Виды межмолекулярных сил притяжения

Межмолекулярные взаимодействия — Химия

Виды межмолекулярных сил притяжения

Под внутримолекулярным взаимодействием понимают различные виды химической связи, обеспечивающие существование многоатомных соединений (ионов, молекул, кристаллических веществ и др.).

Химическая связь — это физико — химическое явление взаимодействия атомов, при котором перекрываются электронные облака связывающихся частиц и уменьшается энергия системы.

Химическая связь представляет собой силу, которая удерживает атомы вместе и позволяет им функционировать вместе как единой группе.

Стабильность группы атомов, объединённых химической связью, определяется тем, насколько удалось понизить энергию по сравнению с отдельными атомами. Чем больше при образовании химической связи выделяется энергии, тем прочнее связь.

Энергетический уровень многоатомной системы определяется балансом сил отталкивания между одинаково заряженными частицами и сил притяжения между частицами с зарядами разного знака.

Наибольший вклад в образование химической связи вносят электроны внешних оболочек атомов.

Попробуй обратиться за помощью к преподавателям

Существует несколько видов химической связи. Природа их возникновения объясняется тем, что связь между ионами или атомами в молекулах или конденсированных фазах сводится к электростатическим взаимодействиям. При этом распределение электронного заряда между атомами при образовании связи можно предсказать только с учетом законов квантовой механики.

  1. Ковалентная связь. Это связь, образованная в результате обобществления электронных пар двумя атомами. Ковалентная связь характерна абсолютному большинству неорганических и органических соединений.

    Разновидностью ковалентной связи является донорно — акцепторная связь. При ней один атом представляет для образования связи пару электронов, другой атом ее принимает. Результатом взаимодействия является общая электронная пара.

  2. Ионная связь. Это связь, обуславливающая электростатическое взаимодействие катионов и анионов в соединении. Возникает, если значение электроотрицательности атомов сильно отличаются. Ионная связь ненаправлена и ненасыщаема.

    Например: ионная связь возникает между катионами $s$- металлов I и II групп периодической системы и анионами неметаллов VI и VII групп ($LiF, CsCl, K_2O$ и др.).

    Не существует «идеальной» ионной связи. Можно говорить лишь о большей или меньшей ионности (доля ионности).

  3. Металлическая связь. Характерна только для конденсированного состояния вещества. Это многоцентровая связь с дефицитом электронов в твердом или жидком веществе, основанная на обобществлении внешних электронов атомов.

  4. Внутримолекулярные водородные связи. Возникают в одной молекуле между атомами водорода и отрицательными атомами полярных групп.

    Для образования внутримолекулярных водородных связей в молекуле должны быть атомы водорода $Н$ с выраженным положительным зарядом +$delta $ (группы $- O$ $-H$) и электродонорные атомы (например, $=O$). Например: На Рис.

    1 изображены орто- нитрофенол (а) и салициловый альдегид (б), имеющие водородные связи (обозначены пунктиром) между водородом групп $-O -H$ и кислородом других групп.

Молекулы, имеющие внутримолекулярные водородные связи, не могут образовывать межмолекулярные водородные связи.

  1. Энергия связи $Е_{св}$. Это количество энергии, выделяющееся при образовании связи, измеряется в кДж/моль. Служит мерой прочности химической связи.

    Величина энергии связи определяется работой, затраченной на разрушение связи или выигрышем в энергии при образовании вещества из отдельных атомов.

    Средняя энергия связи для многоатомных соединений определяется делением энергии образования соединения из отдельных атомов на число связей.

  2. Длина связи $l_{св}$. Равна расстоянию между ядрами атомов в соединении. Зависит от размеров электронных оболочек, степени их перекрывания. Между энергией связи и ее длиной существует зависимость: чем меньше длина связи, тем выше энергия и соответственно устойчивость молекулы.

    Например: в ряду галогеноводородов длина связи от $HF$ до $HI$ растет, а энергия уменьшается.

  3. Валентные углы зависят от природы атомов и характера химической связи.

Электрически нейтральные атомы и молекулы, валентно — насыщенные, способны к дополнительному взаимодействию друг с другом. Степень проявляемого при этом взаимодействия может меняться в широких пределах.

Силы межмолекулярного взаимодействия можно сопоставить по величине энергии с ионными и ковалентными связями. Значения соответствующих значений энергии приведены ниже:

По сравнению с другими видами химической связи, межмолекулярные силы самые слабые. Но их влияние на свойства веществ довольно значительно, а в ряде случаев межмолекулярные силы полностью определяют состояние вещества.

Когда вещество находится в газообразном состоянии, тогда образующие его частицы – молекулы или атомы – хаотически движутся и при этом преобладающую часть времени находятся на больших расстояниях (в сравнении с их собственными размерами) расстояниях друг от друга. Вследствии этого силы взаимодействия между ними пренебрежимо малы.

Иначе обстоит дело, когда вещество находится в конденсированном состоянии – в жидком или твёрдом. Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики. Эти силы удерживают частицы жидкости или твёрдого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют, в отличии от газов, постоянный при данной температуре объём.

Все силы, удерживающие частицы жидкости или твёрдого тела друг около друга, имеют электрическую природу. Но в зависимости от того, что представляют собой частицы – являются ли они атомами металического или неметалического элемента, ионами или молекулами – эти силы существенно различны.

Неметалы с атомным строением

Если вещество состоит из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью.

Металлы

Если вещество – металл, то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение, то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Вещества с молекулярным строением

В веществах с молекулярным строением имеет место межмолекулярное взаимодействие.

Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей, но в различных веществах механизм возникновения диполей различен.

1. Ориентационное взаимодействие.

Если вещество состоит из полярных молекул, например, Н2О, НCl, то в конденсированном состоянии молекулы ориентируются друг по отношению к другу своими разноимённо заряженными концами, вследствии чего наблюдается их взаимное притяжение.

Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием. Тепловое движение молекул препятствует их взаимной ориентации, поэтому с ростом температуры ориентационный эффект ослабевает.

2. Индукционное взаимодействие.

В случае веществ, состоящих из неполярных, но способных к поляризации молекул, например СО2, наблюдается возникновение наведённых или индуцированных диполей.

Причина их появления обычно состоит в том, что каждый атом создаёт вблизи себя электрическое поле, оказывающее поляризующее действие на ближайший атом соседней молекулы. Молекула поляризуется и образовавшийся индуцированный диполь в свою очередь поляризует соседние молекулы.

В результате происходит взаимное притяжение молекул друг к другу. Это индукционное взаимодействие наблюдается также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного.

3. Дисперсионное взаимодействие.

Дисперсионные силы (Лондоновские силы) — силы электростатического притяжения мгновенного и индуцированного (наведённого) диполей электрически нейтральных атомов или молекул.

В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение.

Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы.

В результате возникает взаимодействие мгновенных диполей.

Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.

Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно, причём концы соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению.

Это явление, называемое дисперсионным взаимодействием, имеет место во всех веществах, находящихся в конденсированном состоянии. В частности, оно обуславливает переход благородных газов при низких температурах в жидкое состояние.

Соотношение молекулярных сил.

Относительная величина рассмотренных видов межмолекулярных сил зависит от полярности и от поляризуемости молекул вещества.

Чем больше полярность молекул, тем больше ориентационные силы.

Чем крупнее атомы, чем слабее связаны внешние электроны атомов, чем больше деформируется электронное облако, тем значительнее дисперсионные силы.

Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих размеры этих веществ.

Например:

  • в случае HCl на долю дисперсионных сил приходится 81% всего    межмолекулярного взаимодействия,
  • для НBr эта величина составляет 95%,
  • для HI99,5%.
    • Индукционные силы почти всегда малы.

Источник: https://himya.ru/mezhmolekulyarnye-vzaimodejstviya.html

Виды межмолекулярных сил притяжения

Виды межмолекулярных сил притяжения

Молекула — это самостоятельная частица, устойчивая, электрически нейтральная. Химическая устойчивость молекул относительна, она возможна в тех системах, где расстояния между молекулами намного больше их собственных размеров.

Между соседними молекулами возникает взаимное притяжение уже на расстоянии в один нанометр. Начинают действовать электростатические силы притяжения (силы Ван — дер — Ваальса) и, иногда, возникает донорно — акцепторное взаимодействие.

Электростатическое притяжение

Межмолекулярное электростатическое притяжение называют силами Ван — дер — Ваальса. Они имеют ряд отличий от химических связей, так ка они:

  • электрической природы;
  • слабые;
  • проявляются на больших расстояниях;
  • ненасыщаемы.

Электростатическое притяжение характеризуется тремя типами межмолекулярного взаимодействия:

  1. Ориентационное (диполь — дипольное) взаимодействие. Характеризуется взаимной ориентацией разноименнозаряженных полюсов полярных молекул при их приближении друг к другу (Рис.1 ). Энергия такого взаимодействия определяется электрическим дипольным моментом молекул. Чем выше дипольный момент и меньше расстояние между молекулами, тем больше энергия взаимодействия.

  2. Индукционное взаимодействие. Обусловлено электростатическим взаимодействием полярной и неполярной молекул (Рис. 1).

    Полярная молекула своим полем воздействует на неполярную, в результате чего появляется наведенный (индуцированный) диполь, способный притягиваться к диполю полярной молекулы. Индуцированный диполь усиливает дипольный момент полярной молекулы.

    Энергия такого взаимодействия определяется электрическим диполем полярной молекулы и поляризуемостью неполярной молекулы.

  3. Дисперсионное взаимодействие. Появляется как результат притяжения мгновенных диполей (микродиполей). Такие диполи появляются, если не совпадают электрические центры тяжести электронного облака и ядер, что вызвано их независимыми колебаниями.

    Одновременное появление и исчезновение микродиполей молекул сопровождается их притяжением. Если синхронность отсутствует, происходит отталкивание.

    Дисперсионное взаимодействие может проявляться между любыми молекулами, а потому является универсальным.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Рисунок 1. Типы межмолекулярного взаимодействия: а — ориентационное, б- индукционное, в — дисперсионное

Величина энергий отдельных частей системы в общую энергию межмолекулярного взаимодействия зависит от полярности и поляризуемости молекулы.

Донорно — акцепторное взаимодействие

Донорно — акцепторное взаимодействие образуется за счет электронной пары одной молекулы и свободной орбитали другой. Это взаимодействие:

  • проявляется в первичных процессах многих химических реакций;
  • обусловливает сольвацию молекул и ионов в растворе;
  • лежит в основе каталитических процессов;
  • приводит к образованию новых соединений.

Пример 1

Образование межмолекулярного комплекса состава $BF_3 \cdot NH_3$ из молекул $BF_3$ и $NH_3$:

$H_3N{\delta -} — B{\delta +} F_3 \to H_3N \cdot BF_3$

Атом бора в $BF_3$ положительно поляризован, имеет свободную орбиталь и выступает в качестве акцептора. В качестве донора выступает отрицательно поляризованный атом азота $NH_3$ (Рис. 2)

Рисунок 2. Донорно — акцепторное взаимодействие между $BF_3$ и $NH_3$

Энергия межмолекулярного донорно — акцепторного взаимодействия может колебаться в широких пределах: от $6-12$ кДж/моль до $200-250$ кДж/моль.

Межмолекулярное донорно — акцепторное взаимодействие обусловливает переход вещества из одного агрегатного состояния в другое (из газообразного состояния в жидкое или твердое).

Пример 2

Молекула дифторида бериллия $BeF_2$ в газообразном состоянии имеет линейное строение.

Рисунок 3.

Между молекулами $BeF_2$ возникает донорно — акцепторное взаимодействие за счет свободных орбиталей атомов бериллия и неопределенных электронных пар атомов бора. Это становится возможным при понижении температуры. Молекулы $BeF_2$ ассоциируются с образованием полимера $Be_nF_{2n}$ — кристалла $BeF_2$ (Рис. 3).

Рисунок 4. Структура кристалла фторида бериллия $BeF_2$

Межмолекулярная водородная связь

Водородная связь по прочности превосходит силы Ван — дер — Ваальса, ее энергия составляет $8-40$ кДж/моль. Эта связь характерна для соединений водорода с наиболее электроотрицательными элементами:

  • фтором ($25-40$ кДж/моль);
  • кислородом ($13-29$ кДж/моль);
  • азотом ($8-21$ кДж/моль);
  • в меньшей степени — с хлором и серой.

Чем выше электроотрицательность и меньше размеры атома, тем выше энергия связи.

Водородная связь образуется в результате способности положительно поляризованного атома водорода внедряться в электронную оболочку (не связанного с ним ковалентно) отрицательно поляризованного атома. В результате этого наряду с электростатическим и донорно — акцепторным взаимодействием возникает водородная связь.

Водородная связь важна при:

  • ассоциации молекул;
  • образовании кристаллогидратов;
  • процессах растворения, кристаллизации;
  • электролитической диссоциации и др.

Например: молекулы фторида водорода в любом агрегатном состоянии ассоциированы в зигзагообразные цепочки вида:

Рисунок 5.

что обусловлено водородной связью.

Водородные связи легко возникают и легко разрываются при комнатной температуре вследствие своей непрочности.

Межмолекулярные водородные связи приводят к изменению некоторых свойств веществ. Повышаются:

  • вязкость вещества;
  • температура кипения и плавления;
  • теплоты плавления и парообразования;
  • диэлектрическая постоянная.

Источник: https://spravochnick.ru/himiya/vnutri-_i_mezhmolekulyarnye_vzaimodeystviya/vidy_mezhmolekulyarnyh_sil_prityazheniya/

Межмолекулярное взаимодействие

Виды межмолекулярных сил притяжения
Ориентационное взаимодействие
Индукционное взаимодействие
Дисперсионное взаимодействие
Межмолекулярное отталкивание

Межмолекулярное взаимодействие — взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия.

Силы Ван-дер-Ваальса включают все виды межмолекулярного притяжения и отталкивания. Они получили название в честь Я.Д.

Ван-дер-Ваальса, который первым принял во внимание межмолекулярные взаимодействия для объяснения свойств реальных газов и жидкостей.

Эти силы определяют отличие реальных газов от идеальных, существование жидкостей и молекулярных кристаллов. От них зависят многие структурные, спектральные и другие свойства веществ.

Основу ван-дер-ваальсовых сил составляют кулоновские силы взаимодействия между электронами и ядрами одной молекулы и ядрами и электронами другой. На определенном расстоянии между молекулами силы притяжения и отталкивания уравновешивают друг друга, и образуется устойчивая система.

Ван-дер-ваальсовы силы заметно уступают химическому связыванию. Например, силы, удерживающие атомы хлора в молекуле хлора почти в десять раз больше, чем силы, связывающие молекулы Cl2 между собой. Но без этого слабого межмолекулярного притяжения нельзя получить жидкий и твердый хлор.

Ориентационное взаимодействие

Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, например HCl, H2O, NH3, ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение.

Для взаимодействия двух диполей энергия притяжения между ними (энергия Кеезома) выражается соотношением:

EК = −2 μ1 μ2 / 4π ε0 r3,

где μ1 и μ2 — дипольные моменты взаимодействующих диполей, r — расстояние между ними. Притяжение диполь-диполь может осуществляться только тогда, когда энергия притяжения превышает тепловую энергию молекул; обычно это имеет место в твердых и жидких веществах. Диполь-дипольное взаимодействие проявляется в полярных жидкостях (вода, фтороводород).

Индукционное взаимодействие

Если рядом с полярная молекула окажется полярная рядом с неполярными, она начнет влиять на них. Поляризация нейтральной частицы под действием внешнего поля (наведение диполя) происходит благодаря наличию у молекул свойства поляризуемости γ.

Постоянный диполь может индуцировать дипольное распределение зарядов в неполярной молекуле. Под действием заряженных концов полярной молекулы электронные облака неполярных молекул смещаются в сторону положительного заряда и подальше от отрицательного.

Неполярная молекула становится полярной, и молекулы начинают притягиваться друг к другу, только намного слабее, чем две полярные молекулы.

Энергия притяжения между постоянным и наведенным диполем (энергия Дебая) определяется выражением:

EД = −2 μнав2 γ / r6,

где μнав — момент наведенного диполя.

Притяжение постоянного и наведенного диполей обычно очень слабое, поскольку поляризуемость молекул большинства веществ невелика. Оно действует только на очень малых расстояниях между диполями. Этот вид взаимодействия проявляется главным образом в растворах полярных соединений в неполярных растворителях.

Дисперсионное взаимодействие

Между неполярными молекулами также может возникнуть притяжение. Электроны, которые находятся в постоянном движении, на миг могут оказаться окажется сосредоточенными с одной стороны молекулы, то есть неполярная частица станет полярной. Это вызывает перераспределение зарядов в соседних молекулах, и между ними устанавливаются кратковременные связи:

Энергия такого взаимодействия (энергия Лондона) дается соотношением:

EЛ = −2 μмгн2 γ2 / r6,

где μмгн — момент мгновенного диполя. Лондоновские силы притяжения между неполярными частицами (атомами, молекулами) являются весьма короткодействующими.

Значения энергии такого притяжения зависят размеров частиц и числа электронов в наведенных диполях. Эти связи очень слабые — самые слабые из всех межмолекулярных взаимодействий.

Однако они являются наиболее универсальными, так как возникают между любыми молекулами.

Межмолекулярное отталкивание

Если бы молекулы только притягивались друг к другу, это привело бы к их слиянию. Но на очень малых расстояниях их электронные оболочки начинают отталкиваться. Энергия отталкивания дается выражением

E = + k / rn,

где k — постоянная отталкивания, n принимает различные целые значения (5-15). Силы межмолекулярного отталкивания действуют на очень малых расстояниях.

Общее уравнение межмолекулярного взаимодействия при постоянной температуре (уравнение Леннарда-Джонсона) в большинстве случаев имеет вид

EM = − a / r6 + b / r12

и носит название «потенциала 6-12», поскольку энергия притяжения пропорциональна 1 / r6, а энергия отталкивания — 1 / r12.

Читать дальше >>>

Отвечать на вопросы >>>

Приложения >>>

>>>

Заглавная страница >>>

Источник: http://www.alhimik.ru/stroenie/gl_13.html

Типы межмолекулярных взаимодействий

Виды межмолекулярных сил притяжения

Связи, при образовании которых перестройка электронных оболочек не происходит, называютсявзаимодействием между молекулами. К основным видам взаимодействия молекул следует отнести вандерваальсовы силы, водородные связи и донорно-акцепторное взаимодействие.

При сближении молекул появляется притяжение, что обуславливает возникновение конденсированного состояния вещества (жидкого, твердого с молекулярной кристаллической решеткой). Силы, которые способствуют притяжению молекул, получили название вандерваальсовых. Они характеризуются тремя видами межмолекулярного взаимодействия:

а) ориентационное взаимодействие, которое проявляется между полярными молекулами, стремящимися занять такое положение, при котором их диполи были бы обращены друг к другу разноименными полюсами, а векторы моментов этих диполей были бы ориентированы по одной прямой (по-другому оно называется диполь-дипольное взаимодействие);

б) индукционное, которое возникает между индуцированными диполями, причина образования которых является взаимная поляризация атомов двух сближающихся молекул;

в) дисперсионное, которое возникает в результате взаимодействия микродиполей, образующихся за счет мгновенных смещений положительных и отрицательных зарядов в молекулах при движении электронов и колебаний ядер.

Дисперсионные силы действуют между любыми частицами. Ориентационное и индукционное взаимодействие для частиц многих веществ, например: He, Ar, H2, N2, CH4, не осуществляется.

Для молекул NH3 на дисперсионное взаимодействие приходится 50 %, на ориентационное – 44,6 % и на индукционное – 5,4 %. Полярная энергия вандерваальсовых сил притяжения характеризуется невысокими значениями. Так, для льда она составляет 11 кДж/моль, т.е.

2,4 % энергии ковалентной связи H-O (456 кДж/моль). Вандерваальсовы силы притяжения – это физические взаимодействия.

Водородная связь – это физико-химическая связь между водородом одной молекулы и ЭО элементом другой молекулы.

Образование водородных связей объясняется тем, что в полярных молекулах или группах поляризованный атом водорода обладает уникальными свойствами: отсутствием внутренних электронных оболочек, значительным сдвигом электронной пары к атому с высокой ЭО и очень малым размером. Поэтому водород способен глубоко внедряться в электронную оболочку соседнего отрицательно поляризованного атома.

Как показывают спектральные данные, в образовании водородной связи существенную роль играет также и донорно-акцепторное взаимодействие ЭО атома как донора и атома водорода как акцептора. Водородная связь может быть межмолекулярной или внутримолекулярной.

Водородная связь изображена точками

Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул – ассоциатов (H2O)n и (HF)m.

Это сказывается на целом ряде свойств соединений, особенно на таких параметрах, как температура кипения (tкип) и замерзания (tзам).

По относительной величине молекулярных масс H2O и H2S для воды tкип и tзам должны быть ниже, чем для сульфида водорода (60,75 и -85,60 °С).

В действительности они выше (100 и 0 °С), что связано с увеличением молярной массы воды за счет ассоциации ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров.

В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает «сшивание» цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. Длина водородной связи больше длины ковалентных связей.

В ряде соединений типа RA-H…BR’ при сокращении равновесного расстояния Н-В длина связи А-Н увеличивается, и в предельном случае обе связи могут оказаться одинаковыми, как в дифторид-ионе (FHF)-.

Энергия водородной связи (8 — 40 кДж/моль) ниже энергии ковалентной связей. Так, для льда она равна 20 кДж/моль, что составляет 4,3 % энергии ковалентной связи Н-О, равной 456 кДж/моль. Наибольшее значение энергии водородной связи имеют соединения фтора (25 — 40 кДж/моль), затем кислорода (13 — 25 кДж/моль) и азота (8 — 21 кДж/моль).

Для серы и хлора образование водородных связей нехарактерно. Энергия водородных связей возрастает с увеличением ЭО элементов и уменьшением размеров атомов.

Образование межмолекулярных водородных связей приводит к повышению вязкости, диэлектрической постоянной, температуры кипения и плавления (замерзания), теплот плавления и парообразования, образованию ассоциатов.

Если водородные связи образуются внутри молекул, то понижается вязкость, температура кипения и плавления, эти вещества боле летучи, не образуют ассоциаты, водородные связи внутри молекул приводят к поперечному сливанию цепочечных молекул. Таким образом, водородная связь занимает промежуточное положение между ковалентной и вандерваальсовой силами притяжения.

Донорно-акцепторное взаимодействие, как отмечалось ранее, приводит к образованию ковалентной полярной связи, т.е. относится к химическим видам взаимодействия. Донорно-акцепторное взаимодействие объясняет образование комплексных соединений. Например, при взаимодействии сульфата меди и аммиака образуется сложное соединение:

СuSO4 + 4NH3 = CuSO4.4NH3,

которое выражается формулой [Сu(NH3)4]SO4. Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных или координационных соединений.

Согласно координационной теории А. Вернера, комплексные соединения состоят из двух сфер: внешней и внутренней. В приведенном выше примере внешней сферой является ион SO42-.

Внутренняя сфера называется комплексом, включает центральный ион или атом, который называется комплексообразователем (Cu2+). Вокруг него координируются отрицательно заряженные ионы или нейтральные молекулы (называются лигандами (NH3)).

Число лигандов, координируемых комплексообразователем, называют координационным числом.

В зависимости от заряда различают анионные комплексы, например [PF6]-, [Zn(CN)4]2-, [Al(OH)4]-, катионные комплексы, например [Cu(NH3)4]2+, [Ni(CO)4] и [Pt(NH3)2Cl2]. Нейтральные комплексы не имеют внешней сферы. Заряд комплекса численно равен алгебраической сумме заряда центрального иона и заряда лигандов. Например, заряд Z комплекса [Zn(CN)4]2- равен

Z = ZZn2+ + 4ZCN- = 2 + 4(-1) = -2.

Таким образом, имеется обширный класс соединений, называемых комплексными, в которых существуют ковалентные связи, образованные по донорно-акцепторному механизму между центральным атомом или ионом (комплексообразователем-акцептором) и координируемыми им лигандами, имеющими неподеленные пары электронов (донорами).

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/3_77989_tipi-mezhmolekulyarnih-vzaimodeystviy.html

Booksm
Добавить комментарий