Вектор напряженности магнитного поля

Напряженность магнитного поля. Закон полного тока

Вектор напряженности магнитного поля

Майкл Фарадей, первооткрыватель электромагнитных волн в эфире
Карл Фридрих Гаусс, разработчик теории запаздывающего потенциала
Густав Р. Кирхгоф, первооткрыватель законов электротехники
Вильгельм Вебер, первооткрыватель законов электромагнетизма
Джон Сёрл, изобретатель магнитного конвертера энергии эфира
Эмилий Ленц, первооткрыватель законов электромагнетизма
Дж. Максвелл, создатель теории электромагнетизма эфира
Никола Тесла, гениальный изобретатель трансформатора
проф. Ст. Маринов, первооткрыватель анизотропии света и скалярного магнитного поля
проф. Г.В. Николаев, исследователь скалярного магнитного поля

к оглавлению

Исторически понятие напряженности магнитного поля построено на формальной аналогии полей неподвижных зарядов и неподвижных намагниченных тел. Такая аналогия оказывается иногда полезной, так как позволяет перенести в теорию магнитного поля методы, разработанные для электростатических полей.

Напряженность магнитного поля первоначально была введена в форме закона Кулона через понятие магнитной массы, аналогичной электрическому заряду, как механическая сила взаимодействия двух точечных магнитных масс в однородной среде, которая пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния между ними

,

где m1 и m2 — взаимодействующие магнитные массы; r — расстояние между точками, в которых магнитные массы считаются сосредоточенными; k — коэффициент, зависящий от свойств среды и системы единиц измерения.

Сила f направлена по прямой, соединяющей центры магнитных масс.

Магнитные массы одного знака отталкиваются, а противоположного — притягиваются.

Для количественной характеристики магнитного поля можно воспользоваться механической силой, действующей на положительный полюс пробного магнита, в той точке, где он расположен в пространстве. Историческое определение напряженности в терминах классической физики XIX века формулируется следующим образом:

Напряженность магнитного поля, H — это отношение механической силы, действующей на положительный полюс пробного магнита, к величине его магнитной массы или механическая сила, действующая на положительный полюс пробного магнита единичной массы в данной точке поля. Напряженность изображается вектором H, имеющим направление вектора механической силы f, производимым магнитным полем.

Для представления пространственной формы распределения (поля) H удобно использовать следующий формальный инструмент:

Силовые линии напряженности магнитного поля H — есть воображаемые линии в трехмерном физическом пространстве, направление касательных к которым в каждой точке поля будет совпадать с направлением напряженности H.

В XIX веке было введено понятие о силовой трубке напряженности магнитного поля аналогично тому, как это было сделано для магнитного потока ФM.

Силовые линии напряженности магнитного поля H, в отличие от линий индукции магнитного поля B, начинаются на положительных магнитных массах и заканчиваются на отрицательных, то есть прерываются на воображаемых полюсах магнитного поля, которых реально не существует. Поэтому модель магнитного поля, основанная на аналогии с электростатическим является дефектной.

Она применима лишь в частных «контурных», «полупространственных», цепных моделях, в которых присутствуют, как минимум, два элемента: магнит, производящий поле и имеющий явно выраженные полюса — площадки с преимущественным направлением вектора H либо внутрь магнита, либо наружу, и пассивное (полу)пространство вокруг магнита.

При этом от наличия «возвратных» силовых линий внутри магнита абстрагируются, то есть «забывают» для удобства рассуждений. Большим недостатком «кулоновской модели» является то, что она приучает думать о реальности «магнитных масс», которых на самом деле нет в природе.

Современный взгляд на понятие напряженности магнитного поля

Для изотропной среды и постоянного либо медленно меняющегося магнитного поля существует прямо пропорциональная связь между индукцией и напряженностью магнитного поля

B = μaH [Tesla] или μa = B/H [Hn/m].(1)

Последнее соотношение можно использовать для определения абсолютной магнитной проницаемости μa [Hn/m] как отношения индукции к напряженности магнитного поля.

При помещении в магнитное поле вещества в нем происходят процессы ориентации различных структур, обладающих дипольным магнитным моментом.

 Так электроны, перемещаясь по орбитам, образуют элементарные токи и соответствующие магнитные поля или магнитные диполи (рис. 1 а)).

Кроме этого, электроны создают магнитный момент за счет вращения вокруг собственной оси, называемый спиновым магнитным моментом.

Магнитный диполь можно характеризовать вектором магнитного момента, численно равным произведению величины элементарного тока на площадь контура, ограниченного этим током в пространстве

m

= is,

и направленным по нормали к площади контура.

Геометрическая сумма всех магнитных моментов образует магнитный момент тела

M = S m,

который обычно соотносят с объемом вещества V и называют намагниченностью или интенсивностью намагничивания

.(1)

Единицу измерения намагниченности можно определить из выражения (1) [J] = [M/V] = Ам2/м3 = А/м.

Вектор намагниченности совпадает с направлением вектора напряженности и связан с ним линейной зависимостью

.(2)

Безразмерный коэффициент k называется магнитной восприимчивостью вещества.

Для магнитного поля, существующего в некоторой среде, можно представить магнитную индукцию в виде суммы двух составляющих, индукции B0 , соответствующей вакууму, и дополнительной индукции Bн, создаваемой намагниченностью вещества

,(3)

где m 0 — магнитная проницаемость вакуума; m а и m =1+k — соответственно абсолютная и относительная магнитные проницаемости вещества.

В зависимости от значения m все вещества разделяются на диамагнитные парамагнитные и ферромагнитные. К диамагнетикам относятся вещества, у которых k 1. Например, у платины относительная магнитная проницаемость составляет 1,00036.

Особую группу веществ, представляющих большой интерес с практической точки зрения, составляют ферромагнетики, у которых m >>1 и составляет величину порядка 104ј 106.

Определение напряженности магнитного поля через магнитные силы и массы не вполне адекватно физической картине явлений в магнитном поле, т.к., в отличие от электрического заряда, не существует массы или заряда магнитного. На практике удобнее пользоваться явлениями, связывающими между собой электрический ток и магнитное поле.

Пусть некая точечная магнитная масса m перемещается по произвольному пути из точки A в точку B магнитного поля (рис. 2). Действующая на магнитную массу механическая сила f в любой точке поля направлена по касательной к силовой линии и равна f=mH , где H — напряженность поля.

Работа по перемещению массы m по пути AB равна

,(4)

где a — угол между направлением вектора H и касательной к направлению перемещения. В этом выражении линейный интеграл вектора напряженности магнитного поля, взятый вдоль некоторого пути AB, называется магнитодвижущей силой (МДС) F, действующей вдоль этого пути

,(5)

т.е. магнитодвижущая сила численно равна работе по перемещению единичной магнитной массы по заданному пути.

Рассмотрим теперь перемещение магнитной массы m по замкнутому пути в магнитном поле витка с постоянным значением тока i.

Сначала допустим, что существует только воздействие со стороны поля витка на массу m (рис. 3 а)).

В соответствии с выражением (4), работа перемещения по замкнутому пути будет равна

.(6)

Теперь предположим, что мы перемещаемся по тому же замкнутому контуру, но воздействие существует только со стороны магнитной массы m на виток с током (рис. 3 б)).

При анализе электромагнитной силы было установлено, что элементарная работа по перемещению отрезка проводника с током i в магнитном поле равна dA = idФ = idN, где — число линий индукции магнитного поля, пересекаемых при перемещении.

Если магнитная масса m переместится по изображенному на рисунке контуру, то виток пересечет все исходящие из нее линии индукции и работа по перемещению, с учетом того, что полный магнитный поток перемещаемой массы численно равен ее значению, будет равна

.(7)

Но на основании закона сохранения энергии A1 = A2 , отсюда

.(8)

Очевидно, что задачу можно дополнить другими контурами (витками) с токами. Однако, в этом случае ее можно рассмотреть по отдельности, для каждого витка. Тогда в правой части выражения (8) окажется алгебраическая сумма всех токов, охваченных контуром интегрирования

.(9)

Полученное выражение называется законом полного тока. Линейный интеграл вектора напряженности магнитного поля, взятый по замкнутому контуру, равен полному (суммарному) электрическому току, проходящему через поверхность, ограниченную этим контуром или МДС вдоль замкнутого контура равна полному току, охватываемому этим током.

Закон полного тока является одним из важнейших законов, устанавливающим неразрывную связь между электрическим током и магнитным полем.

Из него следует, что любая магнитная линия обязательно охватывает электрический ток и, наоборот, электрический ток всегда окружен магнитным полем. Причем, не являются исключением из этого закона и постоянные магниты, т.к.

в них магнитные линии создаются элементарными микроскопическими токами, также входящими в правую часть выражения (9).

Переход магнитного потока из одной среды в другую сопровождается некоторыми явлениями на границе раздела этих сред.

Пусть магнитный поток переходит из среды с магнитной проницаемостью m 1 в среду с магнитной проницаемостью m 2 (рис. 4). Из условия непрерывности магнитного потока следует, что при переходе из одной среды в другую через границу раздела площадью S он должен сохраняться, т.е. Ф1 = Ф2 . Но магнитный поток для изотропной среды можно представить через индукцию в виде

,

где Q — угол между направлением вектора индукции и нормалью к поверхности границы раздела сред, а произведение BcosQ — проекция вектора индукции на нормаль или нормальная проекция.

Отсюда — Ф1= B1ScosQ 1= Ф2= B2ScosQ 2 или

т.е. при переходе из одной среды в другую магнитная индукция изменяет свое значение, но сохраняет нормальную проекцию

.

В изотропной среде векторы индукции и напряженности магнитного поля совпадают по направлению, поэтому и углы с нормалью векторов H1 и H2 будут такими же как у векторов B1 и B2 (рис. 4 б)).

Выделим вблизи поверхности раздела замкнутый прямоугольный контур abcd так, чтобы его противоположные стороны длиной l располагались в разных средах на бесконечно малом расстоянии от границы (рис. 4 б)).

Найдем линейный интеграл от вектора напряженности поля вдоль этого контура и по закону полного тока приравняем его нулю, т.к. внутри контура отсутствует электрический ток:

.

Отсюда:

Это означает, что при переходе из одной среды в другую вектор напряженности магнитного поля сохраняет тангенциальную составляющую

, т.е. проекцию на границу раздела сред.

Если разделить выражение (10) на выражение (11), то мы получим соотношение, связывающее углы векторов с нормалью и магнитные проницаемости.

.(12)

Из выражения (12) следует, что при большом отличии магнитных проницаемостей (m 1/m 2=1000), например, при выходе магнитного потока из ферромагнетика в воздушную среду почти параллельно границе раздела (Q 1=87° ), угол с нормалью вектора индукции составит около 1° , т.е. можно считать, что магнитные линии в воздухе нормальны к поверхностям тел из ферромагнетиков.

Литература по напряженности магнитного поля

  1. К.А. Хайдаров О реальных явлениях электромагнетизма — BRI, Боровое, 2015

к оглавлению

Знаете ли Вы, что в 1974 — 1980 годах профессор Стефан Маринов из г. Грац, Австрия, проделал серию экспериментов, в которых показал, что Земля движется по отношению к некоторой космической системе отсчета со скоростью 360±30 км/с, которая явно имеет какой-то абсолютный статус. Естественно, ему не давали нигде выступать и он вынужден был начать выпуск своего научного журнала «Deutsche Physik», где объяснял открытое им явление. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАРыцари теории эфира

Источник: http://bourabai.kz/toe/mc_5.htm

Вектор напряженности магнитного поля

Вектор напряженности магнитного поля

Когда мы рассматриваем магнитное поле в вакууме при отсутствии магнетиков, магнитное поле порождается токами проводимости и выполняется равенство:

где $\overrightarrow{j}$ — вектор плотности токов проводимости.

В магнетиках поле возникает благодаря токам проводимости и молекулярным токам ($\overrightarrow{j_m}$), что необходимо учитывать. Для молекулярных токов имеет место векторное равенство:

где $\overrightarrow{j_m}$ — объемная плотность молекулярных токов, $\overrightarrow{J\ }$ — вектор намагниченности. Так, при наличии магнетиков выражение (1) с учетом равенства (2) примет вид:

Выразим ток проводимости из уравнения (3), получим:

Определение вектора напряженности магнитного поля

Вектором напряженности магнитного поля называют вектор, равный:

Напряженность магнитного поля не является чисто полевой величиной, так как включает вектор $\overrightarrow{J\ },\ $который является характеристикой намагниченности среды. По своему значению $\overrightarrow{H}$ является вспомогательным вектором и играет роль подобную вектору электрического смещения $\overrightarrow{D\ }\ $в электричестве.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Основные уравнения для вектора напряженности

Из определения вектора $\overrightarrow{H}$ и уравнения (4), следует весьма удобное уравнение для вычисления поля в магнетиках:

Закон полного тока при наличии магнетиков имеет вид:

Формула (7) выражает теорему о циркуляции вектора напряженности магнитного поля, которая гласит:

Теорема

«Циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, которые охвачены заданным контуром».

В вакууме $\overrightarrow{J\ }=0$, тогда:

\[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0}\left(8\right).\]

Напряженность поля прямолинейного бесконечного проводника в вакууме определяется формулой:

\[H=\frac{1}{2\pi }\frac{I}{b}\left(9\right),\]

где $b$ — расстояние от проводника до точки, где рассматривается поле. Из формулы (9) определяется размерность напряженности магнитного поля. Основная единица напряженности в системе СИ — ампер деленный на метр ($\frac{А}{м}$).

Связь и вектора напряженности магнитного поля с намагниченностью и вектором магнитной индукции

Обычно вектор намагниченности ($\overrightarrow{J}$) связывают с вектором напряженности в каждой точке магнетика:

\[\overrightarrow{J}=\varkappa \overrightarrow{H}\left(10\right),\]

где $\varkappa $ — магнитная восприимчивость, безразмерная величина. Для неферромагнитных веществ и в не больших полях $\varkappa $ не зависит от напряженности. В анизотропных средах $\varkappa $ является тензором и направления $\overrightarrow{J}$ и $\overrightarrow{H}$ не совпадают.

Помимо магнитной восприимчивости в магнетиках используют другую безразмерную физическую величину, которая характеризует магнитные свойства вещества — это относительная магнитная проницаемость (или просто магнитная проницаемость ($\mu $)) вещества. Причем:

\[\mu =1+\varkappa \ \left(11\right).\]

Тогда между индукцией магнитного поля в магнетике и напряженностью магнитного поля существует следующая связь:

\[\overrightarrow{B}=\mu {\mu }_0\overrightarrow{H}\left(12\right).\]

Формула (12) показывает, что в изотропных средах векторы $\overrightarrow{B}$ и $\overrightarrow{H}$ имею одинаковое направление, однако по модулю напряженность поля в $\mu {\mu }_0$ раз меньше.

Пример 1

Задание: По оси бесконечного прямого круглого цилиндра радиуса R течет ток силы I. Магнитная проницаемость вещества цилиндра равна $\mu $. Вне цилиндра вакуум (${\mu }_v=1$). Найдите формулу для вычисления напряженности во всех точках пространства.

Решение:

Рис. 1

Пусть ток течет в направлении оси Z. Линиями напряженности такого цилиндра являются концентрические окружности с центрами, которые лежат на оси цилиндра.

В качестве контура интегрирования (L) возьмем окружность радиусом r, центр окружности лежит на оси цилиндра, плоскость окружности перпендикулярна току. По закону полного тока для напряженности магнитного поля имеем:

\[\oint\limits_L{\overrightarrow{H\ }\overrightarrow{dl}}=H_{\varphi }2\pi r=I\left(1.1\right).\]

Из (1.1) выразим напряженность поле, получим:

\[H_{\varphi }=\frac{I}{2\pi r}\left(1.2\right),\]

где $H_{\varphi }$ — напряжённость магнитного поля, касательная к окружности. В таком случае индукция магнитного поля равна:

\[B_{\varphi }=\left\{ \begin{array}{c}\mu {\mu }_0H_{\varphi }=\mu {\mu }_0\frac{I}{2\pi r}\ (при\ 0\le r\le R) \\ {\mu }_0H_{\varphi }={\mu }_0\frac{I}{2\pi r}\left(при\ r\ge R\right). \end{array}\right.\]

На границе цилиндра индукция магнитного поля терпит разрыв.

Ответ: $B_{\varphi }=\left\{ \begin{array}{c}\mu {\mu }_0H_{\varphi }=\mu {\mu }_0\frac{I}{2\pi r}\ (при\ 0\le r\le R) \\ {\mu }_0H_{\varphi }={\mu }_0\frac{I}{2\pi r}\left(при\ r\ge R\right). \end{array}\right.$.

Пример 2

Задание: Найдите намагниченность меди и магнитную индукцию поля, если удельная магнитная восприимчивость вещества ${\varkappa }_u=-1,1\cdot {10}{-9}\frac{м3}{кг}.$ Напряженность магнитного поля равна ${10}6\frac{А}{м}$.

Решение:

Магнитная восприимчивость ($\varkappa $) связана с удельной магнитной восприимчивостью (${\varkappa }_u$) соотношением:

\[\varkappa =\rho {\varkappa }_u\left(2.1\right),\]

где $\rho =8930\frac{кг}{м3}$ — массовая плотность меди.

Намагниченность имеет связь с напряженностью магнитного поля, которая имеет вид (считаем медь изотропной):

\[J=\varkappa H=\rho {\varkappa }_uH\ \left(2.2\right).\]

Индукция магнитного поля, также связана с напряженностью:

\[B=\mu {\mu }_0H={\mu }_0(H+J)\left(2.3\right).\]

Так как все величины даны в СИ, проведем вычисления:

\[J=8930\cdot \left(-1,1\cdot {10}{-9}\right){10}6=-9,823\left(\frac{А}{м}\right).\] \[B=4\pi \cdot {10}{-7}\left(9,823+{10}6\right)=1,26\ \left(Тл\right).\]

Ответ: $J=-9,823\frac{А}{м},\ B=1,26\ Тл.$

Источник: https://spravochnick.ru/fizika/magnetiki/vektor_napryazhennosti_magnitnogo_polya/

Вектор напряжённости магнитного поля и его связь с векторами индукции и намагниченности.Магнитная восприимчивость и магнитная проницаемость вещества

Вектор напряженности магнитного поля

Напряженность магнитного полянеобходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула)векторная физическая величина, равная:

Напряженность магнитного поля в СИ — ампер на метр (А/м).

Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Если знать Напряженность магнитного поляв данной точке, то можно определить индукцию поля в этой точке.

Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.

Намагниченность — характеристика магнитного состояния макроскопического физического тела.

Однородно намагниченное тело:

Любое вещество, помещенное в магнитное поле, приобретает некоторый магнитный момент. Намагниченность J – это магнитный момент единицы объема.

В несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничивание: :

Если же тело намагничено неоднородно (состоит из нескольких частей), то намагниченность определяется для каждого физически малого объема dV

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ , величина, характеризующая связь намагниченности вещества с магнитным полем в этом веществе. М. в. в статич. полях равна отношению намагниченности вещества М к напряжённости Н намагничивающего поля: ; — величина безразмерная. М. в.

, рассчитанная на 1 кг (или 1 г) вещества, наз. удельной ( , где р — плотность вещества), а М. в. одного моля — молярной (или атомной): , где т — молекулярная масса вещества. С магнитной проницаемостью . в. в статич. полях (статич. М. в.) связана соотношениями: (в ед. СГС), (в ед. СИ). М. в.

может быть как положительной, так и отрицательной. Отрицательной М. в. обладают диамагнетики (ДМ), они намагничиваются против поля; положительной — парамагнетики (ПМ) и ферромагнетики (ФМ), они намагничиваются по полю. М. в. ДМ и ПМ мала по абс.

величине , она слабо зависит от Н и то лишь в области очень сильных полей (и низких темп-р).

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью:

18.Диамагнетики,парамагнетики,ферромагнетики.

Слабо-магнитные вещества делятся на две большие группы – парамагнетики и диамагнетики.

Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиковμ > 1, а у диамагнетиков μ < 1.

Отличие μ от единицы у пара- и диамагнетиков чрезвычайно мало. Например, у алюминия, который относится к парамагнетикам,μ – 1 ≈ 2,1·10–5, у хлористого железа (FeCl3) μ – 1 ≈ 2,5·10–3. К парамагнетикам относятся также платина, воздух и многие другие вещества.

К диамагнетикам относятся медь(μ – 1 ≈ –3·10–6), вода (μ – 1 ≈ –9·10–6), висмут (μ – 1 ≈ –1,7·10–3) и другие вещества. Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному – парамагнетики втягиваются в область сильного поля, диамагнетики – выталкиваются (рис. 1.19.1).

Рисунок 1.19.1. Парамагнетик (1) и диамагнетик (2) в неоднородном магнитном поле

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы.

Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей.

Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.

Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками. Магнитная проницаемость ферромагнетиков по порядку величины лежит в пределах 102–105. Например, у стали μ ≈ 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000.

К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков.

Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы – ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360 °C.

Ферромагнитные материалы делятся на две большие группы – на магнито-мягкие и магнито-жесткие материалы. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю.

К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы.

Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие метериалы используются в основном для изготовления постоянных магнитов.

Магнитная проницаемость μ ферромагнетиков не является постоянной величиной; она сильно зависит от индукции B0 внешнего поля. Типичная зависимость μ (B0) приведена на рис. 1.19.2. В таблицах обычно приводятся значения максимальной магнитной проницаемости.



Источник: https://infopedia.su/6x61d4.html

Booksm
Добавить комментарий