Внутренняя и внешняя электрическая цепь

Электрическая цепь и ее элементы

Внутренняя и внешняя электрическая цепь

Описание презентации по отдельным слайдам:

1 слайдОписание слайда:

МУНИЦИПАЛЬНОЕ НЕТИПОВОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЛИЦЕЙ №76» Электрическая цепь и ее элементы 8 класс Подготовил: учитель технологии Дубинин А.Г. г. Новокузнецк, 2017

2 слайдОписание слайда:

Цель: 1.

Обучающая: Изучить понятия «электрическая цепь», «электрические и монтажные схемы», раскрыть их назначение, правила изображения, с различными вариантами соединения потребителей в электрической цепи, правила сборки электрических цепей, закрепить полученные знания путем решения практических задач (практической сборки простейших электрических цепей). 2. Развивающая: развить способности в чтении и составлении электрических схем, сборке электрических цепей, развивать умения наблюдать, сопоставлять, сравнивать результаты экспериментов, развивать мышление, устную речь учащихся формирование умений использования теоретических сведений и практических навыков по изучаемой теме в жизни. 3. Воспитательная: Воспитать в себе аккуратность, целеустремленность, подчеркнуть важность изучаемой темы в различных областях деятельности.

3 слайдОписание слайда:

Понятие электрической цепи Электрическая цепь — совокупность устройств, предназначенных для прохождения электрического тока.

Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

4 слайдОписание слайда:

Понятие электрической цепи Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.

), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е.

 электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

5 слайдОписание слайда:

Схема электрической цепи

6 слайдОписание слайда:

Внутренняя и внешняя цепь Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии.

Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электро-измерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока.

7 слайдОписание слайда:

Цепи постоянного и переменного тока Под электрическими цепями постоянного тока в электротехнике подразумевают цепи, в которых ток не меняет своего направления, т. е. полярность источников ЭДС в которых постоянна. Под электрическими цепями переменного тока имеют ввиду цепи, в которых протекает ток, который изменяется во времени (смотрите, переменный ток).

8 слайдОписание слайда:

Источники питания цепи Источники питания цепи — это гальванические элементы, электрические аккумуляторы, электро-механические генераторы, термоэлектрические генераторы, фотоэлементы и др. В современной технике в качестве источников энергии применяют главным образом электрические генераторы.

Все источники питания имеют внутреннее сопротивление значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др.

9 слайдОписание слайда:

Вспомогательное оборудование цепи В качестве вспомогательного оборудования в электрическую цепь входят аппараты для включения и отключения (например, рубильники), приборы для измерения электрических величин (например, амперметры и вольтметры), аппараты защиты (например, плавкие предохранители).

10 слайдОписание слайда:

Все электроприемники характеризуются электрическими параметрами, среди которых основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение.

Элементы электрической цепи делятся на активные и пассивные. К активным элементам электрической цепи относятся те, в которых индуцируется ЭДС (источники ЭДС, электродвигатели, аккумуляторы в процессе зарядки и т. п.).

К пассивным элементам относятся электроприемники и соединительные провода.  Напряжение электрической цепи

11 слайдОписание слайда:

электрическая цепь

12 слайдОписание слайда:

электрическая цепь

13 слайдОписание слайда:

По топологическим особенностям электрические цепи подразделяют: на простые (одноконтурные), двухузловые и сложные (многоконтурные, многоузловые, планарные (плоскостные) и объемные); двухполюсные, имеющие два внешних вывода (двухполюсники и многополюсные, содержащие более двух внешних выводов (четырехполюсники, многополюсники). ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

14 слайдОписание слайда:

Источники и приемники (потребители) энергии с точки зрения теории цепей являются двухполюсниками, так как для их работы необходимо и достаточно двух полюсов, через которые они передают либо принимают энергию.

Тот или иной двухполюсник называют активным, если он содержит источник, или пассивным — если он не содержит источник (соответственно, левая и правая части схемы).

  Устройства, передающие энергию от источников к приемникам, являются четырехполюсниками, так как они должны обладать, по меньшей мере, четырьмя зажимами для передачи энергии от генератора к нагрузке. Простейшим устройством передачи энергии являются провода.  ИСТОЧНИКИ И ПРИЕМНИКИ

15 слайдОписание слайда:

АКТИВНЫЙ И ПАССИВНЫЙ ДВУХПОЛЮСНИКИ В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

16 слайдОписание слайда:

ОБОБЩЕННАЯ ЭКВИВАЛЕНТНАЯ СХЕМА ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

17 слайдОписание слайда:

При анализе электрических схем пользуются следующими топологическими параметрами схем: ветвь — участок электрической цепи, вдоль которого протекает один и тот же электрический ток; узел — место соединения ветвей электрической цепи.

Обычно место, где соединены две ветви, называют не узлом, а соединением (или устранимым узлом), а узел соединяет не менее трех ветвей; контур — последовательность ветвей электрической цепи, образующая замкнутый путь, в которой один из узлов одновременно является началом и концом пути, а остальные встречаются только один раз.

Общая информация

Источник: https://infourok.ru/elektricheskaya-cep-i-ee-elementi-1654702.html

Внутренняя и внешняя электрическая цепь

Внутренняя и внешняя электрическая цепь

Основные элементы электроцепи

Внешние и внутренние составляющие

Базовые законы электроцепей

Физика определяет электрическую цепь как совокупность разнородных элементов, связывающихся посредством проводников, и предназначенную для протекания тока.

Элементный состав электроцепей достаточно обширен. Можно выделить следующие их типы:

  • нелинейные;
  • линейные;
  • активные;
  • пассивные.

Основные элементы электроцепи

Любая электрическая цепь состоит из разнородных взаимодействующих объектов и технических устройств, создающих специализированный маршрут для протекания по нему электрического тока. Для понимания и объяснения данных процессов физики используют следующие понятия:

  • Напряжение – физическая величина, равная затраченной электрополем энергии, необходимой для перемещения заряда между полюсами, относительно данного заряда;
  • Электродвижущая сила – скалярная величина, описывающая функционирование сил неэлектрической природы, присутствующих в переменных или постоянных квазистационарных электроцепях.

Ток – движущийся в определенном направлении поток заряженных частиц.

Все составные части электрической цепи условно подразделяются на 3 группы:

  • элементы питания, производящие электрическую энергию;
  • «приемники» — устройства, получающие и преобразующие подающееся на них электричество;
  • «передатчики» — провода и другие комплектующие, позволяющие добиться необходимого – по уровню и качеству – напряжения.

Внешние и внутренние составляющие

Даже самая простая цепь включает в себя: источник энергии, один или множество последовательно соединенных «приемников» электричества, а также необходимые для взаимодействия провода.

Внутренняя часть формируется за счет источника энергии, а потребитель, использующий ее, образует ее внешнюю часть (в эту систему также входят все измерительные устройства, коммутаторы и проводка).

Внешнюю цепь (участок цепи) образуют – один или множество — «приемников» электрической энергии, провода, прочие устройства, выполняющие вспомогательные функции. Тогда как внутренняя цепь (внутренний участок) состоит непосредственно из самого источника.

При разработке расчетных схем важно учесть элементы цепи, имеющие собственное сопротивление (электронагревательные устройства, электролампы и проч.). На бумагах, описывающих будущую электроцепь, они указываются как резисторы с сопротивлением. Это же относится и к объектам, обладающим индуктивностью (обмотка электрических двигателей, генераторов), а также емкостью (трансформаторы).

На схеме их нужно искать в местах скопления индуктивных катушек и конденсаторов. При планировании и предварительных расчетах цепи часто указывают идеальные источники энергии, имеющие нулевое внутреннее сопротивление: Ro=0.

Однако реальные источники всегда обладают уровнем сопротивления больше, чем 0. И хотя на схеме он обозначается как «нулевой» резистор (Ro), впоследствии сопротивление реального источника учитывается при построении цепи в натуре.

Вспомогательные элементы цепи (защитные приборы, включающие/выключающие устройства, измерительные аппараты) имеют малое сопротивление, почти никогда не влияющее на уровень напряжения. Соответственно, их можно не учитывать и не обозначать на схемах.

Как только контур внутренней и внешней частей электроцепи замыкается, в ней появляется ток. Сила тока зависит от того, какое количества энергии пропускает – за определенный временной промежуток – сечение «проводника». Формула расчета для переменного и постоянного тока отличается:

(для постоянного);

(для переменного).

Функционирование тока внутри сети тесно связано с преобразовательными процессами, непрерывно происходящими в ее элементах. Возникновение электричества из другой энергии сопровождается появлением возбуждения в устройстве питания электродвижущей силы (ЭДС).

Внешний участок цепи, как и источник питания, имеет определенный параметр сопротивления, препятствующий пропуску электротока. Величина сопротивления зависит от размера и формы «проводника», а также материала, из которого сделан:

Еще одна величина – проводимость – обратная сопротивлению:

Закон Ома описывает взаимодействие ЭДС, напряжения, сопротивления и тока:

Базовые законы электроцепей

При исследовании как сложных, так и простых цепей обычно используются закон Ома, Джоуля-Ленца, Ампера, Фарадея и Кирхгофа. В зависимости от того, анализируется ли участок или же вся цепь, применяются разные варианты закона Ома. Например, на отдельном участке электроцепи ток находится в отношениях обратной пропорции к сопротивлению на данном отрезке и прямой пропорции – к напряжению:

Произведение тока на уровень сопротивления (на конкретном отрезке цепи) приводит к его падению. Ток в цепи пропорционален ЭДС источника энергии и обратно пропорционален сумме величин сопротивлений (внешнего и внутреннего типов) источника питания. То есть:

Закон, выведенный Джоулем-Ленцем, служит для подсчета суммарной тепловой энергии, приходящейся на сопротивления из-за прохождения по нему тока. Формула его такова:

Закон Фарадея (электромагнитной индукции) учитывает в электроцепях отношения:

Между колебаниями магнитного потока, взаимодействующего с поверхностью, ограниченной контуром цепи, и индуктированием ЭДС.

Индуктированием ЭДС проводника (при проникновении магнитного поля)

Согласно данному закону, индуцируемая в цепи (ЭДС в связи колебаниями магнитного потока, идущего через ограниченную контуром поверхность), равна скорости с которой, он изменяется, но с отрицательным знаком. Формула рассчитывается так:

Процесс замены отрезков электроцепи, где один элемент посредством параллельного и последовательного соединения взаимодействует с несколькими другими элементами, носит наименование эквивалентных преобразований. При таком изменении напряжение всей цепи и ток сохраняют свои прежние значения.

Последовательное соединение характеризуется одной важной особенностью: значение тока в таких частях цепи равно для всех ее составляющих элементов (и последовательных тоже). Данный факт позволяет сделать вывод, что напряжение прямо пропорционально уровню сопротивления на данном участке для каждого из последовательно подключенных элементов.

Источник: https://sciterm.ru/spravochnik/vnutrennyaya-i-vneshnyaya-elektricheskaya-cep/

Электрическая цепь

Внутренняя и внешняя электрическая цепь

Электрическая цепь – набор разнородных элементов, соединенных проводниками, предназначенный для протекания тока. Ассортимент составляющих широкий. Элементы выпускают линейные, нелинейные, активные, пассивные. Классификация бессильна охватить возможные случаи.

Состав электрической цепи

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур.

В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток.

Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка.

Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю.

В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом.

Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным.

С трудом понимаем, переменный в цепи ток или постоянный.

Помимо упорядоченного движения носители характеризуются хаотичным тепловым движением. Скорость (интенсивность) определена температурой, родом материала, некоторыми другими факторами. В образовании электрического тока вид движения участия фактически не принимает.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам).

Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения.

Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора.

Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток.

Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет. Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра. К примеру, действующее значение ЭДС.

Элементы цепи

Выключатель

Рубильник позволит присоединить источник питания к проводам, потребителю. Каждый (за редким исключением) пользовался настенным выключателем. При замыкании-размыкании электрической цепи возникает искра.

Объясняется наличием сопротивления емкостного типа. Для предотвращения искрения цепь дополняется дросселем, рубильник сформирован контакторами специального типа.

Придуманы прочие технические решения, к примеру, катушка Тесла.

Провода

В технике провода изготавливают медные, алюминиевые. Связано с низким удельным сопротивлением металлов. Цена невысока. Выделяющееся на проводниках тепло определяется двумя параметрами:

  • Сопротивление участка цепи.
  • Электрический ток.

Понятно, второй параметр определяется нуждами потребителей. Поставщик стремится влиять на первый. Удельное сопротивление проводника предвидится по возможности низким. Ученых давно интересует явление сверхпроводимости.

Металлы при понижении температуры теряют сопротивление. Уменьшаются потери. Среди полупроводников встречаются образцы с положительным и отрицательным температурным коэффициентом сопротивления.

Абсолютное значение параметра металлов на порядки ниже.

Проблема с алюминием, медью проста: при протекании электрического тока в цепи температура растет. Повышается сопротивление участка, дополнительно усугубляя ситуацию. Получается замкнутый круг. Ученые считают: затруднение допустимо исправить, заручившись помощью явления сверхпроводимости.

Металл при некоторой низкой температуре резко, рывком снижает сопротивление, достигая нуля (выше рубежа график понижается плавно со скоростью 1/273 1/град). Проблема практического применения в том, что значения, провоцирующие скачок, низкие. Например, для свинца рубеж составляет 7,2 К. Экстремально низкая отрицательная температура по шкале Цельсия.

Ученые видят решение проблемы в открытии материалов, демонстрирующих явление сверхпроводимости при комнатных температурах. Тогда большие токи удастся передавать потребителям, избежав потерь. В электрической цепи, сформированной сверхпроводниками, заряды способны циркулировать бесконечно длительное время без внешней подпитки источником.

Новое явление обнаружил Хейке Камерлинг-Оннес в 1911 году, исследуя образцы ртути, охлаждаемой до весьма низких температур. На четырех градусах Кельвина сопротивление проволоки стало нулевым, до скачка снижалось, плавно следуя прямой.

Стало ясно: обнаружено новое состояние материала. Позже явление сверхпроводимости продемонстрировано на образцах других металлов. Показано: эффект разрушается помещением подопытного вещества в сильное магнитное поле.

Самой высокой пороговой температурой среди металлов похвастается технеций (11,3 К).

Явление сверхпроводимости при комнатных температурах

У искусственных материалов показатели намного выше. С 1986 года ученые исследуют разнообразные керамики. Последним подтвержденным фактом считаем сведения о наличии композитных материалов на основе окислов ртути с температурой перехода в новое состояние на границе 140 К. Дальнейшие работы по очевидным соображениям засекречены.

Потребители

Под потребителем электрической цепи понимается не относящееся к элементам, перечисленным выше.

Полезной нагрузкой служат обыкновенная лампочка накала, спираль нагревательного прибора, электрический двигатель. Параметры цепи очень сильно зависят именно от потребителей.

Например, обмотки трансформаторов наделены сильно выраженным индуктивным сопротивлением. Негативно сказывается на передаче энергии от источника.

Не только ток меняет направление. Иногда утверждение касается мощности. Энергия начинает циркулировать туда-сюда, направляясь к источнику питания, обратно во внешнюю цепь. Реактивная мощность бессильна выполнить полезную работу, разогревает проводники цепи, искажает форму полезного сигнала.

Промышленникам, ведущим учет полного потребления, рекомендуется параллельно двигателям включать компенсирующие конденсаторы.

Индуктивное сопротивление компенсируется емкостным, реактивная мощность замыкается внутри потребительского сегмента, избегая выходить наружу, не выделяя лишнее тепло на кабелях сети.

Нужно отметить важное свойство индуктивных потребителей: потребляют энергию. Электрический ток становится магнитным полем, передается далее.

В двигателях колебания вектора напряженности, создаваемые обмоткой, позволят совершать валу полезную работу.

Чтобы показать происходящие траты энергии, схемы дополняют источниками ЭДС (тока), направление действия которых противоположно имеющему место быть во внутренней электрической цепи.

Передачи мощности через емкостную связь сегодня не изобретено. Однако приближенно считаем подобным случаем излучение радиоволны в эфир. Простейший вибратор Герца часто представляют колебательным контуром, в котором обкладки конденсатора разведены в стороны.

Шаг позволит образовываться электромагнитной волне, уносимой эфиром. Что касается передачи больших мощностей, соответствующие планы строил Никола Тесла, каждый видел на фото, стилистическом изображении башню Ворденклиф, напоминающую формой подберезовик с прямой ножкой.

При помощи сети сооружений предполагалось снабжать энергией путем беспроводной связи промышленность, заводы, фабрики.

В курсе электроники преимущественно рассматриваются приемные устройства. Между клеммами антенны передача волны через эфир обозначается схематично источником переменного напряжения малой мощности.

Уловленная ЭДС усиливается каскадами, включающими резонансные контуры. Электроника, как никакая другая область техники, включает неимоверное разнообразие потребителей.

Упрощенно делится на два класса:

  1. Активные потребители требуют для корректной работы снабжения электрической энергией. Как правило, не могут питаться непосредственно основной сетью. Микросхемы, дискретные активные элементы: транзисторы, тиристоры. Иными словами, электронные ключи. Электродвигатели принципиально отличаются, снабжаясь питанием входной сети.
  2. Пассивные потребители не требуют внешнего питания. Однако пропускать ток могут причудливым образом. Некоторые тиристоры открываются при достижении напряжением определенного значения. Следовательно, считаются пассивными приборами, обладают нелинейной характеристикой. К этому семейству относятся диоды, пропускающие ток в одном направлении (демонстрируют вентильные свойства).

Пассивными потребителями являются всевозможные сопротивления, конденсаторы, дроссели (катушки индуктивности). При помощи элементов электрическая цепь приобретает необычные качества. Резонансные контуры конденсаторов, индуктивностей используют фильтрами волн различной частоты.

Источник: https://VashTehnik.ru/enciklopediya/elektricheskaya-cep.html

Элементы электрической цепи

Каждая электрическая цепь будет включать в себя разноплановые объекты и устройства, формирующие специальные пути для прохождения электротока. С целью детального описания электромагнитных процессов, осуществляемых в каждом из них, на практике применяют такие понятия, как:

  • электродвижущая сила (представляет скалярную величину, характеризующую работу любых сил неэлектрического происхождения, функционирующих в квазистационарных цепях тока переменного или постоянного типа);
  • напряжение (считается физической величиной, равнозначной отношению работы электрического поля, которая будет затрачиваться на перенос электрозаряда из одной точки в другую (то есть между полюсами) к указанному заряду);
  • ток (характеризуется направленным потоком заряженных частиц).

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Замечание 1

Согласно условному распределению, все элементы электрической цепи подразделяются на три составные части. Первую представляют источники питания, вырабатывающие электроэнергию.

Вторая характеризуется элементами, преобразующими электричество в иные виды энергии, больше известные в виде приемников.

Третья часть составляют передающие устройства – провода и прочие установки, отвечающие за обеспечение соответствующего качества и уровня напряжения.

Внутренние и внешние части электрической цепи

Составными простейшей электрической цепи являются: источник, один или несколько приемников электроэнергии с последовательным соединением и соединительные провода.

Источник питания контролирует образование внутренней части цепи, а потребитель, в то же время, формирует ее внешнюю часть (в совокупности с измерительными приборами, коммутирующими аппаратами и соединительными проводами).

Замечание 2

Внешний участок (иными словами, внешняя цепь) будет состоять из одного или нескольких приемников электроэнергии, а также из соединительных проводов и разных вспомогательных устройств, включенных в такую цепь. Наряду с тем, внутренний участок (называется также внутренняя цепь) — это и есть сам источник.

При составлении расчетных схем элементы электроцепи, обладающие некоторым сопротивлением, (электролампы, например, или электронагревательные приборы) изображаются схематически в формате сосредоточенных в определенном месте схемы резисторов с сопротивлением. То же касается и элементов с индуктивностью (обмотки генераторов, трансформаторов и электродвигателей) и емкостью (трансформаторы).

На расчетных схемах их изображение будет сосредоточено в соответствующих местах конденсаторов и катушек индуктивности.

Источниками электроэнергии в схеме электрической цепи зачастую выступают идеализированные источники с внутренним сопротивлением $Ro=0$.

С целью учета внутреннего сопротивления реального источника, в схему вводится изображение резистора с сопротивлением $Ro$ или ставится обозначение $Ro$ рядом с условным обозначением источника.

Вспомогательным элементам электроцепей в виде включающих и выключающих аппаратов, защитных устройств, некоторых электроизмерительных приборов часто свойственно малое сопротивление, при этом они практически не оказывают воздействия на значения напряжений и токов. По этой причине они во внимание не принимаются и не указываются на схемах.

В момент образования замкнутого контура во внутренней и внешней части цепи, в ней фиксируют возникновение электрического тока. Силу тока, таким образом, определяет количество электричества (заряда), проходящего за единицу времени через поперечное сечение проводника:

  • $I=\frac{q}{t}$ (для постоянного тока);
  • $i=\frac{dq}{dt}$ (для переменного тока).

Прохождение в цепи электрического тока взаимосвязано с процессами преобразования энергии в каждом ее элементе, которые происходят в непрерывном режиме. В рамках процесса преобразования иных видов энергии в электрическую мы наблюдаем возбуждение в источнике питания электродвижущей силы (ЭДС).

Внешняя цепь, равно как и сам источник энергии, имеют определенное сопротивление для прохождения электрического тока. Физическую природу сопротивления Ома $R$ представляет – тепловое движение атомов и молекул тела (свойство сверхпроводимости). Величина сопротивления будет зависимой от материала, а также размеров и формы проводника:

$R=P\frac{I}{S}$

Обратная сопротивлению величина называется проводимостью:

$P=\frac{1}{R}$

Напряжение, электродвижущая сила, ток и сопротивление связывает в простейшей цепи закон Ома, который выражается формулой:

$I=\frac{U}{R}$

Основные законы для электрических цепей

При анализе цепей сложного и простого типа широко применимы законы Кирхгофа, Ома, Джоуля Ленца, Фарадея, Ампера. Законы Ома существуют в двух вариациях: для участка цепи и полной цепи. Ток в участке цепи будет прямо пропорциональным напряжению на таком участке и обратно пропорциональным сопротивлению на нем, то есть:

$U=IR$

При произведении тока участка цепи на величину сопротивления возникает падение на данном участке. Ток в электроцепи будет прямо пропорционален ЭДС источника и обратно пропорциональным сумме сопротивлений, состоящим из внутреннего и внешнего типа сопротивления источника питания. Таким образом:

$I=\frac{E}{R+r}$

Закон Джоуля-Ленца позволяет определять количество тепловой энергии, которое будет выделяться на сопротивление при протекании по нему электрического тока. Согласно формуле, это записывается так:

$w=I2 rt$

Законом электромагнитной индукции Фарадея устанавливается связь между:

  • индуктированием ЭДС в электроцепях и изменением магнитного потока, пронизывающего ограниченную контуром цепи поверхность;
  • индуктированием ЭДС в проводнике в формате пересечения им магнитного поля.

В соответствии с вышеуказанным законом, ЭДС, которая индуцируется в цепи при изменении магнитного потока $Ф$, проходящего через ограниченную контуром поверхность, равнозначна скорости изменения магнитного потока, которая берется с отрицательным знаком, то есть формула выглядит так:

$E=-\frac{dф}{dt}$

Под эквивалентными преобразованиями понимается замена участков электрической цепи, содержащая последовательно и параллельно соединенные несколько элементов посредством одного элемента. При этом следствием такой замены становится неизменность общего тока и напряжения цепи.

В качестве основной особенности последовательного соединения выступает наличие общего тока, равного по значению для всех элементов (включая также и последовательные). Это, в свою очередь, способствует прямой пропорциональности напряжения сопротивлению участка цепи на каждом из включенных последовательно элементов.

Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/vnutrennyaya_i_vneshnyaya_elektricheskaya_cep/

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур

Внутренняя и внешняя электрическая цепь

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.

) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.

Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис.

19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис.

20, имеется 6 ветвей. Определите их самостоятельно.

Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.

Работа и мощность в цепи постоянного тока.

Работа тока— это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

— отношение работы тока за время t к этому интервалу времени.

В системе СИ:

Первый закон Кирхгофа.

Сколько тока втекает в узел, столько из него и вытекает. i2 + i3 = i1 + i4

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

7. Расчет цепи методом эквивалентных структурных преобразований.

Метод эквивалентных структурных преобразований.

В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов.

При последовательном соединении элементов через них протекает один и тот же ток I (рис. 1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи

(1.27)

Для последовательного соединения сопротивлений r1,r2…rn (рис. 1.18) с учетом (1.6) будем иметь

(1.28)

Ток в цепи с последовательным соединением элементов равен:

(1.29)

а напряжение на n-ом элементе равно

(1.30)

При последовательном соединении источников напряжения они заменяются одним эквивалентным источником с напряжением Uэкв, равным алгебраической сумме напряжений отдельных источников. Причем со знаком «+» берутся напряжения, совпадающие с напряжением эквивалентного источника, а со знаком «-» — несовпадающие (рис. 1.19).

Параллельное соединение элементов.

Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис. 1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е.

(1.31)

На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем:

(1.32)

где -эквивалентная проводимость.

Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам:

(1.33)

Мощность всей цепи равна :

, (1.34)

где rэ=1/gэ -эквивалентное сопротивление цепи.

При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются.

Рассмотрим частные случаи параллельного соединения резистивных элементов.

а) параллельное соединение двух элементов

б) параллельное соединение n ветвей с одинаковыми сопротивлениями

(1.36)

Баланс мощностей.

Все расчеты в электрических цепях проверяют балансом мощностей.

Баланс основан на законе сохранения и превращения энергии: сколько энергии выработали источники, столько же ее нагрузки должны потребить. Вместо энергии в балансе можно использовать мощность. Выработанная мощность всеми источниками должна быть равна суммарной мощности, расходуемой в нагрузках.

Баланс мощностей можно сформулировать так: алгебраическая сумма мощностей источников, должна быть равна арифметической сумме мощностей нагрузок. Если направление ЭДС и направление тока ветви не совпадают, то составляющая мощности этого источника в балансе мощностей берется со знаком «минус».

Мощность, отдаваемая источниками ЭДС, равна.

Если в резисторе не происходит химических реакций, то мощность выделяется в форме тепла, согласно известному закону Джоуля.

где: I — постоянный ток (А), протекающий через резистор;

PП — мощность потерь, измеряемая в ваттах (Вт);

R — сопротивление резистора (Ом).

Равенство выражений мощностей источников и мощностей приемников называется уравнением баланса мощностей.

План составления баланса мощностей

1. Если в цепи есть источники тока, то следует любым методом найти напряжения на зажимах источников тока Uk.

Цепи с источником тока

2. вычислить мощность источников.

PИ = n m
k = 1 Uk * Jk + k = 1 Ek * Ik

3. где: N — количество источников тока в цепи; M — количество источников ЭДС в цепи;

Uk — напряжение на источниках тока Jk;

m
k = 1 Ek * Ik
алгебраическая сумма, здесь положительны те из слагаемых, для которых направления ЭДС Еk и соответствующего тока Ik совпадают, в противном случаи слагаемое отрицательно;
n
k = 1 Uk * Jk
алгебраическая сумма, здесь положительны те из слагаемых, для которых направление напряжения на зажимах источника тока Uk и направление его тока Jk во внешней цепи совпадают, в противном случаи слагаемое отрицательно.

4. вычислить мощность, расходуемую в приемниках.

PП = L
k = 1 I2k * Rk

5. где:

L количество приемников в цепи;
L
k = 1 I2k * Rk
арифметическая сумма, здесь должны быть учтены как внешние резисторы, так и внутренние сопротивления самих источников.

6. Получаем равенство.

Мощность трехфазной цепи.

При неравномерной нагрузке фаз активная мощность Р трехфазной системы равна сумме мощностей отдельных ее фаз:

P = PA+ PB+ PC

При равномерной нагрузке трехфазной системы активные мощности Рф всех трех фаз равны, поэтому активная мощность трехфазной системы

P = 3UфIфcos ?

где ? — угол сдвига фаз между фазным током и фазным напряжением.

Активную мощность можно выразить также через линейные ток Iл и напряжение Uл. Учитывая зависимости между фазными и линейными токами и напряжениями для схем «звезда» и «треугольник» при равномерной нагрузке фаз, имеем:

P = ?3UлIл cos ?

Аналогично могут быть получены формулы для реактивной и полной мощностей при равномерной нагрузке фаз:

Q = 3UфIф cos ? = ?3UлIл cos ?;

S = 3UфIф = ?3UлIл

Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.

Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.

) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.

Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис.

19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис.

20, имеется 6 ветвей. Определите их самостоятельно.

Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.



Источник: https://infopedia.su/3x140.html

Booksm
Добавить комментарий