Внутренняя энергия и теплоёмкость газа

Теплоёмкость идеального газа

Внутренняя энергия и теплоёмкость газа

В случае, если результатом теплообмена становится передача телу некоего количества теплоты Q, то его температура и внутренняя энергия претерпевают изменения.

Определение 1

Необходимое для нагревания 1 кг вещества на 1 К количество теплоты Q носит название удельной теплоемкости вещества c, а ее формула выглядит следующим образом: 

c=Qm∆T.

В большом количестве ситуаций удобной для использования является молярная теплоемкость C: 

C=M·c, где M представляет собой молярную массу вещества.

Теплоемкость, полученная таким способом, не является однозначной характеристикой вещества.

Исходя из первого закона термодинамики, можно сказать, что изменение внутренней энергии тела зависимо не только от количества полученной теплоты, но и от величины совершенной телом работы.

В разных условиях осуществления процесса теплопередачи тело может совершать различную работу. Таким образом, переданное телу одинаковое количество теплоты способно провоцировать изменения его внутренней энергии и, соответственно, температуры.

Подобной неоднозначностью при определении теплоемкости характеризуются только газообразные вещества. Объем в процессе нагрева практически не меняет своей величины, что сводит работу расширения к нулю.

По этой причине вся полученная телом теплота уходит на изменение его внутренней энергии. Газ в процессе теплопередачи может значительно менять свой объем и совершать работу, чем отличается от твердых тел и жидкостей.

Таким образом, теплоемкость газообразного вещества имеет зависимость от характера термодинамического процесса.

Изопроцессы в газах

Определение 2

Чаще всего рассматриваются два значения теплоемкости газов: 

  • CV являющаяся молярной теплоемкостью в изохорном процессе (V=const);
  • Cp представляющая собой молярную теплоемкость в изобарном процессе (p=const).

При условии постоянного объема газ не совершает работы: A=0. Исходя из первого закона термодинамики для 1 моля газа, можно сказать, что справедливым является следующее выражение: 

QV=CV∆T=∆U.

Изменение величины ΔU внутренней энергии газа прямо пропорционально изменению значения ΔT его температуры.

В условиях процесса при постоянном давлении первый закон термодинамики дает такую формулу: 

Qp=∆U+p(V2-V1)=CV∆T+pV.

В котором ΔV является изменением объема 1 моля идеального газа при изменении его температуры на ΔT. Таким образом, можно заявить, что: 

Cp=Qp∆T=CV+p∆V∆T.

Из уравнения состояния идеального газа, записанного для 1 моля, может выражаться отношение ΔVΔT: 

pV=R.

В котором R представляет собой универсальную газовую постоянную. При условии постоянства давления p=const, можно записать следующее:p∆V=R∆T или ∆V∆T=Rp.

Определение 3

Из этого следует, что выражающее связь между молярными теплоемкостями Cp и CV соотношение имеет вид (формула Майера): 

Cp=CV+R.

В процессе с неизменным давлением молярная теплоемкость Cp газа всегда превышает молярную теплоемкость CV в процессе с не подверженным изменениям объемом, что демонстрируется на рисунке 3.10.1.

Рисунок 3.10.1. Два возможных процесса нагревания газа на ΔT=T2 –T1. При p=const газ совершает работу A=p1(V2 – V1). Поэтому Cp>

CV.

Определение 4

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом занимает важное место в термодинамике и обозначается в виде греческой буквы γ. 

γ=CpCV.

Данное отношение включено в формулу для адиабатического процесса.

Между двумя изотермами, обладающими температурами T1 и T2 на диаграмме (p, V) реальны различные варианты перехода. Так как для всех подобных переходов изменение величины температуры ΔT=T2 –T1 является одним и тем же, выходит, что изменение значения
ΔU внутренней энергии тоже одинаково.

С другой стороны, совершенные при этом работы A и количества теплоты Q, полученные в результате теплообмена, выйдут разными для различных путей перехода. Из этого следует, что газа имеет относительно приближенное к бесконечности число теплоемкостей.

 Cp и CV представляют собой частные, однако, очень важные для теории газов, значения теплоемкостей.

Рисунок 3.10.2. Модель теплоемкости идеального газа.

Определение 5

Термодинамические процессы, в которых теплоемкость газа не подвергается изменениям, носят название политропических.

Каждый изопроцесс являются политропическим. В изотермическом процессе ΔT=0, из-за чего CT=∞. В адиабатическом процессе ΔQ=0, выходит, что Cад=0.

Замечание 1

Стоит обратить внимание на то, что «теплоемкость» и «количество теплоты» являются крайне неудачными терминами, доставшимися современной науке в качестве наследства теории теплорода, которая господствовала в XVIII веке.

Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества. Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода.

Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы.

По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла.

Молекулярно-кинетическая теория

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией E→ поступательного движения молекул и абсолютной температурой T: 

E→=32kT.

Внутренняя энергия 1 моля идеального газа эквивалентна произведению E→ на число АвогадроNА: 

U=32kNAT=32RT.

При условии изменения температуры на величину ΔT внутренняя энергия изменяется на величину:

U=32R∆T=CV∆T.

Коэффициент пропорциональности между ΔU и ΔT эквивалентен теплоемкости CV в условиях постоянного давления: 

CV=32R=12,47 ДЖ/моль·К.

Данное выражение подтверждается экспериментами с газами, которые состоят из одноатомных молекул вроде гелия, неона или аргона.

При этом для двухатомных (водород, азот) и многоатомных (углекислый газ) газов такое соотношение не согласуется с полученными в результате опытов данными.

Причина этого расхождения заключается в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию как поступательного, так и вращательного их движения.

 Рисунок 3.10.3. Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы. 

Рисунок 3.10.3 иллюстрирует модель двухатомной молекулы. Молекула имеет возможность производить пять независимых типов движений: три поступательных движения вдоль осей X, Y, Z и два вращения относительно осей X и Y.

Опытным путем выяснено, что вращение относительно оси Z, на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких значениях температуры. В условиях обычных температур вращение вокруг оси Z не происходит.

Определение 6

Каждое независимое движение в молекуле носит название степени свободы.

Выходит, что одноатомная молекула обладает 3 поступательными степенями свободы, «жесткая» двухатомная молекула 5 степенями, то есть 3 поступательными и 2 вращательными, а многоатомная молекула 6 степенями свободы, из которых 3 приходятся на поступательные и 3 на вращательные.

Теорема 1

В классической статистической физике доказывается теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна 12kT.

Из данной теоремы следует, что для молярных теплоемкостей газа Cp и CV и их отношения
γ справедлива запись в следующем виде: 

CV=i2R, Cp=Cv+R=i+22R, γ=CpCV=i+2i,

где i представляет собой количество степеней свободы газа.

Для газа, состоящего из одноатомных молекул (i=3)

CV=32R, Cp=Cv+R=52R, γ=CpCV=53=1,66.

Для газа, состоящего из двухатомных молекул (i=5)

CV=52R, Cp=Cv+R=72R, γ=CpCV=75=1,4.

Для газа, состоящего из многоатомных молекул (i=6)

CV=3R, Cp=Cv+R=4R, γ=CpCV=43=1,33.

В обычных условиях экспериментально измеренные теплоемкости многих газов неплохо согласуются с приведенными выражениями, но в целом классическая теория теплоемкости газов вполне удовлетворительной не является.

Существует колоссальное число примеров со значительной разницей между результатами эксперимента и теорией.

Данный факт объясняется тем, что классическая теория не может полностью учесть, связанную с внутренними движениями в молекуле энергию.

Теорема о равномерном распределении энергии по степеням свободы может быть применена и по отношению к тепловому движению частиц в твердом теле. Входящие в состав кристаллической решетки атомы колеблются около положений равновесия. Энергия данных колебаний представляет собой внутреннюю энергию твердого тела.

Каждый конкретный атом может колебаться в кристаллической решетке в трех взаимно перпендикулярных направлениях. Выходит, что каждый атом имеет 3 колебательные степени свободы. При условии гармонических колебаний средняя кинетическая энергия эквивалентна средней потенциальной энергии.

По этой причине в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT, а на один атом – 3kT. 

Определение 7

Внутренняя энергия 1 моля твердого вещества равна следующему выражению:

U=3RNAkt=3Rt.

Следовательно, молярная теплоемкость вещества в твердом состоянии равняется: 

С=3R=25,12 Дж/моль·К.

Данное выражение носит название закона Дюлонга–Пти. Для твердых тел почти нет различия между Cp и CV по причине пренебрежительно малой работы при сжатии или расширении.

Опыт показывает, что молярная теплоемкость у многих твердых тел (химических элементов) при обычных температурах на самом деле близка к 3R.

При этом, в условиях низких температур заметны довольно сильные расхождения между теорией и экспериментом. Таким образом, гипотеза о равномерном распределении энергии по степеням свободы может считаться лишь приближением.

Заметная в опыте зависимость теплоемкости от температуры объясняется только при условии использования квантовых представлений.

Источник: https://Zaochnik.com/spravochnik/fizika/termodinamika/teploemkost-idealnogo-gaza/

Внутренняя энергия и теплоемкость идеального газа

Внутренняя энергия и теплоёмкость газа

Опыт показывает, что внутренняя энергия идеального газа зависит только от температуры:

Здесь В — коэффициент пропорциональности, который остается постоянным в весьма широком интервале температур.

Отсутствие зависимости внутренней энергии от занимаемого газом объема указывает на то, что молекулыидеального газа подавляющую часть времени не взаимодействуют друг с другом. Действительно, если бы молекулы взаимодействовали между собой, во внутреннюю энергию входила бы слагаемым потенциальная энергия взаимодействия, которая зависела бы от среднего расстояния между молекулами, т. е. от .

Отметим, что взаимодействие должно иметь место при столкновениях, т. е. при сближении молекул на очень малое расстояние. Однако такие столкновения в разреженном газе происходят редко. Подавляющую часть времени каждая молекула проводит в свободном полете.

Теплоемкостью какого-либо тела называется величина, равная количеству тепла, которое нужно сообщить телу, чтобы повысить его температуру на один кельвин. Если сообщение телу количества тепла повышает его температуру на то теплоемкость по определению равна

Эта величина измеряется в джоулях на кельвин (Дж/К).

Теплоемкость моля вещества, называемую молярной теплоемкостью, мы будем обозначать прописной буквой С. Измеряется она в джоулях на моль-кельвин (Дж/(моль•К)).

Теплоемкость единицы массы вещества называется удельной теплоемкостью. Ее мы будем обозначать строчной буквой с. Измеряется с в джоулях на килограмм-кельвин

Между молярной и удельной теплоемкостями одного и того же вещества имеется соотношение

( — молярная масса).

Величина теплоемкости зависит от условий, при которых происходит нагревание тела. Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме (обозначается ), во втором — теплоемкостью при постоянном давлении

Если нагревание происходит при постоянном объеме, тело не совершает работы над внешними телами и, следовательно, согласно первому началу термодинамики (см. (83.4)), все тепло идет на приращение внутренней энергии тела:

Из (87.4) вытекает, что теплоемкость любого тела при постоянном объеме равна

Такая запись подчеркивает то обстоятельство, что при дифференцировании выражения для U по Т объем следует считать постоянным. В случае идеального газа U зависит только от Т, так что выражение (87.5) можно представить в виде

(чтобы получить молярную теплоемкость, нужно взять внутреннюю энергию моля газа).

Выражение (87.1) для одного моля газа имеет вид Продифференцировав его по Т, получим, что Таким образом, выражение для внутренней энергии одного моля идеального газа можно представить в виде

где — молярная теплоемкость газа при постоянном объеме.

Внутренняя энергия произвольной массы газа будет равна внутренней энергии одного моля, умноженной на число молей газа, содержащихся в массе :

Если нагревание газа происходит при постоянном давлении, то газ будет расширяться, совершая над внешними телами положительную работу.

Следовательно, для повышения температуры газа на один кельвин в этом случае понадобится больше тепла, чем при нагревании при постоянном объеме, — часть тепла будет затрачиваться на совершение газом работы.

Поэтому теплоемкость при постоянном давлении должна быть больше, чем теплоемкость при постоянном объеме.

Напишем уравнение (84.4) первого начала термодинамики для моля газа:

В этом выражении индекс при указывает на то, что тепло сообщается газу в условиях, когда постоянно. Разделив (87.8) на получим выражение для молярной теплоемкости газа при постоянном давлении:

Слагаемое равно, как мы видели, молярной теплоемкости при постоянном объеме. Поэтому формула (87.9) может быть написана следующим образом:

(87.10)

Величина представляет собой приращение объема моля газа при повышении температуры на один кельвин, получающееся в случае, когда постоянно. В соответствии с уравнением состояния (86.3) . Дифференцируя это выражение по Т, полагая р=const, находим

Наконец, подставив этот результат в (87.10), получаем

(87.11)

Таким образом, работа, которую совершает моль идеального газа при повышении его температуры на один кельвин при постоянном давлении, оказывается равной газовой постоянной R.

Отметим, что соотношение (87.11) получено с использованием уравнения состояния идеального газа и, следовательно, справедливо только для идеального газа.

Величина

(87.12)

представляет собой характерную для каждого газа величину. Для одноатомных газов это отношение близко к 5/3, для двухатомных — к 7/5, для трехатомных — к 4/3 и т. д. В дальнейшем (см. § 97) мы увидим, что значение у определяется числом и характером степеней свободы молекулы.

В соответствии с (87.11)

откуда

(87.13)

Подставив это значение в формулу (87.7), получим следующее выражение:

Сопоставление с (86.4) дает еще одно выражение для внутренней энергии идеального газа:

Вопрос №63

Адиабатический процесс — это такое изменение состояний газа, при котором он не отдает и не поглощает извне теплоты.

Следовательно, адиабатический процесс характеризуется отсутствием теплообмена газа с окружающей средой. Адиабатическими можно считать быстро протекающие процессы.

Так как передачи теплоты при адиабатическом процессе не происходит, то и уравнение I начала термодинамики принимает вид

(9.20)

или

т.е. внешняя работа газа может производиться вследствие изменения его внутренней энергии. Адиабатное расширение газа (dV>0) сопровождается положительной внешней работой, но при этом внутренняя энергия уменьшается и газ охлаждается (dT

Источник: https://cyberpedia.su/7xacef.html

Внутренняя энергия и теплоемкость

Внутренняя энергия и теплоёмкость газа

Получим выражение для внутренней энергии и теплосодержания единицы массы жидкости.

Внутренняя энергия единицы массы U зависит от параметров состояния. Так как p, V, T связаны уравнением состояния, то независимыми переменными являются только какие-нибудь два из них, и можно считать: U = U (V, T), где .

Отсюда полный дифференциал внутренней энергии равен

. (3.18)

Чтобы иметь возможность проинтегрировать уравнение (3.18) и получить расчетную формулу для внутренней энергии, нужно определиться с частными производными и .

Согласно первому закону термодинамики

, (3.18а)

где – количество тепла, получаемое единицей массы жидкости за время ( не является полным дифференциалом). Исключив из выражения (3.18) и (3.18а) дифференциал , имеем следующее:

. (3.19)

Введем понятие удельной теплоемкости с как физической величины, численно равной количеству тепла, которое необходимо сообщить (отнять) единице массы жидкости, чтобы изменить ее температуру на 1 К:

.

Если тепло подводить к единице массы жидкости, сохраняя постоянным объем, то удельную теплоемкость называют теплоемкостью при постоянном объеме – если тепло подводить при p = const – то теплоемкостью при постоянном давлении – В условиях, далеких от сжижения газов, теплоемкость зависит от температуры газа и почти не зависит от давления. Тогда выражение для имеет вид

.

Таким образом, определился первый коэффициент уравнения (3.18). Для определения воспользуемся выражением для дифференциала энтропии. Энтропия – это функция, которая определяется следующим дифференциальным уравнением:

.

Процессы, протекающие без теплообмена и при отсутствии потерь механической энергии, т. е. при S = const называются изоэнтропическими. С учетом уравнения (3.19) имеем следующее:

.

Так как dS – полный дифференциал, то накрест взятые частные производные от коэффициентов при dT и dV должны быть равны между собой. То есть

.

После дифференцирования и сокращения получаем . Для дальнейшего преобразования воспользуемся уравнением состояния. Для идеальных газов . Отсюда , т. е. и . Для реальных газов, подчиняющихся уравнению состояния Ван-дер-Ваальса

.

Теперь можно получить выражения для внутренней энергии (для идеального и реального газа):

(3.20)

где – внутренняя энергия жидкости при температуре Т = 0 К; для идеального газа .

Установим связь между теплоемкостями и . Если уравнение состояния идеального газа разрешить относительно V, то получим

и .

Из выражения (3.19) можно записать следующее:

.

Тогда при p = const

.

Для идеальных газов ; из уравнения состояния и . Отсюда . Отношение удельных теплоемкостей обозначим , тогда , а .

Для реальных газов , и .

С учетом полученных зависимостей выражение для теплосодержания единицы массы неподвижного идеального газа (энтальпии) следующие:

.

Считая, что не зависит от температуры, выражение для энтальпии можно представить следующим образом:

.

Получим выражение для энтропии идеального газа. Так как , и , то, считая R и постоянными, выражение для дифференциала энтропии можно привести к виду

,

,

.

После интегрирования получаем следующее:

. (3.21)

Если рассматривается изоэнтропический или адиабатический процесс, для которого характерно постоянство энтропии (S = const), то и второе слагаемое в выражении (3.21) должно быть неизменным, т. е.

. (3.22)

Выражение (3.22) носит название адиабаты Пуассона, и в соответствии с этим показатель степени в этом выражении k называют показателем адиабаты. Соотношение (3.22) имеет место в частице, и может изменяться от частицы к частице. При установившемся движении на линии тока.

Предположение о постоянстве и , при котором получено соотношение (3.22), справедливо в определенном диапазоне температур, зависящем от физических свойств газа. Величина показателя адиабаты зависит от структуры молекул газа: для одноатомных газов и ; для двухатомных, к которым можно отнести и воздух, и ; для трехатомных .

Интегралы дифференциальных уравнений Эйлера

В общем виде дифференциальные уравнения движения Эйлера не интегрируются. Их интегралы можно найти только для некоторых частных случаев. Рассмотрим порядок нахождения интегралов:

1) для потенциального неустановившегося движения;

2) для установившегося непотенциального движения сжимаемого газа.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/6_124892_vnutrennyaya-energiya-i-teploemkost.html

Внутренняя энергия и теплоемкость идеального газа Средняя энергия

Внутренняя энергия и теплоёмкость газа

Внутренняя энергия и теплоемкость идеального газа Средняя энергия одной молекулы Т. к. молекулы идеального газа на расстоянии не взаимодействую, внутренняя энергия газа равна сумме внутренних энергий всех молекул Для 1 моля, где N=NA Внутренняя энергия произвольной массы m Внутренняя энергия идеального газа зависит только от температуры

Теплоемкость Теплоёмкость тела величина, равная количеству теплоты, которую надо сообщить телу, чтобы повысить его температуру на 1 градус для нагревания этого тела на один градус: если m=1 кг

Удельная теплоёмкость (с) – количество теплоты, необходимое для нагревания единицы массы вещества на один градус. [с] = Для газов удобно пользоваться молярной теплоемкостью Сμ количество теплоты, необходимое для нагревания 1 моля газа на 1 градус: Сμ = с· μ Молярные теплоемкости всех газов с одинаковым числом степеней свободы i равны, а удельные – различны (т. к. разные молярные массы μ)

Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании. Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при условии V=Const (c. V) p=Const (cp).

V=Const (c. V) Если газ нагревать при постоянном объёме, то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Работы над другими телами не совершается. d. QV = d. U (d. А = 0) Т. к. для 1 моля Т. о. CV не зависит от температуры, а зависит только от числа степеней свободы i равны, т. е. от числа атомов в молекуле газа.

p=Const (cp) Если нагревать газ при постоянном давлении (СР) в сосуде с поршнем, то подводимое тепло затрачивается и на нагревание газа, и на совершение работы. Поэтому, для повышения Т на 1 К понадобится больше тепла, чем в случае V=Const Следовательно, СР > СV

Запишем I начало ТД для 1 моля газа разделим на d. T CV Из основного уравнения МКТ имеем: p. Vμ=RT/p Т. о. работа, которую совершает 1 моль идеального газа при повышении температуры на 1 К равна газовой постоянной R. отношение Cp/Cv есть постоянная для каждого газа величина

Число степеней свободы, проявляющееся в теплоемкости зависит от температуры. Рис. качественная зависимость молярной теплоемкости СV от температуры для аргона (Ar) и водорода (H 2) Результаты МКТ верны для определенных температурных интервалов, причем каждому интервалу соответствует свое число степеней свободы.

Применение первого начала термодинамики к изопроцессам Изопроцесс – процесс, проходящий при постоянном значении одного из основных термодинамических параметров – P, V или Т. 1) изохорический процесс, при котором объем системы остается постоянным (V = const).

2) изобарический процесс, при котором давление, оказываемое со стороны системы на окружающие тела, остается постоянным (р = const). 3) изотермический процесс, при котором температура системы остается постоянной (Т = const).

4) адиабатический процесс, при котором на протяжении всего процесса теплообмен с окружающей средой отсутствует (d. Q = 0; Q = 0)

► Изотермический процесс – процесс, происходящий в физической системе при постоянной температуре (T = const). В идеальном газе при изотермическом процессе произведение давления на объем постоянно – закон Бойля Мариотта: Найдем работу газа при изотермическом процессе :

Используя формулу U = с. VT , получаем d. U = с. V d. T = 0 Следовательно, внутренняя энергия газа при изотермическом процессе не меняется.

Поэтому Значит, при изотермическом процессе вся теплота, сообщаемая газу, идет на совершение им работы над внешними телами.

Поэтому Чтобы при расширении газа его температура не понижалась, к газу необходимо подводить количество теплоты, равное его работе над внешними телами.

► Изохорический процесс – процесс, происходящий в физической системе при постоянном объеме (V = const). — закон Шарля При изохорическом процессе механическая работа газом не совершается.

Изохорический процесс: V = const 1. Из уравнения состояния идеального 2. газа для двух температур T 1 и T 2 3. следует 4. откуда 5. В процессе 1 6. В процессе 1 2 происходит нагревание газа 3 происходит охлаждение газа

Пусть начальное состояние газа отвечает состоянию при нормальных условиях Т 0 = 0°С = 273.

15 °К, р0 = 1 атм, тогда для произвольной температуры Т давление в изохорическом процессе находится из уравнения Давление газа пропорционально его температуре — Закон Шарля Поскольку d. A = pd.

V = 0 , то при изохорическом процессе газ не совершает работу над внешними телами. При этом переданная газу теплота равна d. Q = d. А + d. U = d. U То есть при изохорическом процессе вся теплота, передаваемая газу, идет на увеличение его внутренней энергии.

► Изобарический процесс – процесс, происходящий в физической системе при постоянном давлении (P = const). const — закон Гей. Люссака

2) Изобарический процесс: p = const В изобарическом процессе газ совершает работу Работа равна площади под прямой изобары. Из уравнения состояния идеального газа получаем

Перепишем последнее соотношение в виде Это равенство раскрывает физический смысл газовой постоянной R — она равна работе 1 моля идеального газа, совершаемой им при нагревании на 1° К в условиях изобарного расширения.

Возьмем в качестве начального состояния — состояние идеального газа при нормальных условиях (Т 0, V 0), тогда объем газа V при произвольной температуре Т в изобарическом процессе равен Объем газа при постоянном давлении пропорционален его температуре — закон Гей-Люссака.

► Адиабатный процесс – процесс, происходящий в физической системе без теплообмена с окружающей средой (Q = 0). уравнение Пуассона. γ – показатель адиабаты.

4) Адиабатический процесс : d. Q = 0 При адиабатическом процессе теплообмен между газом и окружающей средой отсутствует. Из первого начала термодинамики получаем d. A = — d.

U Поэтому в адиабатическом процессе работа газа над внешними телами совершается за счет убыли его внутренней энергии. Используя d. U = с. Vd. T ; d. A = рd. V находим рd. V = — с. V d.

T С другой стороны, из уравнения состояния идеального газа следует d(р. V) = pd. V + Vdp = Rd. T

Исключая d. T , получаем рd. V = — с. V (pd. V + vdp)/R Откуда Интегрируя, находим

Последнюю формулу можно переписать в виде Следовательно это уравнение адиабатического процесса — уравнение Пуассона Так как > 1 , то у адиабаты давление меняется от объема быстрее, чем у изотермы.

Используя уравнение состояния идеального газа, преобразуем уравнение Пуассона к виду Значит или При адиабатическом расширении идеальный газ охлаждается, а при сжатии – нагревается.

Политропический процесс – процесс, протекающий при постоянной теплоёмкости, cm = const. где cm – молярная теплоемкость. где n — показатель политропы.

Найдем уравнение политропы для идеального газа. Из первого начала термодинамики следует откуда получаем

С другой стороны, из уравнения состояния идеального газа Поэтому можно записать Поскольку c. P = c. V + R то

Обозначим , получим Интегрируем Следовательно — уравнение политропы, n — показатель политропы.

Все изопроцессы являются частным случаем политропического процесса:

Энтропия Адиабатические процессы в термодинамических системах могут быть равновесными и неравновесными. Для характеристики равновесного адиабатического процесса можно ввести некоторую физическую величину, которая оставалась бы постоянной в течение всего процесса; ее назвали энтропией S.

Энтропия есть такая функция состояния системы, элементарное изменение которой при равновесном переходе системы из одного состояния в другое равно полученному или отданному количеству теплоты, деленному на температуру, при которой произошел этот процесс для бесконечно малого изменения состояния системы

Изменение энтропии в изопроцессах Если система совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии: Найдем изменения энтропии в процессах идеального газа. Так как а то

Или Изменение энтропии S 1 2 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от пути перехода 1 2. изохорического процесса: изобарического процесса: p 1 = p 2 изотермического процесса: Т 1 = Т 2 адиабатного процесса:

Следовательно, S = const, адиабатный процесс по другому называют – изоэнтропийным процессом. Во всех случаях, когда система получает извне теплоту, то Q — положительно, следовательно, S 2 > S 1 и энтропия системы увеличивается.

Если же система отдаст теплоту, то Q имеет отрицательный знак и, следовательно, S 2 < S 1; энтропия системы уменьшается.

Энтропия системы пропорциональна массе (или числу частиц) этой системы Q=c m ΔT Масса системы представляется в виде суммы масс ее составных частей, поэтому энтропия всей системы будет равна сумме энтропии ее составных частей, т. е. энтропия есть аддитивная величина.

Изопроцессы могут быть изображены графически в координатных системах, по осям которых отложены параметры состояния.

давление p — объем V температура Т– объем V температура Т – давление p V 1 V 2 При адиабатическом расширении внешняя работа совершается только за счет внутренней энергии газа, вследствие чего внутренняя энергия, а вместе с ней и температура газа уменьшаются (Т 2 < T 1) При изотермическом процессе Т 2 = T 1

Удобство координатной системы р, V В масштабе чертежа внешняя работа изображается площадью, ограниченной кривой процесса 1— 2 и ординатами начального и конечного состояний

Круговые (замкнутые) процессы Совокупность термодинамических процессов, в результате которых система возвращается в исходное состояние, называется круговым процессом (циклом). Прямой цикл – работа за Обратный цикл – работа за цикл

Тепловая машина Циклически действующее устройство, превращающее теплоту в работу, называется тепловой машиной или тепловым двигателем. Q 1 – тепло, получаемое РТ от нагревателя, Q 2 – тепло, передаваемое РТ холодильнику, А – полезная работа (работа, совершаемая РТ при передаче тепла).

В цилиндре находится газ – рабочее тело (РТ). Начальное состояние РТ на диаграмме p(V) изображено точкой 1. Цилиндр подключают к нагревателю, РТ нагревается и расширяется. Следовательно совершается положительная работа А 1, цилиндр переходит в положение 2 (состояние 2).

Процесс 1– 2: – первое начало термодинамики. Работа А 1 равна площади под кривой 1 a 2. Чтобы поршень цилиндра вернуть в исходное состояние 1, необходимо сжать рабочее тело, затратив при этом работу – А 2.

Для того чтобы поршень совершил полезную работу, необходимо выполнить условие: А 2 < А 1. С этой целью сжатие следует производить при охлаждении цилиндра, т. е. от цилиндра необходимо отводить к холодильнику тепло –Q 2. Процесс 2– 1: – первое начало термодинамики. Работа А 2 равна площади под кривой 2 b 1.

Сложим два уравнения и получим: Рабочее тело совершает круговой процесс 1 a 2 b 1 – цикл. К. п. д.

Процесс возвращения рабочего тела в исходное состояние происходит при более низкой температуре. Следовательно, для работы тепловой машины холодильник принципиально необходим.

Цикл Карно Никола Леонард Сади КАРНО – блестящий французский офицер инженерных войск, в 1824 г. опубликовал сочинение «Размышления о движущей силе огня и о машинах способных развить эту силу» . Ввел понятие кругового и обратимого процессов, идеального цикла тепловых машин, заложил тем самым основы их теории. Пришел к понятию механического эквивалента теплоты.

Карно вывел теорему, носящую теперь его имя: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей и холодильников, наибольшим КПД обладают обратимые машины. Причем КПД обратимых машин, работающих при одинаковых температурах нагревателей и холодильников, равны другу и не зависят от конструкции машины. При этом КПД меньше единицы.

Процесс А-В – изотермическое расширение Процесс В-С – адиабатическое расширение. – коэффициент Пуассона.

Процесс С-D – изотермическое сжатие Процесс D-A – адиабатическое сжатие.

Если Т 2 = 0, то η = 1, что невозможно, т. к. абсолютный нуль температуры не существует. Если Т 1 = ∞, то η = 1, что невозможно, т. к. бесконечная температура не достижима. КПД цикла Карно η < 1 и зависит от разности температур между нагревателем и холодильником (и не зависит от конструкции машины и рода рабочего тела).

Теоремы Карно. 1. К. п. д. η обратимой идеальной тепловой машины Карно не зависит от рабочего вещества. 2. К. п. д. необратимой машины Карно не может быть больше к. п. д. обратимой машины Карно.

Источник: https://present5.com/vnutrennyaya-energiya-i-teploemkost-idealnogo-gaza-srednyaya-energiya/

Внутренняя энергия и теплоёмкость газа

Внутренняя энергия и теплоёмкость газа

Из закона о равномерном распределении энергии по степеням свободы молекулы газы мы запомнили, что в идеальном газе при умеренных температурах на каждую степень свободы приходится энергия равная $\left\langle \varepsilon \right\rangle =\frac{i}{2}kT.$ Логично предположить, что все суммарная энергия молекул газа может быть рассчитана как:

где N — число молекул газа, i — число степеней свободы газа, k — постоянная Больцмана, T — термодинамическая температура. Если учесть, что

$N_{A\ }=6,02\cdot {10}{23}моль{-1}$ —постоянная Авогадро, $u $- число молей газа, то выражение для внутренней энергии (1) можно записать в виде:

где R= 8,31 $\frac{Дж}{мольК}$ — универсальная газовая постоянная.

Внутренняя энергия системы

Во всех уравнениях U — это внутренняя энергия идеального газа. Внутренняя энергия системы важная функция состояния, ее изменение не зависит от способа перехода системы из состояния 1 в состояние 2.

Для газа, на который не действуют внешние силы, находящийся в состоянии макроскопического равновесия, внутренняя энергия представляет собой полную энергию системы. Внутренняя энергия включает в себя энергию теплового (хаотического) движения частиц и энергию их взаимодействия.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Внутренняя энергия газа является аддитивной, то есть полная внутренняя энергия системы есть сумма внутренних энергий ее макро частей. При невысоких температурах часто внутреннюю энергию идеального газа принимают равной суммарной кинетической энергии его молекул. Внутренняя энергия идеального газа зависит от термодинамической температуры T.

Что такое теплоемкость

Рассмотрим теперь что такое теплоемкость. Количество теплоты, переданное телу с целью нагреть его на 1К — теплоемкость тела (системы). Обычно обозначается |C»:

Теплоемкость единицы массы тела:

удельная теплоемкость.

Теплоемкость единицы молярной массы тела:

молярная теплоемкость.

Мы видим, что теплоемкость определена через понятие — теплота. А нам известно, что количество тепла подведенного к системе зависит от процесса. Соответственно получается, что и теплоемкость зависит от процесса. Поэтому формулу определения теплоемкости (4) следует уточнить и записать в виде:

теплоёмкости (газа) в постоянном объеме и при постоянном давлении.

Найдем связь между внутренней энергией идеального газа и его теплоемкостью. Для этого запишем первое начало термодинамики:

Разделим обе части выражения (9) на dT, получим:

Очевидно, что в уравнении (10) в левой части стоит теплоемкость для изохорного процесса, а в левую часть подставим выражение для dU, полученное из уравнения (2):

В таком случае молярная теплоемкость при изохорном процессе будет иметь вид:

\[c_{\mu V}=\frac{i}{2}R\ \left(12\right).\]

Из выражения (12) видно, что молярная теплоемкость идеального газа при постоянном объеме зависит только от числа степеней свободы молекулы газа и является величиной постоянной.

Рассмотрим изобарный процесс (p=const). Используем снова первое начало термодинамики, запишем его разделив правую и левую части на dT и отметим, что имеем дело с изобарным процессом:

\[{\left(\frac{\delta Q}{dT}\right)}_p=\frac{dU}{dT}+\frac{pdV}{dT}=\frac{i}{2}u R+\frac{pdV}{dT}\ \left(13\right).\]

В правой части уравнения (13) мы получили теплоемкость газа при изохорном процессе. Для того, чтобы преобразовать второе слагаемое в правой части, используем уравнение Менделеева — Клайперона:

\[pV=u RT\ \left(14\right).\]

Если мы имеем дела с изобарным процессом, продифференцируем (14), получим:

\[pdV=u RdT\ \left(15\right).\]

Подставим (15) в (13), получим:

\[С_p=\frac{i}{2}u R+\frac{u RdT}{dT}=\frac{i}{2}u R+u R\left(16\right).\]

В таком случае молярная теплоемкость идеального газа при постоянном давлении получит выражение:

\[c_{\mu p}=\frac{i}{2}R+R=c_{\mu V}+R\left(17\right).\]

Соотношение (17) между теплоемкостями идеального газа также называют соотношением Майера. Из уравнения (17) видно, что теплоемкость изобарного процесса больше, чем теплоемкость изохорного. Это и понятно. При изохорном процессе теплота идет только на изменение внутренней энергии газа, а при изобарном процессе теплота идет еще и на совершение газом работы.

Пример 1

Задание: Получите уравнение, связывающее показатель адиабаты ($\gamma$), используемый в одноименном процессе, с молярными теплоемкостями $c_{\mu V}\ $и $c_{\mu p}$.

Решение:

Итак, рассмотри адиабатный процесс. Он характеризуется тем, что все процессы в системе происходят без подвода к ней тепла. То есть $\delta Q=0.$ Соответственно, первое начало термодинамики имеет вид:

\[0=dU+pdV\ \left(1.1\right),\]

где $dU=c_{мV}u dT$.

Из уравнения Менделеева — Клайперона выразим давление:

\[p=\frac{u RT}{V}\left(1.2\right),\]

подставим $\left(1.2\right)\ $в (1.1) и проведем разделение переменных:

\[c_{\mu V}u dT=-\frac{u RT}{V}dV\to c_{\mu V}dT=-\frac{RT}{V}dV\ \to \frac{dT}{T}=-R\frac{dV}{c_{\mu V}V}\left(1.3\right).\]

Интегрируем (1.3), получим:

\[ln\left(T\right)=-\frac{R}{c_{\mu V}}{ln \left(V\right)+A\ }\left(1.4\right),\ A=const\]

Потенцируем выражение (1.4), имеем:

\[T=AV{\frac{c_{\mu V}-c_{\mu p}}{c_{\mu V}}}\to TV{\frac{{c_{\mu p}-c}_{\mu V}}{c_{\mu V}}}=const\ (1.5),\]

Уравнение адиабатного процесса в параметрах Т(V) имеет вид:

\[TV{\gamma -1}=const\ \left(1.6\right).\]

Следовательно, $\gamma$=$\frac{c_{\mu p}}{c_{\mu V}}$, где $\gamma$ — показатель адиабаты.

Ответ: $\gamma$=$\frac{c_{\mu p}}{c_{\mu V}}$.

Пример 2

Задание: Заданы два графика описывающие процессы, проведенные в идеальном газе, которые переводят его из состояния А в состояние В и С (рис.1). В каком случае (АВ или АС) приращение внутренней энергии больше?

Рис. 1

Решение: Так как внутренняя энергия — функция состояния, то ее изменение не зависит от хода процесса, рассмотрим только конечные состояния. Для процесса АВ запишем:

\[\triangle U_{AB}=\frac{i}{2}u R\left(T_B-T_A\right)\left(2.1\right)\]

Из уравнения Менделеева — Клайперона:

\[p_AV_A-p_BV_B=u R\left(T_B-T_A\right)\to \triangle U_{AB}=\frac{i}{2}\left(p_BV_B-p_AV_A\right)\left(2.2\right)\]

Для процесса АС запишем по аналогии:

\[\triangle U_{AС}=\frac{i}{2}\left(p_СV_С-p_AV_A\right)\left(2.3\right)\]

Из рисунка 1 видно, что $V_B=V_С,\ а\ p_B>p_С$, следовательно, $\triangle U_{AB}>\triangle U_{AС}.$

Ответ: $\triangle U_{AB}>\triangle U_{AС}$.

Источник: https://spravochnick.ru/fizika/molekulyarnaya_fizika/vnutrennyaya_energiya_i_teploemkost_gaza/

3.10. Теплоёмкость идеального газа

Внутренняя энергия и теплоёмкость газа

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

Во многих случаях удобно использовать молярную теплоемкость C:
где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом.

В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу.

Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии.

В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса.

Обычно рассматриваются два значения теплоемкости газов: CV – молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает:

Qp = ΔU + p (V2 – V1) = CV ΔT + pΔV,

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:
где R – универсальная газовая постоянная. При p = const

или

Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера):

Молярная теплоемкость Cp газа в процессе с постоянным давлением всегда больше молярной теплоемкости CV в процессе с постоянным объемом (рис. 3.10.1).

Рисунок 3.10.1.

Два возможных процесса нагревания газа на ΔT = T2 – T1. При p = const газ совершает работу A = p1(V2 – V1). Поэтому Cp > CV

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T1 и T2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T2 – T1 одинаково, следовательно, одинаково изменение ΔU внутренней энергии.

Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей.

Cp и CV – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Модель. Теплоемкости идеального газа

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими. Все изопроцессы являются политропическими. В случае изотермического процесса ΔT = 0, поэтому CT = ∞. В адиабатическом процессе ΔQ = 0, следовательно, Cад = 0.

Следует отметить, что «теплоемкость», как и «количество теплоты» – крайне неудачные термины. Они достались современной науке в наследство от теории теплорода, господствовавшей в XVIII веке. Эта теория рассматривала теплоту как особое невесомое вещество, содержащееся в телах. Считалось, что оно не может быть ни создано, ни уничтожено.

Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Теория теплорода несостоятельна. Она не может объяснить, почему одно и то же изменение внутренней энергии тела можно получить, передавая ему разное количество теплоты в зависимости от работы, которую совершает тело.

Поэтому лишено физического смысла утверждение, что «в данном теле содержится такой-то запас теплоты».

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T:

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро NА:

При изменении температуры на ΔT внутренняя энергия изменяется на величину

Коэффициент пропорциональности между ΔU и ΔT равен теплоемкости CV при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон).

Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными.

Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

Рисунок 3.10.2.

Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы

На рис. 3.10.2 изображена модель двухатомной молекулы. Молекула может совершать пять независимых движений: три поступательных движения вдоль осей X, Y, Z и два вращения относительно осей X и Y. Опыт показывает, что вращение относительно оси Z, на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких температурах.

При обычных температурах вращение около оси Z не происходит, так же как не вращается одноатомная молекула. Каждое независимое движение называется степенью свободы.

Таким образом, одноатомная молекула имеет 3 поступательные степени свободы, «жесткая» двухатомная молекула имеет 5 степеней (3 поступательные и 2 вращательные), а многоатомная молекула – 6 степеней свободы (3 поступательные и 3 вращательные).

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа Cp и CV и их отношение γ могут быть записаны в виде

где i – число степеней свободы газа.

Для газа, состоящего из одноатомных молекул (i = 3)

Для газа, состоящего из двухатомных молекул (i = 5)

Для газа, состоящего из многоатомных молекул (i = 6)

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями.

Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом.

Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела.

Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени свободы. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии.

Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT, а на один атом – 3kT. Внутренняя энергия 1 моля твердого вещества равна:

Поэтому молярная теплоемкость вещества в твердом состоянии равна:

C = 3R = 25,12 Дж/моль·К.

Это соотношение называется законом Дюлонга–Пти. Для твердых тел практически не существует различия между Cp и CV из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3R.

Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением.

Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.




Лучшие школы, лагеря, ВУЗы за рубежом
Математика, Аннглийский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.

Источник: https://physics.ru/courses/op25part1/content/chapter3/section/paragraph10/theory.html

Booksm
Добавить комментарий