечно есть еще один поверхностный эффект. Суть его сводится к тому, что все протекающие в проводнике заряды — электроны имеют одинаковый знак. А как известно, одинаковые заряды отталкиваются. В результате протекающий ток подобно скин эффекту прижимается к краю проводника.

Но этот эффект проявляется только при токах намного больших 10-20 ампер, и ни к межблочным ни к наушниковым кабелям никакого отношения не имеет…

Заключение

Провод действительно может влиять на звук. Так или иначе он обладает такими паразитными характеристиками как индуктивность, емкость и сопротивление. Но у любого качественного провода эти паразитные величины настолько мизерны, что грешно косить на кабель, если что-то плохо звучит.

Материал подготовлен исключительно для сайтаAudioGeek.ru

Follow @AudioGeek_ru

Источник: https://audiogeek.ru/skin-effect/

Высокочастотные токи. Скин-эффект

Высокочастотные токи. Скин-эффект

Свойства быстропеременных токов

Токи, имеющие частоту выше 10 кГц- это токи высокой частоты. Условия квазистационарности для таких токов не осуществляются. За счет быстрого изменения магнитного поля появляются вихревые токи.

При изменении магнитного поля в проводнике вихревой ток с основным током имеет встречное направление по оси, а на поверхности, напротив, согласованное.

Следовательно, токи высокой частоты обладают непостоянной плотностью относительно поперечного сечения провода, а в центре она равна практически нулю. Увеличение плотности тока происходит при приближении к внешней поверхности сечения.

Токи, обладающие высокой частотой, протекают по тонкому внешнему слою проводника. На сегодняшний день такие токи нашли широкое применение.

С их помощью можно быстро разогревать металлические предметы в высокочастотной плавильной печи, осуществлять закалку стали. Для этого необходимо предмет разместить внутри катушки, где протекает высокочастотный ток.

При этом поверхность детали будет нагреваться вихревыми токами, а внутренняя часть будет оставаться холодной.

Затем она вынимается из катушки, происходит теплообмен, то есть внутренняя часть нагревается, а наружная поверхность охлаждается, закаливаясь.

С помощью выдержки времени объекта в катушке и регулированием частоты тока можно добиться изменения глубины разогрева.

После данных мероприятий внутренняя часть металла остается упругой и пластичной, а внешняя твердой и прочной.

Поверхностный эффект

Вдоль поперечного сечения постоянный ток распределен равномерно, а у переменного тока происходит перераспределение плотности тока за счет индукции.

Сосредоточение тока на поверхности слоя проводника называется скин- эффектом.

Допустим у нас протекает ток по цилиндрическому проводнику, вокруг которого появляется магнитное поле. Это поле имеет силовые линии, которые представляют собой концентрические окружности с центром на оси проводника.

При повышении силы тока увеличивается индукция магнитного поля, однако, форма этих линий остается неизменна.

Согласно этому, производная dB/dt расположена по касательной к линии индукции магнитного поля, линии этой производной также представляют собой окружности, совпадающие с силовыми линиями. Из закона электромагнитной индукции нам известно:

Вектор напряженности магнитного поля с вектором напряженности электрического поля имеют противоположное направление ближе к оси проводника, а ближе к периферии одинаковое. Из-за этого плотность тока увеличивается к наружному слою проводника, а к оси уменьшается, следовательно, наблюдается поверхностный эффект.

Магнитное поле проникает в проводник аналогично процессу диффузии в математическом отношении.

Примем за базу уравнение (1) и (2):

Закон Ома:

Правые части уравнений (2) и (3) приравняем и произведем дифференцирование полученных выражений, таким образом, будем иметь:

Или при учете формулы (1):

Будем использовать известные соотношения:

В результате получится:

При протекании тока через бесконечный однородный проводник, который занимает полупространство y>0 вдоль оси x, при этом поверхность проводника плоская, запишем:

Следовательно, уравнение (7) будет иметь вид:

Можно сделать предположение, что:

Подставим уравнение (11) в уравнение (10) имеем:

Решением выражения (12) будет функция:

где a=scrt(w*σ*m0*m/2). Взяв действительную часть уравнения (12) и перейдя к плотности тока при использовании закона Ома, имеем:

Если учесть, что амплитуда плотности тока j0=jx(0,0), тогда уравнение (14) примет вид:

Толщина скин-слоя

У наружного слоя проводника объемная плотность тока максимальна, а на промежутке d=1/a от периферии происходит уменьшение в e раз.

Практически весь ток располагается в d слое, которые называется толщиной скин-слоя. Она равна:

При высокочастотных тока толщина скин-слоя очень мала.

Пример 1:

Во сколько раз уменьшится толщина поверхностного- слоя медного проводника, если w1=104 c(-1), а w2=106 c(-1).

Решение:

Толщина поверхностного слоя:

d=scrt(2/( σ*m*m0*w)) (1.1).

При записывании формулы (1.1) для токов разной частоты, выражение будет иметь вид:

d1/d2=scrt(w2/w1).

Итоговое выражение:

d1/d2=scrt(106/104)=10.

Ответ: Толщина в 10 раз уменьшится.

Пример 2

Вопрос:

Почему при протекании высокочастотного тока в цилиндрической области проводника можно пренебречь проводящим материалом внутри него, а оставить только проводящую оболочку?

Решение:

Чем выше частота тока, тем заметнее уменьшается глубина слоя, в которой протекает ток. То есть ток распространяется около его наружного слоя (скин-эффект).

Следовательно, не происходит изменений, если убрать проводящую часть внутри проводника, а оставить только оболочку его толщиной поверхностного слоя.

Если ток обладает низкой частотой и протекает по толстому проводу, то глубина его протекания совсем немного уменьшается к оси проводника. При распространенной частоте 50 Гц скин-эффект менее заметно выражается.

Источник: https://sciterm.ru/spravochnik/visokochastotnie-toki-skin-effekt/

Поверхностный (скин) эффект

Высокочастотные токи. Скин-эффект

В таблице представлена зависимость глубины проникновения электрического тока в металл от частоты сигнала.

Более наглядно и точно зависимость толщины скин-слоя от частоты, а также зависимость активного и индуктивного сопротивления от частоты можно оценить на странице Online расчёт комплексного сопротивления.

δ=50300√(ρ/µr)f

µr — магнитная проницаемость среды

ρ — проводимость (Ом·см).

Частота Глубина проникновения тока, мм Серебро Медь Золото Алюминий Никель Хром
1 kГц2,03002,09002,49002,61004,48005,7500
2 kГц1,43541,47791,76071,84553,16784,0659
3 kГц1,17201,20671,43761,50692,58653,3198
4 kГц1,01501,04501,24501,30502,24002,8750
5 kГц0,90780,93471,11361,16722,00352,5715
6 kГц0,82870,85321,01651,06551,82902,3474
7 kГц0,76730,78990,94110,98651,69332,1733
8 kГц0,71770,73890,88030,92281,58392,0329
9 kГц0,67670,69670,83000,87001,49331,9167
10 kГц0,64190,66090,78740,82541,41671,8183
20 kГц0,45390,46730,55680,58361,00181,2857
30 kГц0,37060,38160,45460,47650,81791,0498
40 kГц0,32100,33050,39370,41270,70840,9092
50 kГц0,28710,29560,35210,36910,63360,8132
60 kГц0,26210,26980,32150,33690,57840,7423
70 kГц0,24260,24980,29760,31200,53550,6873
80 kГц0,22700,23370,27840,29180,50090,6429
90 kГц0,21400,22030,26250,27510,47220,6061
100 kГц0,20300,20900,24900,26100,44800,5750
200 kГц0,14350,14780,17610,18460,31680,4066
300 kГц0,11720,12070,14380,15070,25870,3320
400 kГц0,10150,10450,12450,13050,22400,2875
500 kГц0,09080,09350,11140,11670,20040,2571
600 kГц0,08290,08530,10170,10660,18290,2347
700 kГц0,07670,07900,09410,09860,16930,2173
800 kГц0,07180,07390,08800,09230,15840,2033
900 kГц0,06770,06970,08300,08700,14930,1917
1000 kГц0,06420,06610,07870,08250,14170,1818
2 MГц0,04540,04670,05570,05840,10020,1286
3 MГц0,03710,03820,04550,04770,08180,1050
4 MГц0,03210,03300,03940,04130,07080,0909
5 MГц0,02870,02960,03520,03690,06340,0813
6 MГц0,02620,02700,03210,03370,05780,0742
7 MГц0,02430,02500,02980,03120,05350,0687
8 MГц0,02270,02340,02780,02920,05010,0643
9 MГц0,02140,02200,02620,02750,04720,0606
10 MГц0,02030,02090,02490,02610,04480,0575
20 MГц0,01440,01480,01760,01850,03170,0407
30 MГц0,01170,01210,01440,01510,02590,0332
40 MГц0,01020,01050,01250,01310,02240,0288
50 MГц0,00910,00930,01110,01170,02000,0257
60 MГц0,00830,00850,01020,01070,01830,0235
70 MГц0,00770,00790,00940,00990,01690,0217
80 MГц0,00720,00740,00880,00920,01580,0203
90 MГц0,00680,00700,00830,00870,01490,0192
100 MГц0,00640,00660,00790,00830,01420,0182
200 MГц0,00450,00470,00560,00580,01000,0129
300 MГц0,00370,00380,00450,00480,00820,0105
400 MГц0,00320,00330,00390,00410,00710,0091
500 MГц0,00290,00300,00350,00370,00630,0081
600 MГц0,00260,00270,00320,00340,00580,0074
700 MГц0,00240,00250,00300,00310,00540,0069
800 MГц0,00230,00230,00280,00290,00500,0064
900 MГц0,00210,00220,00260,00280,00470,0061
1000 MГц0,00200,00210,00250,00260,00450,0058

Источник: https://www.ivTechno.ru/skin_effekt

Скин —эффект

Определение 2

Постоянный ток по поперечному сечению проводника распределяется равномерно. У переменного тока из-за индукционного взаимодействия разных элементов тока проходит перераспределение плотности тока по поперечному сечению проводника. Явление, при котором ток преимущественно сосредотачивается в поверхностном слое проводника, называется скин-эффектом.

Пусть мы имеем цилиндрический проводник, по которому течет ток. Вокруг проводника с током образуется магнитное поле. Силовые линии этого поля — концентрические окружности, центр которых лежит на оси проводника.

Если силу тока увеличить, то повысится индукция магнитного поля, но форма силовых линий не изменится.

Соответственно, производная $\frac{\partial \overrightarrow{B}}{\partial t}$ направлена по касательной к линии индукции магнитного поля, линии производной также — окружности, которые совпадают с силовыми линиями. Мы знаем из закона электромагнитной индукции, что:

Вектор напряженности индукционного поля в областях расположенных ближе к оси проводника имеет направление противоположное вектору напряженности электрического поля, которое создает ток, в дальних областях направления этих векторов совпадают. В результате плотность тока уменьшается около оси и увеличивается ближе к поверхности проводника, то есть появляется скин-эффект.

В металлах в виду их высокой проводимости током смещения можно пренебречь в сравнении с током проводимости. Из-за чего проникновение магнитного поля в металл аналогично процессу диффузии в математическом отношении. За основу возьмем уравнение (1) и уравнение (2):

Используем закон Ома:

приравняем правые части выражений (2) и (3) и продифференцируем полученное выражение, в результате имеем:

Или учитывая формулу (1):

Используем известные соотношения:

окончательно получим:

Если ток течет по однородному бесконечному проводнику, который занимает полупространство y$>$0 вдоль оси X, причем поверхность проводника плоская, и можно записать:

В таком случае уравнение (7) преобразуется к виду:

Можно предположить, что:

Подставив выражение (11) в уравнение (10) получим:

Решением уравнения (12) является функция:

где $\alpha =\sqrt{\frac{\omega \sigma {\mu }_0\mu }{2}}$. Возьмем действительную часть выражения (13) и перейдем к плотности тока, используя закон Ома, получим:

Если считать, что амплитуда плотности тока $j_0=j_x\left(0,0\right)$, то выражение (14) примет вид:

Толщина скин-слоя

Объёмная плотность тока максимальна у поверхности проводника. На расстоянии $\triangle =\frac{1}{\alpha }\ \ от\ поверхности\ $она становится в e раз меньше. Почти весь ток находится в $\triangle $ слое, который называют толщиной скин — слоя. Толщина скин — слоя равна:

При высокой частоте тока толщина скин — слоя весьма мала.

Пример 1

Задание: Во сколько раз уменьшится толщина скин — слоя меди, если ${\omega }_1={10}4с{-1}$, а ${\omega }_2={10}6с{-1}$.

Решение:

Толщина скин — слоя проводника рассчитывается по формуле:

\[\triangle =\sqrt{\frac{2}{\sigma \mu {\mu }_0\omega }}\left(1.1\right).\]

Если дважды записать выражение (1.1) для разных частот тока, то получим:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{\omega }_2}{{\omega }_1}}\left(1.2\right).\]

Проведем вычисления:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{10}6}{{10}4}}=10.\]

Ответ: Толщина уменьшится в 10 раз.

Пример 2

Задание: Почему при высокой частоте тока можно убрать проводящий материал из цилиндрической области внутри проводника и оставить только проводящую оболочку?

Решение:

Как было показано в предыдущем примере, с увеличением частоты тока, глубина слоя в котором распространяется ток, становится очень небольшой. То есть ток течет лишь в малой части поперечного сечения проводника около его поверхности (скин — эффект).

Следовательно, ничего не изменится, если убрать проводящий материал из цилиндрической области внутри проводника и оставить только цилиндрическую оболочку толщиной скин — слоя. Если проводник толстый, а частота его невелика, то ток течет по всему поперечному сечению и только немного ослабевает к оси провода.

Так, при технической частоте в $50 Гц$ скин — эффект в обычных проводниках выражается очень слабо.

Источник: https://spravochnick.ru/fizika/peremennyy_sinusoidalnyy_tok/vysokochastotnye_toki_skin-effekt/

Скин эффект

Высокочастотные токи. Скин-эффект

Каждый опытный электротехник знает, что распределение плотности тока в проводнике нелинейно. Чем ближе к центральной оси, тем меньше амплитуда сигнала.

При высокой частоте для корректного расчета вполне достаточно учитывать прохождение волн через определенный поверхностный слой. Это явление, скин эффект, способно выполнять полезные функции.

Для успешного применения на практике, кроме общей теории, нужно изучить методику вычислений.

На основе скин эффекта создают экономичные системы обогрева трубопроводов

Объяснение поверхностного эффекта

Следует подчеркнуть одинаковую плотность тока при подключении проводника к источнику питания с постоянным напряжением. Однако ситуация изменяется при прохождении волнового сигнала.

Распределение плотности тока в проводнике

Физическая картина возникновения

Для объяснения причин явления можно использовать вторую часть пояснительной картинки выше. В графической форме показаны силовые воздействия, которые образуются переменным полем.

Электрическая составляющая (Е) направлена противоположно току (I), что объясняет возникающее сопротивление и соответствующее уменьшение амплитуды. По мере приближения к поверхности будет проявляться обратный эффект.

Он вызван совпадением векторов напряженностей.

Уравнение, описывающее скин-эффект

Для выражения амплитуды через плотность тока берут определяющие соотношения из классических уравнений закона Ома и формул Максвелла.  Дифференциалом по заданному временному интервалу можно вычислить значения магнитной и электрической компонент поля. В упрощенном виде рассматривают бесконечный проводящий образец, созданный из однородного материала.

Формула определения частоты среза диаметра проводника

Для практических вычислений отдельными незначительными факторами пренебрегают.

Например, чтобы определить частоту среза (Fср), цепь радиотехнического устройства рассчитывают по диаметру (D) соответствующего проводника.

В формулу добавляют важнейшую характеристику определенного материала – удельное сопротивление (Rу) или проводимость (Sу). Зависимость отмеченных параметров показывает следующее выражение:

Fср = 4/ (π*μ*Sу*D2),

где μ – постоянная величина (μ = 4* Sу*10-7 Генри на метр).

Глубина проникновения

От чего зависит индуктивность

Аналогичным образом, в упрощенном виде, можно рассчитать критичное расстояние от поверхности. Подразумевается, что в соответствующей области плотность тока уменьшается до минимальной значимой величины (-8,69 дБ, по сравнению с номиналом). Этот параметр (Dпр) называют глубиной проникновения. Для вычислений применяют формулу:

Dпр = √( Sу/( π*μ*f)), где f – частота сигнала.

Толщина скин-слоя

Из рассмотренного в предыдущем разделе определения понятна обратная зависимость плотности тока от частоты сигнала. Следующая таблица демонстрирует наглядно «активный» слой медного проводника. При многократном уменьшении энергетического потока в глубине на определенном уровне нецелесообразно применение толстых линий электропередач.

ПараметрЗначения
Частота сигнала, Гц506010 000100 0001 000 000
Толщина скин слоя, мм9,348,530,660,210,067

В первых двух столбцах приведены значения для стандартных сетей переменного тока. Эти данные демонстрируют, что сравнительно незначительное изменение частоты (10 Гц) делает бесполезным 1,62 мм диаметра проводника (медь).

Нетрудно вычислить значительную экономию при создании длинной линии после соответствующей оптимизации параметров сигнала. Следует не забывать, что каждый металл отличается глубиной эффективного слоя.

Какой выбрать вариант, будет понятно после тщательного изучения целевого назначения конструкции.

Аномальный скин-эффект

Внимательное изучение явления позволяет сделать несколько важных выводов. Как показано на конкретных примерах, скин слой отличается небольшой глубиной.

Однако соответствующее расстояние намного меньше средних значений свободного пробега заряженных частиц. Следует не забывать, что на соответствующее перемещение нужно затратить определенную энергию.

Преодоление электрического сопротивления материала сопровождается нагревом.

Если снижать температуру, проводимость увеличится. Одновременно станет больше свободный пробег, и уменьшится толщина рассматриваемой части проводника. При определенном уровне стандартный механизм волновых взаимодействий станет ничтожным. Аномальный скин эффект – это изменение размеров слоя, в котором обеспечивается достаточно высокая для практического использования плотность тока.

Применение

Поверхностный эффект позволяет обеспечить локальный нагрев части проводника при пропускании переменного тока. Этот принцип используют, чтобы обогреть трубопровод в зимний период. Правильное применение технологии подразумевает следующие преимущества:

  • отсутствие сопроводительных контрольных и функциональных устройств;
  • практически неограниченная длина трассы;
  • возможность безопасного применения высоких температур.

Частотное распределение плотности токов используют для передачи информационных сигналов по силовым линиям электропередач. При достаточном уменьшении длины волны близость центральной части проводника не будет помехой. Модулированная СВЧ составляющая проходит в поверхностном слое. Для создания пакетов данных и расшифровки применяют специальные кодирующие (декодирующие) устройства.

К сведению. Подобные механизмы используют в нефтяной отрасли для оценки продуктивности скважины. Скин фактор определяет сопротивление перемещению жидкости в близкой технологическому отверстию области пласта. По этому параметру делают оценку реального объема добычи, по сравнению с идеальными условиями.

Учёт эффекта в технике и борьба с ним

Это явление оказывает заметное влияние по мере увеличения частоты сигнала. Следует учитывать скин эффект при проектировании схем с переменными (импульсными) токами. В частности, делают коррекцию расчета катушки фильтра, колебательного контура, трансформатора.

Типовые способы решения обозначенных проблем:

  • уменьшение толщины проводника;
  • создание полых конструкций;
  • образование поверхностного слоя из металла с лучшей проводимостью;
  • устранение неровностей;
  • плетение из нескольких изолированных жил.

К сведению. Радикальное устранение вредных явлений организуют с помощью передачи электроэнергии постоянным током.

Способы подавления скин эффекта

Перечисленные методики имеют особое значение при работе с высокочастотными радиосигналами. В частности, для улучшения проводимости поверхностный слой создают из серебра, платины, других благородных металлов. Следующие рекомендации применяют на практике при создании качественной аудио аппаратуры:

  • для пропускания сигналов используют тонкие (0,25-0,35 мм) жилы;
  • плетением кабеля устраняют значительные искажения силовых линий магнитного поля;
  • надежной изоляцией предотвращают окисление меди;
  • проверяют наличие поблизости других линий, способных оказывать вредное взаимное влияние.

Оптоволоконная линия связи

При переходе в СВЧ диапазон сигналы передают по волноводам. Устраняют возможные негативные проявления с помощью передачи данных сигналами в оптическом диапазоне.

Источник: https://amperof.ru/teoriya/skin-effekt.html

Booksm
Добавить комментарий