Виды искусственного интеллекта 1

Четыре типа искусственного интеллекта: от реактивных роботов до сознательных существ

Виды искусственного интеллекта 1

Широко распространено мнение, что благодаря новейшим достижениям в области исследований искусственного интеллекта живые и умные машины скоро появятся на горизонте. Машины понимают ые команды, различают картины, водят автомобили и играют в игры лучше нас. Сколько осталось ждать, пока они не начнут ходить среди нас?

Недавно выпущенный отчет Белого дома на тему искусственного интеллекта принимает скептическую позицию.

В нем говорится, что в ближайшие 20 лет мы вряд ли увидим машины, «демонстрирующие интеллектуальные возможности, сопоставимые с человеческими или превосходящие их», однако в грядущие годы «машины будут достигать человеческих возможностей выполнения все большего числа задач». Однако этот отчет упускает несколько важных вещей.

Исследователь искусственного интеллекта Аренд Хинтце утверждает, что отчет сосредоточен исключительно на «скучном типе ИИ». Он обрывает на полуслове целую гигантскую ветвь исследований ИИ, как эволюция помогает разрабатывать все более качественные системы ИИ и как вычислительные модели помогают нам понимать эволюцию нашего собственного человеческого интеллекта.

В докладе основное внимание уделяется, как говорит ученый, основным инструментам ИИ: машинному обучению и глубокому обучению. Такого рода технологии позволили роботам хорошо играть в викторины и обыгрывать мастеров игры в го.

Эти системы могут обрабатывать колоссальные объемы данных и производить сложные вычисления очень быстро.

Но им не хватает элемента, который будет иметь ключевое значение в создании разумных машин, которые мы хотели бы иметь в будущем.

Нам нужно больше, чем научить машины учиться. Нам нужно преодолеть границы, которые определяют четыре различных типа искусственного интеллекта. Барьеры, которые отделяют машин от нас — и нас от них.

I тип ИИ: реактивные машины

Самые базовые типы систем ИИ сугубо реактивны и не могут ни формировать воспоминания, ни использовать прошлый опыт для информирования текущих решений. Deep Blue, играющий в шахматы суперкомпьютер IBM, который обыграл гроссмейстера Гарри Каспарова в конце 1990-х, — это прекрасный пример такого типа машин.

Deep Blue может идентифицировать фигуры на шахматной доске и знает, как они двигаются. Он может делать прогнозы ходов, как своих, так и оппонента. И выбирает наиболее оптимальные ходы из возможных.

Однако он не имеет никакого представления о прошлом и памяти произошедшего. Если не считать редко используемого специфического для шахмат правила не повторять один и тот же ход три раза, Deep Blue игнорирует все, что было до текущего момента. Он просто смотрит на фигуры на шахматной доске и выбирает следующий ход.

Такой тип интеллекта включает компьютер, непосредственно воспринимающий мир и действующий на основании того, что он видит. Он не опирается на внутреннюю концепцию мира.

В своей работе исследователь ИИ Родни Брукс утверждал, что мы должны строить только такие машины.

По его мнению, люди не очень хороши в программировании точных моделируемых миров для компьютеров, как говорят, в создании «репрезентации», представления мира.

Современные интеллектуальные машины, которыми мы восхищаемся, либо не имеют такой концепции мира, либо она очень ограничена и касается определенных задач.

Инновации в дизайне Deep Blue заключались не в том, чтобы расширить число возможных ходов, которые рассматривает компьютер.

Вместо этого разработчики нашли способ сузить его видение, чтобы отказаться от некоторых возможных ходов в будущем в зависимости от того, как они оцениваются.

Точно так же и AlphaGo Google, который обыграл чемпиона мира по го, не может оценивать возможные будущие ходы. Его метод анализа более изощренный, чем у Deep Blue: он использует нейронную сеть для оценки разворачивания игры.

Эти методы улучшают возможности систем ИИ, позволяют лучше играть в определенные игры, но их непросто изменить или применить к другим ситуациям. Эти компьютерные типы воображения не имеют концепции мира в целом — и значит, они не могут выходить за рамки выполнения определенных задач, для которых их сделали, и их легко одурачить.

Они не могут интерактивно участвовать в мире, а нам хотелось бы однажды увидеть именно такие системы ИИ. Вместо этого машины будут вести себя точно так же, как и всегда, сталкиваясь с одной и той же ситуацией.

Если мы хотим сделать систему ИИ надежной и заслуживающей доверия, то это хорошо: вы хотели бы, чтобы ваш автономный автомобиль был надежным. Но если мы хотим, чтобы машины взаимодействовали с нами и с миром, это плохо.

Простейшие системы ИИ никогда не заскучают, их нельзя заинтересовать или расстроить.

II тип ИИ: ограниченная память

II тип включает машины, которые могут заглядывать в прошлое. Самоуправляемые автомобили уже немного способны на это. К примеру, они наблюдают скорость и направление других автомобилей. Это нельзя делать одномоментно, для этого нужно идентифицировать конкретные объекты и наблюдать за ними с течением времени.

Эти наблюдения добавляются к заранее запрограммированным у самоуправляемых автомобилей репрезентациям мира, которые включают дорожную разметку, светофоры и другие важные элементы. Они подключаются, когда автомобиль решает изменить полосу движения и не столкнуться с другим.

Но эти простые частички информации о прошлом лишь временные. Они не будут сохранены как часть библиотеки опыта автомобиля, в которой он сможет учиться, как это делают люди-водители, накапливая опыт в течение многих лет за рулем.

Как же нам построить системы ИИ, которые выстраивают полные представления, помнят о своем опыте и учатся справляться с новыми ситуациями? Брук был прав в том, что сделать это очень сложно. Возможно, стоит поискать вдохновения в дарвиновской эволюции?

III тип ИИ: теория разума

Здесь нужно сделать небольшую остановку и назвать этот момент важным разрывом между машинами, которые у нас есть, и машинами, которые мы хотели бы строить в будущем. Тем не менее сперва стоит конкретнее очертить представления, которые придется создавать машинам.

Машины следующего, более продвинутого класса не только формируют представления мира, но и других агентов или сущностей мира. В психологии это называется «теория разума» — понимание того, что у людей, существ и предметов в мире могут быть мысли и эмоции, которые влияют на их собственное поведение.

Это важно для того, как мы, люди, формируем общество, поскольку обеспечивает нам социальные взаимодействия. Без понимания мотивов и намерений друг друга и не принимая во внимание то, что кто-то еще знает обо мне или об окружающей среде, работать вместе в лучшем случае трудно, а в худшем — невозможно.

Если системы ИИ действительно когда-нибудь будут бродить среди нас, они должны будут понимать, что мы думаем и чувствуем, хотя бы на уровне предположений. И соответственно подстраивать свое поведение.

IV тип ИИ: самосознание

Конечная цель развития искусственного интеллекта — создание систем, которые могут формировать представления о себе. В конечном счете исследователи ИИ должны не только понять сознание, но и создать машин с сознанием.

Это в некотором смысле расширение «теории разума», которая упоминалась в предыдущем типе ИИ. Говоря о сознании, также имеют в виду и самосознание. «Я хочу эту вещь» отличается от «я знаю, что хочу эту вещь».

Сознательные существа осознают себя, знают о своих внутренних состояниях и могут предчувствовать поведение или чувства других. Мы предполагаем, что кто-то сигналящий нам в пробке зол или нетерпелив, потому что именно так мы могли бы чувствовать себя на его месте.

Без теории разума мы не могли бы делать таких умозаключений.

Хотя мы, вероятно, далеки от создания самосознательных машин, мы должны сосредоточить наши усилия на пути к пониманию памяти, обучения и способности принимать решения относительно прошлого опыта.

Это важный шаг к пониманию человеческого разума самого по себе.

И это очень важно, если мы хотим разрабатывать или развивать машины, которые могут не только классифицировать то, что видят перед собой, но и многое другое.

Источник: https://Hi-News.ru/robots/chetyre-tipa-iskusstvennogo-intellekta-ot-reaktivnyx-robotov-do-soznatelnyx-sushhestv.html

Четыре типа ИИ, от реактивных роботов до имеющих самосознание

Виды искусственного интеллекта 1

Достаточно распространенным мнением, с учетом новейших достижений в области исследований ИИ, является то, что живые и умные машины еще только на горизонте. Сегодня машины понимают ые команды, различают картины, водят автомобили и выигрывают у нас в настольных играх.

Сколько еще пройдет времени, прежде чем они займут место рядом с нами?

Новый доклад об ИИ для Белого дома достаточно скептичен в отношении этой мечты. Отмечается, что в ближайшие 20 лет, вероятно, не будет машин, интеллектуальные возможности которых можно сравнить с человеческими. Хотя в ближайшие годы машины смогут достичь и превысить возможности человека в решении многих задач.

Нынешние интеллектуальные системы способны обрабатывать огромные объемы данных и очень быстро делать сложные расчеты. Но у них нет элемента, который будет иметь ключевое значение для построения разумных машин в будущем.

Нам нужно сделать больше, чем просто научить машины учиться. Необходимо преодолеть границы, которые определяют четыре различных типа искусственного интеллекта, барьеры, которые отделяют машины от нас и нас от них.

Тип I — Реактивные машины

Самые основные типы систем искусственного интеллекта являются чисто реактивными, они не обладают способностью формировать воспоминания, использовать прошлый опыт для реализации текущих решений. Deep Blue, шахматный суперкомпьютер от IBM, который с явным преимуществом одолел гроссмейстера Гарри Каспаров в конце 1990-х годов, является прекрасным примером этого типа машин.

Deep Blue может идентифицировать фигуры на шахматной доске и знать, как каждая из них передвигается. Он может прогнозировать следующий ход своего противника. И может выбрать наиболее оптимальные ходы из числа возможных.

Но он не имеет никакого представления о прошлом, памяти о том, что произошло раньше. Помимо редко применимого шахматного правила, запрещающего повторение более трех раз одного и того же хода, Deep Blue игнорирует все, что было до настоящего момента. Все, что он делает — анализирует размещение фигур на шахматной доске и выбирает один из возможных следующих шагов.

Такие роботы не могут действовать в интерактивном режиме, так, как мы представляем себе системы ИИ. Вместо этого эти машины будут вести себя точно так же, каждый раз, когда они столкнутся с такой же ситуацией.

Тип II — Ограниченная память

ИИ типа II содержат машины, которые могут заглянуть в прошлое. Беспилотные автомобили делают уже нечто подобное. Например, они наблюдают скорость и направление других автомобилей. Это не может быть сделано в один момент, а требует выделения конкретных объектов и мониторинга их состояния с течением времени.

Эти наблюдения добавляются к запрограммированным представлениям беспилотного автомобиля о внешнем мире, которые также включают полосы движения, светофоры и другие важные элементы, такие, как искривления дороги. Они задействованы, когда машина решает, в какой момент менять полосу движения, чтобы избежать подрезки другого водителя или удара соседней машины.

Но эти простые кусочки информации о прошлом лишь временные. Они не будут сохранены как отдельные элементы в библиотеку автомобильного опыта, которая могла бы компилировать опыт водителей, находившихся за рулем в течение многих лет.

Тип III — Теория разума

Мы могли бы остановиться здесь и назвать этот момент важным разрывом между машинами настоящего и будущего. Тем не менее, было бы лучше более конкретно обсудить, какие типы представлений должны формировать машины.

Машины будущего будут более совершенными, способными формировать представления не только о мире, но и о других агентах или существах. В психологии это называется «теория разума» — понимание того, что люди, существа и предметы в мире могут иметь мысли и эмоции, которые влияют на их собственное поведение.

Без понимания мотивов и намерений друг друга и не принимая во внимание познания других об окружающей среде, работать вместе в лучшем случае трудно, в худшем случае невозможно.

Тип IV — Самосознание

Заключительным этапом развития ИИ является создание систем, которые могут формировать представления о себе. В конечном счете, исследователи ИИ должны не только изучить основы сознания, но и создать машины, которые имеют его.

Это, в некотором смысле, продолжение «теории разума», которым обладает ИИ типа III. Сознательные существа осознают себя, знают о своих внутренних состояниях, и способны предсказывать чувства других людей.

Мы предполагаем, что кто-то сигналящий за нами в пробке злится или нетерпеливый, потому что мы чувствуем то же самое, когда сигналим другим. Без теории сознания мы не могли бы делать такого рода умозаключения.

Мы, наверное, далеки от создания машин, которые обладают самосознанием, но должны сосредоточить усилия на методах понимания, памяти, обучения и возможности принимать решения, исходя из прошлого опыта. Это важный шаг на пути к пониманию человеческого интеллекта.

Источник: http://www.robogeek.ru/iskusstvennyi-intellekt/chetyre-tipa-ii-ot-reaktivnyh-do-samosoznanie

Всё, что вам нужно знать об ИИ — за несколько минут

Виды искусственного интеллекта 1

Приветствую читателей Хабра. Вашему вниманию предлагается перевод статьи «Everything you need to know about AI — in under 8 minutes.». направлено на людей, не знакомых со сферой ИИ и желающих получить о ней общее представление, чтобы затем, возможно, углубиться в какую-либо конкретную его отрасль.

Знать понемногу обо всё иногда (по крайней мере, для новичков, пытающихся сориентироваться в популярных технических направлениях) бывает полезнее, чем знать много о чём-то одном. Многие люди думают, что немного знакомы с ИИ. Но эта область настолько молода и растёт так быстро, что прорывы совершаются чуть ли не каждый день. В этой научной области предстоит открыть настолько многое, что специалисты из других областей могут быстро влиться в исследования ИИ и достичь значимых результатов. Эта статья — как раз для них. Я поставил себе целью создать короткий справочный материал, который позволит технически образованным людям быстро разобраться с терминологией и средствами, используемыми для разработки ИИ. Я надеюсь, что этот материал окажется полезным большинству интересующихся ИИ людей, не являющихся специалистами в этой области.

Введение

Искусственный интеллект (ИИ), машинное обучение и нейронные сети — термины, используемые для описания мощных технологий, базирующихся на машинном обучении, способных решить множество задач из реального мира. В то время, как размышление, принятие решений и т.п.

сравнительно со способностями человеческого мозга у машин далеки от идеала (не идеальны они, разумеется, и у людей), в недавнее время было сделано несколько важных открытий в области технологий ИИ и связанных с ними алгоритмов. Важную роль играет увеличивающееся количество доступных для обучения ИИ больших выборок разнообразных данных.

Область ИИ пересекается со многими другими областями, включая математику, статистику, теорию вероятностей, физику, обработку сигналов, машинное обучение, компьютерное зрение, психологию, лингвистику и науку о мозге. Вопросы, связанные с социальной ответственностью и этикой создания ИИ притягивают интересующихся людей, занимающихся философией.

Мотивация развития технологий ИИ состоит в том, что задачи, зависящие от множества переменных факторов, требуют очень сложных решений, которые трудны к пониманию и сложно алгоритмизируются вручную. Растут надежды корпораций, исследователей и обычных людей на машинное обучение для получения решений задач, не требующих от человека описания конкретных алгоритмов.

Много внимания уделяется подходу «чёрного ящика». Программирование алгоритмов, используемых для моделирования и решения задач, связанных с большими объёмами данных, занимает у разработчиков очень много времени.

Даже когда нам удаётся написать код, обрабатывающий большое количество разнообразных данных, он зачастую получается очень громоздким, трудноподдерживаемым и тяжело тестируемым (из-за необходимости даже для тестов использовать большое количество данных). Современные технологии машинного обучения и ИИ вкупе с правильно подобранными и подготовленными «тренировочными» данными для систем могут позволить нам научить компьютеры «программировать» за нас.

Обзор

Интеллект — способность воспринимать информацию и сохранять её в качестве знания для построения адаптивного поведения в среде или контексте

Это определение интеллекта из (англоязычной) Википедии может быть применено как к органическому мозгу, так и к машине. Наличие интеллекта не предполагает наличие сознания. Это — распространённое заблуждение, принесённое в мир писателями научной фантастики.

Попробуйте поискать в интернете примеры ИИ — и вы наверняка получите хотя бы одну ссылку на IBM Watson, использующий алгоритм машинного обучения, ставший знаменитым после победы на телевикторине под названием «Jeopardy» в 2011 г. С тех пор алгоритм претерпел некоторые изменения и был использован в качестве шаблона для множества различных коммерческих приложений. Apple, Amazon и Google активно работают над созданием аналогичных систем в наших домах и карманах. Обработка естественного языка и распознавание речи стали первыми примерами коммерческого использования машинного обучения. Вслед за ними появились задачи другие задачи автоматизации распознавания (текст, аудио, изображения, видео, лица и т.д.). Круг приложений этих технологий постоянно растёт и включает в себя беспилотные средства передвижения, медицинскую диагностику, компьютерные игры, поисковые движки, спам-фильтры, борьбу с преступностью, маркетинг, управление роботами, компьютерное зрение, перевозки, распознавание музыки и многое другое. ИИ настолько плотно вошёл в современные используемые нами технологии, что многие даже не думают о нём как об «ИИ», то есть, не отделяют его от обычных компьютерных технологий. Спросите любого прохожего, есть ли искусственный интеллект в его смартфоне, и он, вероятно, ответит: «Нет». Но алгоритмы ИИ находятся повсюду: от предугадывания введённого текста до автоматического фокуса камеры. Многие считают, что ИИ должен появиться в будущем. Но он появился некоторое время назад и уже находится здесь. Термин «ИИ» является довольно обобщённым. В фокусе большинства исследований сейчас находится более узкое поле нейронных сетей и глубокого обучения.

Как работает наш мозг

Человеческий мозг представляет собой сложный углеродный компьютер, выполняющий, по приблизительным оценкам, миллиард миллиардов операций в секунду (1000 петафлопс), потребляющий при этом 20 Ватт энергии. Китайский суперкомпьютер под названием «Tianhe-2» (самый быстрый в мире на момент написания статьи) выполняет 33860 триллионов операций в секунду (33.

86 петафлопс) и потребляющий при этом 17600000 Ватт (17.6 Мегаватт). Нам предстоит проделать определённое количество работы перед тем, как наши кремниевые компьютеры смогут сравниться со сформировавшимися в результате эволюции углеродными.

Точное описание механизма, применяемого нашим мозгом для того, чтобы «думать» является предметом дискуссий и дальнейших исследований (лично мне нравится теория о том, что работа мозга связана с квантовыми эффектами, но это — тема для отдельной статьи). Однако, механизм работы частей мозга обычно моделируется с помощью концепции нейронов и нейронных сетей.

Предполагается, что мозг содержит примерно 100 миллиардов нейронов. Нейроны взаимодействуют друг с другом с помощью специальных каналов, позволяющих им обмениваться информацией. Сигналы отдельных нейронов взвешиваются и комбинируются друг с другом перед тем, как активировать другие нейроны.

Эта обработка передаваемых сообщений, комбинирование и активация других нейронов повторяется в различных слоях мозга. Учитывая то, что в нашем мозгу находится 100 миллиардов нейронов, совокупность взвешенных комбинаций этих сигналов устроена довольно сложно. И это ещё мягко сказано. Но на этом всё не заканчивается.

Каждый нейрон применяет функцию, или преобразование, к взвешенным входным сигналам перед тем, как проверить, достигнут ли порог его активации. Преобразование входного сигнала может быть линейным или нелинейным.

Изначально входные сигналы приходят из разнообразных источников: наших органов чувств, средств внутреннего отслеживания функционирования организма (уровня кислорода в крови, содержимого желудка и т.д.) и других. Один нейрон может получать сотни тысяч входных сигналов перед принятием решения о том, как следует реагировать.

Мышление (или обработка информации) и полученные в результате его инструкции, передаваемые нашим мышцам и другим органам являются результатом преобразования и передачи входных сигналов между нейронами из различных слоёв нейронной сети. Но нейронные сети в мозгу могут меняться и обновляться, включая изменения алгоритма взвешивания сигналов, передаваемых между нейронами. Это связано с обучением и накоплением опыта. Эта модель человеческого мозга использовалась в качестве шаблона для воспроизведения возможностей мозга в компьютерной симуляции — искуственной нейронной сети.

Искусственные Нейронные Сети (ИНС)

Искусственные Нейронные Сети — это математические модели, созданные по аналогии с биологическими нейронными сетями. ИНС способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами.

Адаптивное взвешивание сигналов между искусственными нейронами достигается благодаря обучающемуся алгоритму, считывающему наблюдаемые данные и пытающемуся улучшить результаты их обработки. Для улучшения работы ИНС применяются различные техники оптимизации.

Оптимизация считается успешной, если ИНС может решать поставленную задачу за время, не превышающее установленные рамки (временные рамки, разумеется, варьируются от задачи к задаче). ИНС моделируется с использованием нескольких слоёв нейронов. Структура этих слоёв называется архитектурой модели.

Нейроны представляют собой отдельные вычислительные единицы, способные получать входные данные и применять к ним некоторую математическую функцию для определения того, стоит ли передавать эти данные дальше. В простой трёхслойной модели первый слой является слоем ввода, за ним следует скрытый слой, а за ним — слой вывода.

Каждый слой содержит не менее одного нейрона.

С усложнением структуры модели посредством увеличения количества слоёв и нейронов возрастают потенциал решения задач ИНС. Однако, если модель оказывается слишком «большой» для заданной задачи, её бывает невозможно оптимизировать до нужного уровня. Это явление называется переобучением (overfitting).

Архитектура, настройка и выбор алгоритмов обработки данных являются основными составляющими построения ИНС. Все эти компоненты определяют производительность и эффективность работы модели.

Модели часто характеризуются так называемой функцией активации. Она используется для преобразования взвешенных входных данных нейрона в его выходные данные (если нейрон решает передавать данные дальше, это называется его активацией). Существует множество различных преобразований, которые могут быть использованы в качестве функций активации.

ИНС являются мощным средством решения задач. Однако, хотя математическая модель небольшого количества нейронов довольно проста, модель нейронной сети при увеличении количества составляющих её частей становится довольно запутанно. Из-за этого использование ИНС иногда называют подходом «чёрного ящика». Выбор ИНС для решения задачи должен быть тщательно обдуманным, так как во многих случаях полученное итоговое решение нельзя будет разобрать на части и проанализировать, почему оно стало именно таким.

Глубокое обучение

Термин глубокое обучение используется для описания нейронных сетей и используемых в них алгоритмах, принимающих «сырые» данные (из которых требуется извлечь некоторую полезную информацию). Эти данные обрабатываются, проходя через слои нейросети, для получения нужных выходных данных.

Обучение без учителя (unsupervised learning) — область, в которой методики глубокого обучения отлично себя показывают. Правильно настроенная ИНС способна автоматически определить основные черты входных данных (будь то текст, изображения или другие данные) и получить полезный результат их обработки.

Без глубокого обучения поиск важной информации зачастую ложится на плечи программиста, разрабатывающего систему их обработки. Модель глубокого обучения же самостоятельно способна найти способ обработки данных, позволяющий извлекать из них полезную информацию.

Когда система проходит обучение (то есть, находит тот самый способ извлекать из входных данных полезную информацию), требования к вычислительной мощности, памяти и энергии для поддержания работы модели сокращаются.

Проще говоря, алгоритмы обучения позволяют с помощью специально подготовленных данных «натренировать» программу выполнять конкретную задачу.

Глубокое обучение применяется для решения широкого круга задач и считается одной из инновационных ИИ-технологий.

Существуют также другие виды обучения, такие как обучение с учителем (supervised learning) и обучение с частичным привлечением учителя(semi-supervised learning), которые отличаются введением дополнительного контроля человека за промежуточными результатами обучения нейронной сети обработке данных (помогающего определить, в правильном ли направлении движется система).

Теневое обучение (shadow learning) — термин, используемый для описания упрощённой формы глубокого обучения, при которой поиск ключевых особенностей данных предваряется их обработкой человеком и внесением в систему специфических для сферы, к которой относятся эти данные, сведений. Такие модели бывают более «прозрачными» (в смысле получения результатов) и высокопроизводительными за счёт увеличения времени, вложенного в проектирование системы.

Заключение

ИИ является мощным средством обработки данных и может находить решения сложных задач быстрее, чем традиционные алгоритмы, написанные программистами. ИНС и методики глубокого обучения могут помочь решить ряд разнообразных проблем.

Минус состоит в том, что самые оптимизированные модели часто работают как «чёрные ящики», не давая возможности изучить причины выбора ими того или иного решения. Этот факт может привести к этическим проблемам, связанным с прозрачностью информации.

  • искусственный интеллект
  • общее развитие (техника)
  • гиктаймс

Источник: https://habr.com/post/416889/

Виды искусственного интеллекта 1

Виды искусственного интеллекта 1

Искусственный интеллект (ИИ) — сравнительно новая отрасль информационных технологий. В ней еще не сложился четкий научный аппарат, но уже можно выделить некоторые ключевые понятия. В частности, выделяют следующие типы ИИ:

  • автоматизированный (для решения рутинных задач);
  • вспомогательный (оптимизирует человеческие решения);
  • расширенный (направлен на поддержку человеческого мышления в экстремальных ситуациях);
  • автономный (осуществляет самостоятельную деятельность, подобную человеческому мышлению).

По типу восприятия окружающей среды ИИ-системы можно разделить на:

  • реагирующие (лишь анализируют окружающую обстановку и формируют ответную реакцию);
  • с ограниченной памятью (корректирует свое поведение с учетом предыдущего «опыта», как, например, беспилотные автомобили);
  • с элементами разума (способны распознавать мысли и эмоции);
  • «сильный ИИ» (сопоставимый по мыслительным способностям с человеком).

Замечание 1

Полноценных систем с «сильным» типом интеллекта пока не создано, но многие корпорации прилагают в этом направлении существенные усилия.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Рисунок 1. Эволюция искусственного интеллекта. Автор24 — интернет-биржа студенческих работ

Подходы к созданию ИИ

При создании искусственного интеллекта применяются различные подходы. Рассмотрим наиболее традиционные из них.

Символьный подход

Символьный подход стал наиболее ранней концепцией реализации искусственного интеллекта. Он был применен уже во второй половине 1960-ых гг.

, когда появился язык программирования Lisp, ориентированный на обработку слабоформализованных данных. Основной метод — выработка новых правил обработки в процессе выполнения алгоритма.

Это отличает его от обычной компьютерной программы, в которой заранее заложены все возможные варианты развития событий (полнота по Тьюрингу).

Логическое программирование

Логический подход к созданию ИИ основан на применении правил формальной логики. Это тоже одна из ранних концепций создания «мыслящих» машин. Она появилась в начале 1970-х гг.

Одной из первых реализаций системы, имитирующей логические рассуждения, стал язык программирования Prolog. Он позволяет на основании введенной информации об объектах и связях между ними получать логические умозаключения.

Впоследствии этот метод развился в концепцию семантических сетей.

Агентно-ориентированный подход

В начале 1990-х гг. сформировался еще один подход к формированию ИИ. Он основан на объединении в сеть т.н.

рациональных агентов — сравнительно простых узкоспециализированных программ, обменивающихся информацией с центральным узлом.

Это позволяет частично децентрализовать нагрузку на главный алгоритм, сделать его более простым, модульным. Этот подход применяется в робототехнике, «умных домах», при создании систем контроля компьютерных сетей и т.п.

Наконец, следует упомянуть гибридный подход, сторонники которого считают, во-первых, что наиболее мощные системы удастся создать только сочетая все имеющиеся возможности; во-вторых же, что ИИ еще только развивается и в будущем могут появиться его разновидности, которые превзойдут по возможностям традиционные варианты.

Нейронные сети

О технологии искусственных нейронных сетей (ИНС) следует сказать отдельно, поскольку ее часто путают с самим понятием «искусственный интеллект».

Рисунок 2. Принцип работы нейронных сетей. Автор24 — интернет-биржа студенческих работ

Нейронные сети кардинально отличаются от традиционных компьютерных программ. Они представляют собой самообучающиеся математические модели, в основе которых лежат те же принципы, которые присущи биологическим нервным системам.

ИНС способны производить адаптивное взвешивание входящих сигналов и на основе анализа последовательно улучшать результаты их обработки.

Такие системы представляют собой «слоистые» структуры, состоящие из «нейронов» — миниатюрных вычислительных систем, решающих, стоит ли передавать полученную информацию в следующий слой.

Важными характеристиками нейронных сетей являются:

  • приемлемая сложность;
  • способность выполнять задачу за отведенное время.

Чрезмерно сложная или слишком долго работающая нейронная сеть могут оказаться экономически нецелесообразными

Типы машинного обучения

Настройка нейронных сетей на автоматическое решение задач может производиться несколькими способами:

  • обучение с наблюдателем (supervised learning); эксперт подбирает параметры программы таким образом, чтобы ожидаемые от нее предсказания как можно точнее совпадали с результатами обработки «тренировочных» данных;
  • обучение с частичным наблюдением (semi-supervised learning): система самосотятельно вырабатывает оптимальную модель; оператор лишь корректирует направление оптимизации;
  • обучение без наблюдателя (unsupervised learning) — полностью автоматическая выработка алгоритма на основе ранее проведенных тренировок;
  • теневое обучение (shadow learning) — когда поиск ключевых подходящей модели предваряется обработкой знаний, предоставляемых экспертами;
  • обучение на ошибках (reinforcement).

Рисунок 3. Типы машинного обучения. Автор24 — интернет-биржа студенческих работ

Источник: https://spravochnick.ru/informatika/ponyatie_iskusstvennogo_intellekta/vidy_iskusstvennogo_intellekta_1/

Что такое искусственный интеллект и как он работает

Виды искусственного интеллекта 1

Искусственный интеллект – это технология, а точнее направление современной науки, которое изучает способы обучить компьютер, роботизированную технику, аналитическую систему разумно мыслить также как человек. Собственно мечта об интеллектуальных роботах-помощниках возникла задолго до изобретения первых компьютеров.

Людей в середине 50-х годов прошлого столетия сильно поразили возможности вычислительных машин, особенно способности ЭВМ, безошибочно выполнять множество задач одновременно. В головах ученых и писателей сразу возникли фантастические идеи о мыслящих машинах. Именно в этот период начинают зарождаться первые технологии искусственного интеллекта.

Исследования в сфере ИИ ведутся путем изучения умственных способностей человека и переложения полученных результатов в поле деятельности компьютеров.

Таким образом, искусственный интеллект получает информацию из самых разных источников и дисциплин. Это и информатика, математика, лингвистика, психология, биология, машиностроение.

На основе массива данных с помощью технологии машинного обучения компьютеры пытаются имитировать интеллект человека.

Главные цели ИИ достаточно прозрачны:

  • Создание аналитических систем, которые обладают разумным поведением, могут самостоятельно или под надзором человека обучаться, делать прогнозы и строить гипотезы на основе массива данных.
  • Реализация интеллекта человека в машине – создание роботов-помощников, которые могут вести себя как люди: думать, учиться, понимать и выполнять поставленные задачи.

История развития искусственного интеллекта

Авторство термина «искусственный интеллект» приписывают Джону Маккарти – основоположнику программирования, изобретателю языка Лисп. В 1956 году будущий лауреат престижной премии Тьюринга продемонстрировал в университете Карнеги-Меллон прототип программы на основе ИИ.

Умными роботами человечество начало грезить в первой четверти 20 века. Известный литератор Карел Чапек в 1924 года поставил в лондонском театре пьесу «Универсальные роботы». Представление поразило публику, а слово «робот» прочно вошло в обиход.

В 1943-45 годах закладываются основы для понимания и создания нейронных сетей, а уже в 1950 году Алан Тьюринг публикует в научном издании анализ интеллектуальной шахматной игры. В 1958 году появляется первый язык программирования искусственного интеллекта – Лисп.

В период с 1960 по 1970 ряд ученых доказали, что компьютеры способны понимать естественный язык на достаточно хорошем уровне.

В 1965 году разработали Элизу – первого робота-помощника, который мог говорить на английском языке. В эти же годы направление ИИ стало привлекать правительственные и военные организации США, СССР и других стран.

Так Министерство обороны США уже к 70-м годам запустило проект виртуальных уличных карт – прототип GPS.

В 1969 году ученые Стэнфордского университета создали Шеки – робота с ИИ, способного самостоятельно перемещаться, воспринимать некоторые данные и решать несложные задачи.

В Эдинбургском университете четырьмя годами позже (1973) был создан робот Фредди – это шотландский представитель семейства ИИ мог использовать компьютерное зрение для того, чтобы находить и собирать разные модели.

В СССР искусственный интеллект также развивался стремительно. Академики А.И. Берг и Г.С.Поспелов в 1954-64 годах создают программу «АЛПЕВ ЛОМИ», которая автоматически доказывает теоремы.

В эти же годы советскими учеными был разработан алгоритм «Кора», который моделирует деятельность человеческого мозга при распознавании образов. В 1968 году Турчиным В.

Ф создается символьный язык обработки данных РЕФАЛ.

80-е годы XX века стали прорывными для ИИ. Учеными были разработаны обучающие машины – интеллектуальные консультанты, которые предлагали варианты решений, умели самообучаться на начальном уровне, общались с человеком на ограниченном, но уже естественном языке.

В 1997 году создали известную шахматную программу – компьютер «Дип Блю», который обыграл чемпиона мира по шахматам Гарри Каспарова. В эти же годы Япония приступает к разработке проекта компьютера 6-го поколения на основе нейросетей.

Интересен факт, что в 1989 году другая шахматная программа Deep Thought обыграла гроссмейстера международного уровня Бента Ларсена. После этого поединка машины и человека, Гарри Каспаров заявил:

«Если интеллектуальная машина сможет переиграть в шахматы лучшего из лучших, значит, она сможет писать самую лучшую музыку, сочинять самые лучшие книги. Я не могу в это поверить. Когда я узнаю, что ученые создали компьютер с рейтингом интеллекта 2800, то есть равному моему, я сам вызову машину на шахматный поединок, чтобы защитить человеческую расу»

В 2000-е годы вновь появился интерес к робототехнике. ИИ активно внедряется в космическую отрасль, а также осваивается в бытовой сфере. Появляются системы умного дома, «продвинутые» бытовые устройства. Роботы Кисмет и Номад исследуют районы Антарктиды.

С 2008 начинается эра технологической сингулярности, которая по расчетам экспертов должна выйти в зенит в 2030 году. Начинается интеграция человека с вычислительными машинами, увеличиваются возможности человеческого мозга, появляются биотехнологии.

Принципы ИИ

Прежде чем описываться технологические принципы, без которых немыслимо развитие искусственного интеллекта, стоит познакомиться с этическими законами робототехники. Их в 1942 году вывел Айзек Азимов в своём романе «Хоровод»:

  • Робот или система с искусственным интеллектом не может навредить человеку своим действием или же своим бездействием допустить, чтобы человеку был приченен вред.
  • Робот должен повиноваться приказам, которые получает от человека, кроме тех, которые противоречат Первому закону.
  • Робот должен заботиться о своей безопасности, если это не противоречит Первому и Второму Законам.

До выхода в свет романа Азимова, искусственный интеллект ассоциировался с образом Франкенштейна Мэри Шелли. Искусственно созданное подобие человека с разумом восстает против людей. Эту же страшилку перенесли и в знаменитый блокбастер Голливуда «Терминатор».

Интересен факт, что в 1986 году Айзек Азимов дописал еще один пункт к законам робототехники. Писатель предпочел назвать его «нулевым»:

0. Робот не может навредить человеку, если только не докажет, что в конечном итоге это (вред) будет полезно для всего человечества.

Разобравшись с этическими законами, перейдем к технологическим принципам искусственного интеллекта:

  • Машинное обучение (МО) – принцип развития ИИ на основе самообучающихся алгоритмов. Участие человека при таком подходе ограничивается загрузкой в «память» машины массива информации и постановкой целей. Существует несколько методик МО: обучение с учителем – человек задает конкретную цель, хочет проверить гипотезу или подтвердить закономерность. Обучение без учителя – результат интеллектуальной обработки данных неизвестен – компьютер самостоятельно находит закономерности, учится думать как человек. Глубокое обучение – это смешанный способ, главное отличие в обработке больших массивов данных и использование нейросетей.
  • Нейросеть – математическая модель, которая имитирует строение и функционирование нервных клеток живого организма. Соответственно в идеале – это самостоятельно обучаемая система. Если перенести принцип на технологическую основу, то нейросеть – это множество процессоров, которые выполняют какую-то одну задачу в масштабном проекте. Другими словами суперкомпьютер – это сеть из множества обычных компьютеров.
  • Глубокое обучение относят в отдельный принцип ИИ, так как этот метод используется для обнаружения закономерностей в огромных массивах информации. Для такой непосильной человеку работы, компьютер использует усовершенствованные методики.
  • Когнитивные вычисления – одно их направлений ИИ, которое изучает и внедряет процессы естественного взаимодействия человека и компьютера, наподобие взаимодействия между людьми. Цель технологии искусственного интеллекта заключается в полной имитации человеческой деятельности высшего порядка – речь, образное и аналитическое мышление.
  • Компьютерное зрение – это направление ИИ используется для распознавания графических и видеоизображений. Сегодня машинный интеллект может обрабатывать и анализировать графические данные, интерпретировать информацию в соответствии с окружающей обстановкой.
  • Синтезированная речь. Компьютеры уже могут понимать, анализировать и воспроизводить человеческую речь. Мы уже можем управлять программами, компьютерами и гаджетами с помощью речевых команд. Например, Siri или Google assistant, Алиса в Яндексе и другие.

Кроме того, трудно представить существование искусственного интеллекта без мощных графических процессоров, которые являются сердцем интерактивной обработки данных.

Для интеграции ИИ в различные программы и устройства необходима технология API – программные интерфейсы приложений.

Используя API можно без труда добавлять технологии искусственного интеллекта в любые компьютерные системы: домашняя безопасность, умный дом, оборудование на ЧПУ и прочее.

Сфера использования ИИ

Искусственный интеллект постепенно приходит во все отрасли человеческой деятельности, делая обычные программные комплексы интеллектуальными:

  • Медицина и здравоохранение. Компьютерные системы ведут учет пациентов, помогают в расшифровке диагностических результатов. Например, снимки УЗИ, рентгена, томографа и другого медоборудования. Интеллектуальные системы даже могут по наличию признаков у пациента определять болезнь, предлагать оптимальные варианты лечения. В магазине приложений Гугла можно найти программы-помощники здорового образа жизни. Эти приложения считывают пульс и температуру тела при касании дисплея телефона палицами, чтобы определить уровень стресса человека и подсказать, как его снизить.
  • Розничные продажи в онлайн-магазинах. Многим уже знакома релевантная реклама Гугла и Яндекса. С её помощью ритейлеры предлагают товары и услуги в соответствии с интересами пользователя. Например, вы посещали интернет-магазин купальников, какие-то модели рассматривали, читали характеристики и прочее. Покинув магазин, вы некоторое время будете видеть рекламу купальников на других сайтах. По схожему принципу работают блоки «похожие товары» в интернет-магазинах. Системы аналитики изучают поведенческие метрики пользователя, определяют его покупательские пристрастия и показывают релевантные (по их мнению) предложения.
  • Политика. Интеллектуальные машины помогли Барак Обаме выиграть вторые президентские выборы. Для своей кампании тогда ещё действующий президент США нанял лучшую команду профессионалов в области анализа данных. Специалисты использовали возможности интеллектуальных машин, чтобы рассчитать наилучший день, штат и аудиторию для выступлений Обамы. По оценкам специалистов это дало перевес в 10-12%.
  • Промышленность. Искусственный интеллект может анализировать данные с разных производственных участков и регулировать нагрузку на оборудование. Кроме того, интеллектуальные машины используются для прогнозирования спроса в разных отраслях промышленности.
  • Игровая индустрия, образование. Искусственный интеллект активно применяется создателями игр. Умные машины, робототехника постепенно внедряются в образовательные процессы большинства государств.

Основные проблемы ИИ

Как вы понимаете возможности искусственного интеллекта на данной стадии развития не безграничны. Перечислим главные трудности:

  1. Обучение машин возможно только на основе массива данных. Это означает, что любые неточности в информации сильно сказываются на конечном результате.
  2. Интеллектуальные системы ограничены конкретным видом деятельности. То есть умная система, настроенная на выявление мошенничества в сфере налогообложения, не сможет выявлять махинации в банковской сфере. Мы имеем дело с узкоспециализированными программами, которым ещё далеко до многозадачности человека.
  3. Интеллектуальные машины не являются автономными. Для обеспечения их «жизнедеятельности» необходима целая команда специалистов, а также большие ресурсы.

Резюме

Мы познакомились с понятием, что такое искусственный интеллект. Изучили основные принципы: этические и технологические. Рассмотрели главные препятствия на пути развития ИИ. Искусственный интеллект тесно связан с развитием компьютерной техники, а также таких наук как математика, статистика, комбинаторика и других.

Источник: https://www.calltouch.ru/glossary/iskusstvennyy-intellekt/

Booksm
Добавить комментарий