Вектор напряженности электрического поля

Содержание
  1. Вектор напряженности электрического поля
  2. Характеристика электрического поля
  3. Силовые линии
  4. Что называется напряженностью электрического поля
  5. Силовые линии
  6. Напряженность поля
  7. Электрическое поле. Напряженность. Линии напряженности. урок. Физика 10 Класс
  8. Напряженность электрического поля
  9. Напряжённость электрического поля в классической электродинамике
  10. Как направлен вектор электрического поля
  11. Сила действия электромагнитного поля на заряженные частицы
  12. Уравнения Максвелла
  13. Закон Кулона
  14. Закон обратных квадратов
  15. «Материальные уравнения»
  16. Связь с потенциалами
  17. Электростатика
  18. Теорема Гаусса
  19. Напряжённость электрического поля точечного заряда
  20. В единицах СИ
  21. Для системы СГС
  22. Напряженность электрического поля произвольного распределения зарядов
  23. Системы единиц
  24. Закон Кулона
  25. Вектор напряженности электрического поля
  26. Работа в электрическом поле. Разность потенциалов
  27. Конденсаторы

Вектор напряженности электрического поля

Вектор напряженности электрического поля

По теории близкодействия взаимодействия между заряженными телами, удаленными друг от друга, происходит с помощью электромагнитных полей, создаваемых этими телами в окружающем их пространстве.

Если поле было создано неподвижными частицами, то его относят к электростатическому. Когда происходят изменения во времени, получает название стационарного. Электростатическое поле является стационарным.

Оно считается частным случаем электромагнитного поля.

Характеристика электрического поля

Силовая характеристика электрического поля – вектор напряженности, который можно найти по формуле:

E→=F→q, где F→ — сила, действующая со стороны поля на неподвижный (пробный) заряд q. Его значение должно быть настолько мало, чтобы отсутствовала возможность искажать поле, напряженность которого с его помощью и измеряют. По уравнению видно, что напряженность совпадает по направлению с силой, с которой поле действует на единичный положительный пробный заряд.

У напряженности электростатического поля нет зависимости от времени. Когда она во всех точках поля одинакова, тогда поле называют однородным. В другом случае – неоднородным.

Силовые линии

Чтобы изобразить электростатические поля графически, необходимо задействовать понятие силовых линий.

Определение 1

Силовые линии – это линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.

Такие линии в электростатическом поле разомкнутые. Они начинаются на положительных зарядах и заканчивают на отрицательных. Реже уходят в бесконечность или возвращаются из нее. Силовые линии поля не могу пересекаться.

Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:

E→=∑i=1nE→i.

Результирующий вектор напряженности сводится к нахождению векторной суммы напряженностей, составляющих его «отдельные» поля. При распределении непрерывного заряда, поиск суммарной напряженности поля производится по формуле:

E→=∫dE→.

Интегрирование E→=∫dE→ проводится по области распределения зарядов. Если их распределение идет по линии (τ=dqdl — линейная плотность распределения заряда), то интегрирование E→=∫dE→ тоже. Когда распределение зарядов идет по поверхности и поверхностная плоскость обозначается как σ=dqdS, тогда интегрируют по поверхности.

Интегрирование по объему выполняется, если имеется объемное распределение заряда:

ρ=dqdV, где ρ — объемная плотность распределения заряда.

Что называется напряженностью электрического поля

Определение 2

Напряженность поля в диэлектрике равняется векторной сумме напряженностей полей, которые создают свободные E0→ и связанные Ep→ заряды:

E→=E0→+Ep→.

Зачастую бывают случаи, когда диэлектрик изотропный. Тогда запись напряженности поля имеет вид:

E→=E0→ε, где ε обозначает относительную диэлектрическую проницаемость среды в рассматриваемой точке поля.

Отсюда следует, что по выражению E→=E0→ε имеется однородный изотропный диэлектрик с напряженностью электрического поля в ε меньше, чем в вакууме.

Напряженность электростатического поля системы точечных зарядов равняется:

E→=14πε0∑i=1nqiεri3ri→.

В системе СГС напряженность поля точечного заряда в вакууме:

E→=qr→r3.

Пример 1

Дан равномерно распределенный заряд по четверти окружности радиуса R с линейной плотностью τ. Необходимо найти напряженность поля в точке А, являющейся центром окружности.

Решение

Рисунок 1

Произведем выделение на заряженной части окружности элементарного участка dl, который будет создавать элемент поля в точке А. Следует записать выражение для напряженности, то есть для dE→. Тогда формула примет вид:

dE→=dqR3R→R.

Проекция вектора dE→ на ось Ох составит:

dEx=dEcosφ=dqcosφR2.

Произведем выражение dq через линейную плотность заряда τ:

dq=τdl=τ·2πRdR.

Необходимо использовать dq=τdl=τ·2πRdR для преобразования dEx=dEcosφ=dqcosφR2:

dEx=2πRτdRcos φR2=2πτdRcos φR=τcos φdφR,

где 2πdR=dφ.

Далее перейдем к нахождению полной проекции Ex при помощи интегрирования dEx=2πRτdRcos φR2=2πτdRcos φR=τcos φdφR,

по dφ с изменением угла 0≤φ≤2π.

Ex=∫02πτcos φdφR=τR∫02πcosφ dφ=τRsin φ02π=τR.

Перейдем к проекции вектора напряженности на Оу:

dEy=dEsin φ=τRsin φdφ.

Следует проинтегрировать с изменяющимся углом π2≤φ≤0:

Ey∫π20τRsin φdφ=τR∫π20sin φdφ=-τRcos φπ20=-τR.

Произведем нахождение модуля вектора напряженности в точке А, применив теорему Пифагора:

E=Ex2+Ey2=τR2+-τR2=τR2.

Ответ: E=τR2.

Пример 2

Найти напряженность электростатического поля равномерно заряженной полусферы с радиусом R. Поверхностная плотность заряда равняется σ.

Решение

Рисунок 2

Следует выделить на поверхности заряженной сферы элементарный заряд dq, располагаемый на элементе площади dS. Запись, используя сферические координаты dS, равняется:

dS=R2sinθdθdφ,

при 0≤φ≤2π, 0≤θ≤π2.

Элементарная напряженность поля точечного заряда в системе СИ:

dE→=dq4πε0R3R→R.

Необходимо спроецировать вектор напряженности на Ох:

dEx=dqcosθ4πε0R2.

Произведем выражение заряда через поверхностную плотность заряда:

dq=σdS.

Подставим dq=σdS в dEx=dqcosθ4πε0R2, используя dS=R2sinθdθdφ, проинтегрируем и запишем:

Ex=σR24πε0R2∫02πdφ∫0π2cosθsinθdθ=σ4πε02π·12=σ4ε0.

Тогда EY=0.

Отсюда следует, что E=Ex.

Ответ: напряженность полусферы в центре равняется E=σ4ε0.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/vektor-naprjazhennosti-elektricheskogo-polja/

Силовые линии

Для графического изображения электростатических полей используют понятие силовых линий.

Определение

Силовыми линиями или линиями напряженности поля, называются линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.

Силовые линии электростатического поля являются разомкнутыми. Они начинаются на положительных зарядах и заканчиваются на отрицательных. Иногда они могут уходить в бесконечность или приходить из бесконечности. Силовые линии поля не пересекаются.

Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:

\[\overrightarrow{E}=\sum\limitsn_{i=1}{{\overrightarrow{E}}_i(2)}.\]

Результирующий вектор напряженности поля может быть найден как векторная сумма напряженностей составляющих его «отдельных» полей. Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}$ -линейная плотность распределения заряда), то интегрирование в (3) проводят по линии.

Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma=\frac{dq\ }{dS}$, то интегрируют по поверхности.

Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ — объемная плотность распределения заряда.

Напряженность поля

Напряжённость поля в диэлектрике равна векторной сумме напряженностей полей, которые создают свободные заряды ($\overrightarrow{E_0}$) и связанные заряды ($\overrightarrow{E_p}$):

\[\overrightarrow{E}=\overrightarrow{E_0}+\overrightarrow{E_p}\left(4\right).\]

Очень часто в примерах мы сталкиваемся с тем, что диэлектрик является изотропным. В таком случае, напряжённость поля может быть записана как:

\[\overrightarrow{E}=\frac{\overrightarrow{E_0}}{\varepsilon }\ \left(5\right),\]

где $\varepsilon $- относительная диэлектрическая проницаемость среды в рассматриваемой точке поля. Таким образом, из (5) очевидно, что однородном в изотропном диэлектрике напряженность электрического поля в $\varepsilon $ раз меньше, чем в вакууме.

Напряженность электростатического поля системы точечных зарядов равна:

\[\overrightarrow{E}=\frac{1}{4\pi {\varepsilon }_0}\sum\limitsn_{i=1}{\frac{q_i}{\varepsilon r3_i}}\overrightarrow{r_i}\ \left(6\right).\]

В системе СГС напряженность поля точечного заряда в вакууме равна:

\[\overrightarrow{E}=\frac{q\overrightarrow{r}}{r3}\left(7\right).\]

Пример 1

Задание: Заряд равномерно распределен по четверти окружности радиуса R с линейной плотностью $\tau $. Найти напряженность поля в точке (А), которая была бы центром окружности.

Решение:

Рис. 1

Выделим на заряженной части окружности элементарный участок ($dl$), который будет создавать элемент поля в точке А, для него запишем выражение для напряженности (будем использовать систему СГС), в таком случае выражение для $d\overrightarrow{E}$ имеет вид:

\[d\overrightarrow{E}=\frac{dq}{R3}\frac{\overrightarrow{R}}{R}\ \left(1.1\right).\]

Проекция вектора $d\overrightarrow{E}$ на ось OX имеет вид:

\[{dE}_x=dEcos\varphi =\frac{dqcos\varphi }{R2}\left(1.2\right).\]

Выразим dq через линейную плотность заряда $\tau $:

\[dq=\tau dl=\tau \cdot 2\pi RdR\ \left(1.3\right).\]

Используя (1.3) преобразуем (1.2), получим:

\[{dE}_x=\frac{2\pi R\tau dRcos\varphi }{R2}=\frac{2\pi \tau dRcos\varphi }{R}=\frac{\tau cos\varphi d\varphi }{R}\ \left(1.4\right),\]

где $2\pi dR=d\varphi $.

Найдем полную проекцию $E_x$, интегрированием выражения (1.4) по $d\varphi $, где угол изменяется $0\le \varphi \le 2\pi $.

\[E_x=\int\limits{2\pi }_0{\frac{\tau cos\varphi d \varphi }{R}}=\frac{\tau }{R}\int\limits{2 \pi}_0{cos\varphi d \varphi=}\frac{\tau}{R}\left({\left.sin\varphi \right|}{2\pi }_0\right)=\frac{\tau }{R}\ \left(1.5\right).\]

Займемся проекцией вектора напряженности на ос OY, по аналогии без особых пояснений запишем:

\[{dE}_y=dEsin\varphi =\frac{\tau }{R}sin\varphi d \varphi \ \left(1.6\right).\]

Интегрируем выражение (1.6), угол изменяется $\frac{\pi }{2}\le \varphi \le 0$, получаем:

\[E_y=\int\limits0_{\frac{\pi }{2}}{\frac{\tau }{R}sin\varphi d\varphi =\frac{\tau }{R}\int\limits0_{\frac{\pi }{2}}{sin\varphi d\varphi =-\ \frac{\tau }{R}}\ }{\left.cos\varphi \right|}0_{\frac{\pi }{2}}=-\ \frac{\tau }{R}\ \left(1.7\right).\]

Найдем модуль вектора напряженности в точке А, используя теорему Пифагора:

\[E=\sqrt{{E_x}2+{E_y}2}=\sqrt{{\left(\frac{\tau }{R}\right)}2+{\left(-\frac{\tau }{R}\right)}2}=\frac{\tau }{R}\sqrt{2}\]

Ответ: Напряженность поля в точке (А) равна $E=\frac{\tau }{R}\sqrt{2}.$

Пример 2

Задание: Найдите напряженность электростатического поля равномерно заряженной полусферы, радиус которой равен R. Поверхностная плотность заряда равна $\sigma$.

Решение:

Рис. 2

Выделим на поверхности заряженной сферы элементарный заряд $dq$, который расположен на элементе площади $dS.$ В сферических координатах $dS$ равен:

\[dS=R2sin\theta d\theta d\varphi \ \left(2.1\right),\]

где $0\le \varphi \le 2\pi ,\ 0\le \theta \le \frac{\pi }{2}.$

Запишем выражение для элементарной напряженности поля точечного заряда в системе СИ:

\[d\overrightarrow{E}=\frac{dq}{{4\pi {\varepsilon }_0R}3}\frac{\overrightarrow{R}}{R}\ \left(2.2\right).\]

Проектируем вектор напряженности на ось OX, получим:

\[{dE}_x=\frac{dqcos\theta }{4 \pi \varepsilon_0R2}\left(2.3\right).\]

Элементарный заряд выразим через поверхностную плотность заряда, получим:

\[dq=\sigma dS\ \left(2.4\right).\]

Подставляем (2.4) в (2.3), используем (2.1) интегрируем, получаем:

\[E_x=\frac{\sigma R2}{4\pi {\varepsilon }_0R2}\int\limits{2\pi }_0{d\varphi \int\limits{\frac{\pi }{2}}_0{cos\theta }}sin\theta d\theta =\frac{\sigma}{4\pi {\varepsilon }_0}\left(2\pi \cdot \frac{1}{2}\right)=\frac{\sigma}{4{\varepsilon }_0}.\]

Легко получить, что $E_Y=0.$

Следовательно, $E=E_x.$

Ответ: Напряженность поля полусферы заряженной по поверхности в ее центре равна $E=\frac{\sigma}{4{\varepsilon }_0}.$

Источник: https://spravochnick.ru/fizika/elektrostatika/vektor_napryazhennosti_elektricheskogo_polya/

Электрическое поле. Напряженность. Линии напряженности. урок. Физика 10 Класс

Вектор напряженности электрического поля

Тема данного урока – это изучение вопросов, связанных с понятием электрического поля. Мы познакомимся с очень важной характеристикой электрического поля – напряженностью – и рассмотрим изображение различных электрических полей с помощью силовых линий.

Закон Кулона, изученный на прошлом уроке, был установлен экспериментально и справедлив для покоящихся заряженных тел.

Каким же образом происходит взаимодействие заряженных тел на расстоянии? До некоторых пор при изучении электрических взаимодействий бок о бок развивались две принципиально разные теории: теория близкодействия и теория дальнодействия (действия на расстоянии).

Теория близкодействия заключается в том, что заряженные тела взаимодействуют друг с другом посредством промежуточного звена (например, цепь в задаче о поднятии ведра из колодца является промежуточным звеном, посредством которого мы воздействуем на ведро, то есть поднимаем его).

Теория дальнодействия гласит, что заряженные тела взаимодействуют через пустоту. Шарль Кулон придерживался именно этой теории и говорил, что заряженные тела «чувствуют» друг друга. В начале XIX века конец спорам положил Майкл Фарадей (рис. 1).

В работах, связанных с электрическим полем, он установил, что между заряженными телами существует некий объект, который и осуществляет действие заряженных тел друг на друга. Работы Майкла Фарадея были подтверждены Джеймсом Максвеллом (рис. 2).

Он показал, что действие одного заряженного тела на другое распространяется за конечное время, таким образом, между заряженными телами должно существовать промежуточное звено, через которое осуществляется взаимодействие.

Рис. 1. Майкл Фарадей (Источник)

Рис. 2. Джеймс Клерк Максвелл (Источник)

Определение: Электрическое поле – это особая форма материи, которая создается покоящимися зарядами и определяется действием на другие заряды.

Электрическое поле характеризуется определенными величинами. Одна из них называется напряженностью.

Вспомним, что по закону Кулона, сила взаимодействия двух зарядов:

Максвелл показал, что это взаимодействие осуществляется за конечное время:

где l – расстояние между заряженными частицами, а c – скорость света, скорость распространения электромагнитных волн.

Рассмотрим эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q0, и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q (рис. 3,а).

Согласно закону Кулона, на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле. Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке.

Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия также увеличится вдвое (рис. 3,б). Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке.

Так же действие электрического поля определяется и в том случае, если пробный заряд отрицательный (рис. 3,в).

Рис. 3. Сила электростатического взаимодействия двух точечных зарядов

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной:

Эта величина и называется напряженностью электрического поля. Напряженность поля в данной точке не зависит от величины пробного заряда: во всех трех случаях отношение силы к величине заряда – постоянная величина. Единица измерения напряженности:

Напряженность – векторная величина, является силовой характеристикой электрического поля, направлена в ту же сторону, куда и сила электростатического взаимодействия. Она показывает, с какой силой электрическое поле действует на помещенный в него заряд.

Рассмотрим напряженность электрического поля уединенного точечного заряда либо заряженной сферы.

Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их кулоновского взаимодействия, можем получить величину напряженности электрического поля, которое создается зарядом q0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:

Данная формула показывает, что напряженность поля точечного заряда изменяется обратно пропорционально квадрату расстояния от данного заряда, то есть, например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.     

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов.

Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда.

Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

Рис. 4. Линии напряженности электрического поля точечного заряда (Источник)

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6). 

Рис. 5. Линии напряженности системы двух зарядов (Источник)  

Рис. 6. Линии напряженности поля между заряженными пластинами (Источник)

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Рис. 7. Неоднородное электрическое поле (Источник)

Определение: Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

Список литературы

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: учеб. для 10 кл. общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008.
  2. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000.
  3. Рымкевич А.П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. учреждений. – М.: Дрофа, 2013.
  4. Генденштейн Л.Э., Дик Ю.И. Физика. 10 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Nauka.guskoff.ru (Источник).
  2. (Источник).
  3. Physics.ru (Источник).

Домашнее задание

  1. Стр. 378: № 1–3. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000. (Источник)
  2. С каким ускорением движется электрон в поле напряженностью 10 кВ/м?
  3. В вершинах равностороннего треугольника со стороной a находятся заряды +q, +q и –q. Найти напряженность поля Е в центре треугольника.

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-elektrodinamiki-2/elektricheskoe-pole-napryazhennost-linii-napryazhennosti

Напряженность электрического поля

Вектор напряженности электрического поля

Этим параметром обозначают силовое воздействие на заряд в определенной точке пространства. Напряженность учитывают в процессах распространения радиоволн, при конструировании электродвигателей, для решения других задач. В данной публикации приведены теоретические знания и методики расчетов.

Напряженность эл. поля можно изобразить силовыми линиями

Напряжённость электрического поля в классической электродинамике

Для лучшего понимания темы необходимо напомнить несколько базовых определений. Существуют отрицательные и положительные электрические заряды.

Каждый из них не зависит от системы координат, что подразумевает отсутствие влияния скорости. В изолированном объеме сумма зарядов не изменяется.

Базовой величиной считают Кулон, который соответствует прохождению тока через единичную площадь сечения проводника за одну секунду.

Электрическое поле:

  • создается зарядами;
  • распространяется со скоростью света;
  • не ограничено в свободном пространстве.

Описывает напряженность электрического поля формула с векторными составляющими:

E=F/q0,

где:

  • E – это вектор напряженности, который зависит от координат в пространстве по осям Х, Y, Z и времени;
  • F – сила, оказывающая воздействие на единичный точечный заряд q0.

Вместе с вектором магнитной индукции напряженность (Е) формирует электромагнитное поле. Суммарное воздействие сил образует тензор. Вместе с зарядом это главные параметры электродинамики.

Как направлен вектор электрического поля

Закон Ома для неоднородного участка

Вектор поля надо направить в сторону от положительного заряда и в обратном направлении – к отрицательному. Это определение справедливо для одной точки. Так как идеальные условия отсутствуют, в реальной ситуации приходится учитывать взаимодействие зарядов и соответствующее образование силовых линий.

Поле не является однородным, что демонстрируют с помощью разных расстояний между отдельными линиями.

В примере с пластинами близкое расположение параллельных проводников позволяет обеспечить одинаковую напряженность в рабочей зоне. Все силовые линии бесконечные.

Они начинаются на положительном заряде и заканчиваются на отрицательном. Таким образом, направление вектора напряженности будет всегда в сторону уменьшения потенциала.

Сила действия электромагнитного поля на заряженные частицы

Полное силовое воздействие на частицу с учетом магнитной компоненты можно определить с помощью расширенной формулы:

F=Eq0+ q0v * B.

Здесь «*» обозначает умножение векторов скорости (v) заряженной частицы и магнитной индукции (B).

Эта формула напряженности поля предполагает единичный заряд точечного объекта. Вычисленные параметры аппроксимируют на крупные тела с применением соответствующих математических формул.

Уравнения Максвелла

Особенности монтажа электрического оборудования

Этими уравнениями описывают трансформацию электрической и магнитной составляющих полей с учетом плотностей тока (j) и заряда (p). Многие типовые задачи вполне можно решить с их помощью. Для исследования взаимного воздействия нескольких систем удобнее пользоваться матричным или интегральным представлением.

Линейные уравнения Максвелла

Закон Кулона

С помощью этих формул показано, как найти напряженность при взаимодействии точечных зарядов. Для исключения лишних влияний подразумевается размещение в безвоздушной среде с электрической изоляцией от окружающего пространства. В таких условиях сила будет увеличиваться прямо пропорционально величине зарядов и обратно – квадрату дистанции между данными точками.

Закон обратных квадратов

Это соотношение – производная от рассмотренного выше закона Кулона. В идеальных условиях сила воздействия будет уменьшаться обратно пропорционально квадрату расстояния между зарядами.

«Материальные уравнения»

Для решения многих практических задач вполне достаточна ограниченная точность. С помощью «материальных» уравнений выполняют расчеты различных электрических цепей.

Уместный пример – закон Ома. Он был создан в ходе измерения электрических параметров. В начальном виде формула (Х=П/L+B) состояла из следующих компонентов:

  • Х – показания измерительного устройства (гальванометра), включенного в разрыв электрической цепи;
  • П – параметры источника питания, заставляющие стрелку прибора отклоняться на определенный угол;
  • L – длина соединительных проводов;
  • B – общие свойства установки.

Несложно догадаться, что в современном представлении это известный закон, показывающий взаимное влияние основных параметров полной электрической цепи:

I = E/R+r,

где:

  • I – ток;
  • E – ЭДС (напряжение);
  • R и r – сопротивление подключенных компонентов и самого источника питания, соответственно.

Связь с потенциалами

Для отображения этих компонентов удобно пользоваться векторным представлением. Сначала можно выразить работу (А), которую совершает электрическое поле (E) при перемещении заряда (q) на определенное расстояние (L):

A=E*q*L.

Далее ту же величину отображают через разницу потенциалов:

A=q*(ϕ1-ϕ2)=q*U.

Итоговая формула:

E=U/L.

Точнее будет использовать векторное выражение напряженности и передвижения.

Электростатика

Этот раздел электродинамики описывает частный случай, когда заряженные тела находятся в статичном состоянии. Такая ситуация значительно упрощает расчеты. Для практического примера можно создать электростатический конденсатор.

Устанавливают две плоскости одинаковой размерности параллельно на небольшом расстоянии, разделяют слоем диэлектрика. Если создать разницу потенциалов, между поверхностями образуется поле. В такой конструкции накапливается электрический заряд. Какой будет емкость, можно узнать с помощью этой формулы:

C=Q/ (ϕ1-ϕ2)=Q/U=e*S/d,

где:

  • e – проницаемость диэлектрика;
  • e0 – электрическая постоянная (8,85*10-12 Ф/м);
  • S – площадь пластин;
  • D – расстояние между ними.

Чтобы зарядить конденсатор до нужной емкости, надо затратить энергию W=(e*e0*E2/2)*S*D. На рисунке показано, как изменять рабочие параметры сборки при последовательном и параллельном соединении модулей.

Теорема Гаусса

Эта теорема определяет пропорциональность потока вектора напряженности электрического поля (Ф) заряду (Q), который заключен в произвольную поверхность замкнутого типа:

Ф=4π*Q.

Напряжённость электрического поля точечного заряда

В этом случае можно пользоваться рассмотренным выше законом Кулона. В следующих разделах представлены формулы для вычисления в разных системах единиц.

В единицах СИ

В этой системе базовой выбрана сила тока, поэтому кулон является производной величиной.

Основная формула:

F=k*(q1*q2/r122).

Здесь коэффициент k=1/(4π*e0).

Для системы СГС

Здесь, как и в предыдущем примере, выбран единичный заряд – «точка». Основные правила характеризуют физические процессы аналогично. Разница лишь в постоянных величинах. В данном случае коэффициент k обратно пропорционален диэлектрической проницаемости (е) среды.

Напряженность электрического поля произвольного распределения зарядов

В этом варианте для получения результата надо сложить вектора каждого заряда:

Еобщ=Е1+Е2+…+En.

Чтобы обеспечить непрерывность линии напряженности, берут интеграл соответствующей области. Построить распределение силовых линий можно с помощью расчета перемещения вектора по всем точкам.

Системы единиц

Отмеченные ниже различия надо учитывать, чтобы корректно пользоваться формулами, справочными данными. В современной системе СИ напряженность измеряется в вольтах на метр. Однако до сих пор сохраняется альтернативный вариант (СГС), точнее две подсистемы: СГСМ и СГСЭ. Измерять параметры без ошибок помогут следующие данные.

Таблица пересчета напряженности

СистемаЗначениеЕдиницы
СИ1Вольт/метр (Ньютон/Кулон)
СГСМ106Абвольт/см
СГСЭ106с-1Статвольт/см

Источник: https://amperof.ru/teoriya/napryazhennost-elektricheskogo-polya.html

Закон Кулона

Вектор напряженности электрического поля

5.Электростатика

1.Заряженные тела взаимодействуют. В природе существует два вида зарядов, их условно называют положительными и отрицательными. Заряды одного знака (одноименные) отталкиваются, заряды противоположных знаков (разноименные) притягиваются. Единица измерения зарядов в системе СИ – кулон (обозначается

«Кл»).

2.В природе существует минимально возможный заряд. Его называют

элементарным и обозначают e. Численное значение элементарного заряда e ≈ 1,6 10–19 Кл, Заряд электрона qэлектр = –e, заряд протона qпротона = +e. Все заряды

вприроде кратны элементарному заряду.

3.В электрически изолированной системе алгебраическая сумма зарядов остается неизменной. Например, если соединить два одинаковых металлических шарика с зарядами q1 = 5 нКл = 5 10–9 Кл и q2 = – 1 нКл, то заряды распределятся

между шариками поровну и заряд q каждого из шариков станет равным

q= (q1 + q2 ) / 2 = 2 нКл .

4.Заряд называется точечным, если его геометрические размеры значительно меньше расстояний, на которых изучается действие этого заряда на другие заряды.

5.Закон Кулона определяет величину силы электрического взаимодействия двух неподвижных точечных зарядов q1 и q2, расположенных на расстоянии r друг от друга (рис.1)

G

G

k | q | | q

2

|

F =| F

|=| F

|=

1

.

12

21

r 2

Здесь F12 — сила, действующая на первый заряд со стороны второго, F21 — сила,

действующая на второй заряд со стороны первого, k ≈9 109 Н м2/Кл2 – постоянная в законе Кулона. В системе СИ эту постоянную принято записывать в виде

k = 4πε1 0 ,

где ε0 ≈8,85 10−12 Ф/м – электрическая постоянная.

1

Рис.1

6. Сила взаимодействия двух точечных зарядов не зависит от наличия вблизи этих зарядов других заряженных тел. Это утверждение называют принципом суперпозиции.

Вектор напряженности электрического поля

1.

Поместим вблизи неподвижного заряженного тела (или нескольких тел) точечный заряд q. Будем считать, что величина заряда q настолько мала, что он не вызывает перемещение зарядов в других телах (такой заряд называют пробным).

Со стороны заряженного тела на неподвижный пробный заряд q будет действовать сила F . В соответствии с законом Кулона и принципом суперпозиции сила F будет пропорциональна величине заряда q.

Это означает, что, если величину пробного заряда увеличить, например в 2 раза, то величина силы F возрастет тоже в 2 раза, если знак заряда q сменить на противоположный, то и сила сменит направление на противоположное.

Такую пропорциональность можно выразить формулой

F = qE .

Вектор E называется вектором напряженности электрического поля. Этот вектор зависит от распределения зарядов в телах, создающих электрическое поле, и

от положения точки, в которой указанным способом определен вектор E . Можно сказать, что вектор напряженности электрического поля равен силе, действующей на единичный положительный заряд, помещенный в данную точку пространства.

Определение EG = FG / q можно обобщить и на случай переменных (зависящих от времени) полей.

2. Вычислим вектор напряженности электрического поля, созданного неподвижным точечным зарядом Q. Выберем некоторую точку A, расположенную на расстоянии r от точечного заряда Q . Чтобы определить вектор напряженности в этой точке, мысленно поместим в нее положительный пробный заряд q. На

2

пробный заряд со стороны точечного заряда Q будет действовать сила притяжения или отталкивания в зависимости от знака заряда Q. Величина этой силы равна

F = k | Q | q . r 2

Следовательно, модуль вектора напряженности электрического поля, созданного неподвижным точечным зарядом Q в точке A, удаленной от него на расстояние r, равен

E = k r| Q2 | .

Вектор EG начинается в точке A и направлен от заряда Q, если Q > 0 , и к заряду Q,

если Q < 0 .

3.Если электрическое поле создается несколькими точечными зарядами, то вектор напряженности в произвольной точке можно найти при помощи принципа суперпозиции полей.

4.Силовой линией (линией вектора E ) называют геометрическую линию,

касательная к которой в каждой точке совпадает с вектором E в этой точке.

Иными словами, вектор E направлен по касательной к силовой линии в каждой ее точке. Силовой линии приписывают направление — вдоль вектора E . Картина силовых линий является наглядным образом силового поля, дает представление о пространственной структуре поля, его источниках, позволяет определять направление вектора напряженности в любой точке.

5.Однородным электрическим полем называют поле, вектор E которого одинаков (по величине и направлению) во всех точках. Такое поле создает, например, равномерно заряженная плоскость в точках, расположенных достаточно близко от этой плоскости.

6.Поле однородно заряженного по поверхности шара равно нулю внутри шара,

авне шара совпадает с полем точечного заряда Q, расположенного в центре шара:

k | Q |

при r > R

,

E = r 2

при r < R

0

где Q – заряд шара, R – его радиус, r – расстояние от центра шара до точки, в

которой определяется вектор E .

3

7. В диэлектриках поле ослабляется. Например, точечный заряд или однородно заряженный по поверхности шар, погруженные в масло, создают электрическое поле

E = kε|rQ2 | ,

где r – расстояние от точечного заряда или центра шара до точки, в которой определяется вектор напряженности, ε — диэлектрическая проницаемость масла. Диэлектрическая проницаемость зависит от свойств вещества.

Диэлектрическая проницаемость вакуума ε = 1, диэлектрическая проницаемость воздуха очень близка к единице (при решении задач обычно ее считают равной 1), для иных газообразных, жидких и твердых диэлектриков ε > 1.

8. При равновесии зарядов (если нет их упорядоченного движения) напряженность электрического поля внутри проводников равна нулю.

Работа в электрическом поле. Разность потенциалов

1.

Поле неподвижных зарядов (электростатическое поле) обладает важным свойством: работа сил электростатического поля по перемещению пробного заряда из некоторой точки 1 в точку 2 не зависит от формы траектории, а определяется только положениями начальной и конечной точек. Поля, обладающие таким свойством, называются консервативными. Свойство консервативности позволяет определить так называемую разность потенциалов для двух любых точек поля.

Разность потенциалов ϕ1 −ϕ2 в точках 1 и 2 равна отношению работы A12 сил поля по перемещению пробного зарядаq из точки 1 в точку 2 квеличинеэтого заряда:

ϕ1 — ϕ2 = Aq12 .

Такое определение разности потенциалов имеет смысл только потому, что работа не зависит от формы траектории, а определяется положениями начальной и конечной точек траекторий. В системе СИ разность потенциалов измеряется в вольтах: 1В = Дж/Кл.

Конденсаторы

1.

Конденсатор состоит из двух проводников (их называют обкладками), отделенных один от другого слоем диэлектрика (рис.2), причем заряд одной

4

обкладки Q, а другой –Q. Заряд положительной обкладки Q называют зарядом конденсатора.

2. Можно показать, что разность потенциалов ϕ1 −ϕ2 между обкладками пропорциональна величине заряда Q, то есть, если, например, заряд Q увеличить в 2 раза, то и разность потенциалов увеличится в 2 раза.

ε

ε S

ϕ1 ϕ2

d

Рис.2 Рис.3

Такую пропорциональность можно выразить формулой

Q = C(ϕ1 — ϕ2 ) ,

где C — коэффициент пропорциональности между зарядом конденсатора и разностью потенциалов между его обкладками. Этот коэффициент называют электроемкостью или просто емкостью конденсатора. Емкость зависит от геометрических размеров обкладок, их взаимного расположения и диэлектрической проницаемости среды. Разность потенциалов называют также напряжением, которое обозначают U. Тогда

Q = CU .

3. Плоский конденсатор представляет собой две плоские проводящие пластины, расположенные параллельно друг другу на расстоянии d (рис.3). Это расстояние предполагается малым по сравнению с линейными размерами пластин. Площадь каждой пластины (обкладки конденсатора) равна S, заряд одной пластины Q, а другой –Q.

На некотором расстоянии от краев поле между пластинами можно считать однородным. Поэтому ϕ1 — ϕ2 = Ed , или

U = Ed .

Емкость плоского конденсатора определяется формулой

C = εεd0 S ,

5

где ε0 =8,85 10–12 Ф/м – электрическая постоянная, ε — диэлектрическая проницаемость диэлектрика между обкладками. Из этой формулы видно, что для получения конденсатора большой емкости нужно увеличивать площадь обкладок и уменьшать расстояние между ними.

Наличие между обкладками диэлектрика с большой диэлектрической проницаемостью ε также приводит к увеличению емкости. Роль диэлектрика между обкладками состоит не только в повышении диэлектрической проницаемости.

Важно также, что хорошие диэлектрики могут выдерживать высокое электрическое поле, не допуская пробоя между обкладками.

В системе СИ емкость измеряют в фарадах. Плоский конденсатор в одну фараду имел бы гигантские размеры. Площадь каждой пластины была бы примерно равна 100 км2 при расстоянии между ними 1 мм. Конденсаторы широко используются в технике, в частности, для накопления зарядов.

4. Если обкладки заряженного конденсатора замкнуть металлическим проводником, то в проводнике возникнет электрический ток и конденсатор разрядится. При протекании тока в проводнике выделится определенное количество теплоты, а это означает, что заряженный конденсатор обладает энергией. Можно показать, что энергия любого заряженного конденсатора (не обязательно плоского) определяется формулой

W = 12 CU 2 .

Учитывая, что Q = CU , формулу для энергии можно переписать также в виде

W= Q2 = QU .

2C 2

6

Источник: https://studfile.net/preview/4439131/

Booksm
Добавить комментарий