Условия равновесия тел

Урок 14. статика. равновесие абсолютно твердых тел — Физика — 10 класс — Российская электронная школа

Условия равновесия тел

Физика, 10 класс

Урок 14. Статика. Равновесие абсолютно твёрдых тел

Перечень вопросов, рассматриваемых на уроке:

1.Условия равновесия тела

2.Момент силы

3.Плечо силы

4. Центр тяжести

Глоссарий по теме

Статика – раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой

Абсолютно твердое тело – модельное понятие классической механики, обозначающее совокупность точек, расстояния между текущими положениями которых не изменяются.

Центр тяжести – центром тяжести тела называют точку, через которую при любом положении тела в пространстве проходит равнодействующая сил тяжести, действующих на все частицы тела.

Плечо силы — это длина перпендикуляра, опущенного от оси вращения на линию действия силы.

Момент силы — это физическая величина, равная произведению модуля силы на ее плечо.

Устойчивое равновесие — это равновесие, при котором тело, выведенное из состояния устойчивого равновесия, стремится вернуться в начальное положение.

Неустойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.

Безразличное равновесие системы — равновесие, при котором после устранения причин, вызвавших малые отклонения, система остается в покое в этом отклоненном состоянии

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017.– С. 165 – 169.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009.

Степанова Г.Н. Сборник задач по физике. 10-11 класс. — М.: Просвещение. 1999 г. С.48- 50.

Теоретический материал для самостоятельного изучения

Равновесие – это состояние покоя, т.е. если тело покоится относительно инерциальной системы отсчета, то говорят, что оно находится в равновесии.

Вопросы равновесия интересуют строителей, альпинистов, артистов цирка и многих-многих других людей. Любому человеку приходилось сталкиваться с проблемой сохранения равновесия.

Почему одни тела, выведенные из состояния равновесия, падают, а другие – нет? Выясним, при каком условии тело будет находиться в состоянии равновесия.

Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Статика является частным случаем динамики. В статике твердое тело рассматривается как абсолютно твердое, т.е. недеформируемое тело. Это означает, что деформация так мала, что её можно не учитывать.

Центр тяжести существует у любого тела. Эта точка может находиться и вне тела. Как же подвесить или подпереть тело, чтобы оно находилось в равновесии.

Подобную задачу в свое время решил Архимед. Им же были введены понятие плеча силы и момента силы.

Плечо силы — это длина перпендикуляра, опущенного от оси вращения на линию действия силы.

Момент силы — это физическая величина, равная произведению модуля силы на ее плечо.

После своих исследований Архимед сформулировал условие равновесия рычага и вывел формулу:

Это правило является следствием 2-го закона Ньютона.

Первое условие равновесия

Для равновесия тела необходимо, чтобы сумма всех сил, приложенных к телу была равна нулю.

формула должна быть в векторном виде и стоять знак суммы

Второе условие равновесия

При равновесии твердого тела сумма моментов вcех внешних сил, действующих на него относительно любой оси, равна нулю.

Не менее важен случай, когда тело имеет площадь опоры. Тело, имеющее площадь опоры, находится в равновесии, когда вертикальная прямая, проходящая через центр тяжести тела, не выходит за пределы площади опоры этого тела.

Известно, что в городе Пизе в Италии существует наклонная башня. Несмотря на то, что башня наклонена, она не опрокидывается, хотя ее часто называют падающей.

Очевидно, что при том наклоне, которого башня достигла к настоящему времени, вертикаль, проведенная из центра тяжести башни, все еще проходит внутри ее площади опоры.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью.

Различают 3 вида равновесия: устойчивое, неустойчивое, безразличное.

Если при отклонении тела от положения равновесия, возникают силы или моменты сил, стремящиеся вернуть тело в положение равновесия, то такое равновесие называется устойчивым.

Неустойчивое равновесие — это противоположный случай. При отклонении тела от положения равновесия, возникают силы или моменты сил, которые стремятся увеличить это отклонение.

Наконец, если при малом отклонении от положения равновесия тело все равно остается в равновесии, то такое равновесие называется безразличным.

Чаще всего необходимо, чтобы равновесие было устойчивым. Когда равновесие нарушается, то сооружение становится опасным, если его размеры велики.

Примеры и разбор решения заданий

1. Чему равен момент силы тяжести груза массой 40 кг, подвешенного на кронштейне АВС, относительно оси, проходящей через точку В, если АВ=0,5 м и угол α=450

Решение:

Момент силы – это величина равная произведению модуля силы на её плечо.

Сначала найдём плечо силы, для этого нам надо опустить перпендикуляр из точки опоры на линию действия силы. Плечо силы тяжести равно расстоянию АС. Так как угол равен 45°, то мы видим, что АС=АВ

Модуль силы тяжести находим по формуле:

После подстановки числовых значений величин мы получим:

F=40×9,8 =400 Н, М= 400 ×0,5=200 Н м.

Ответ: М=200 Н м.

2. Приложив вертикальную силу F, груз массой М — 100 кг удерживают на месте с помощью рычага (см. рис.). Рычаг состоит из шарнира без трения и однородного массивного стержня длиной L=8 м. Расстояние от оси шарнира до точки подвеса груза равно b=2 м. Чему равен модуль силы F, если масса рычага равна 40 кг.

Решение:

По условию задачи рычаг находится в равновесии. Напишем второе условие равновесия для рычага:

.

После подстановки числовых значений величин получим

F= (100×9,8 ×2 + 0,5×40×9,8×8)/8=450 Н

Ответ: 450 Н.

Источник: https://resh.edu.ru/subject/lesson/4720/conspect/

Равновесие тел. Виды равновесия. 10-й класс

Условия равновесия тел

Класс: 10

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  2. Диск «Работа и мощность» из  «Электронных уроков и тестов.
  3. Таблица «Условия равновесия».
  4. Призма наклоняющаяся с отвесом.
  5. Геометрические тела: цилиндр, куб, конус и т.д.
  6. Компьютер, мултимедиапроектор, интерактивная доска  или экран.
  7. Презентация.

Ход урока

Сегодня на уроке мы узнаем,  почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ Mпо часовой = ∑ Mпротив часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)

Вывод: Равновесие устойчиво, если при малом отклонении от положения    равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности. 

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22.

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание: § 54–56 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

10.03.2011

Источник: https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/585071/

§ 8.2. Условия равновесия твердого тела

Условия равновесия тел

  • Выясним, при каких условиях тела находятся в равновесии.

Первое условие равновесия

Очевидно, что тело может покоиться только по отношению к одной определенной системе координат. В статике изучают условия равновесия тел именно в такой системе. При равновесии скорости и ускорения всех участков (элементов) тела равны нулю.

Учитывая это, можно установить одно из необходимых условии равновесия тел, используя теорему о движении центра масс (см. § 7.4). Внутренние силы не влияют на движение центра масс, так как их сумма всегда равна нулю.

Определяют движение центра масс тела (или системы тел) лишь внешние силы. Так как при равновесии тела ускорение всех его элементов равно нулю, то равно нулю и ускорение центра масс.

Но ускорение центра масс определяется векторной суммой внешних сил, приложенных к телу (см. формулу (7.4.2)). Поэтому при равновесии эта сумма должна равняться нулю.

Действительно, если сумма внешних сил Fi равна нулю, то и ускорение центра масс аc = 0. Отсюда следует, что скорость центра масс с = const. Если в начальный момент скорость центра масс равнялась нулю, то и в дальнейшем центр масс остается в покое.

Полученное условие неподвижности центра масс является необходимым (но, как мы скоро увидим, недостаточным) условием равновесия твердого тела. Это так называемое первое условие равновесия. Его можно сформулировать следующим образом.

Для равновесия тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю:

Если сумма сил равна нулю, то равна нулю и сумма проекций сил_на все три оси координат. Обозначая внешние силы через 1, 2, 3 и т. д., получим три уравнения, эквивалентных одному векторному уравнению (8.2.1):

Для того чтобы тело покоилось, необходимо еще, чтобы начальная скорость центра масс была равна нулю.

Второе условие равновесия твердого тела

Равенство нулю суммы внешних сил, действующих на тело, необходимо для равновесия, но недостаточно. При выполнении этого условия лишь центр масс с необходимостью будет покоиться. В этом нетрудно убедиться.

Приложим к доске в разных точках равные по модулю и противоположные по направлению силы так, как показано на рисунке 8.1 (две такие силы называют парой сил). Сумма этих сил равна нулю: + (-) = 0. Но доска будет поворачиваться. В покое находится только центр масс, если его начальная скорость (скорость до приложения сил) была равна нулю.

Рис. 8.1

Точно так же две одинаковые по модулю и противоположные по направлению силы поворачивают руль велосипеда или автомобиля (рис. 8.2) вокруг оси вращения.

Рис. 8.2

Нетрудно понять, в чем здесь дело. Любое тело находится в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю.

Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть и не равной нулю. В этом случае тело не будет находиться в равновесии.

В рассмотренных примерах доска и руль потому и не находятся в равновесии, что сумма всех сил, действующих на отдельные элементы этих тел, не равна нулю. Тела вращаются.

Выясним, какое еще условие, кроме равенства нулю суммы внешних сил, должно выполняться, чтобы тело не вращалось и находилось в равновесии. Для этого воспользуемся основным уравнением динамики вращательного движения твердого тела (см. § 7.6):

Напомним, что в формуле (8.2.3)

представляет собой сумму моментов приложенных к телу внешних сил относительно оси вращения, a J — момент инерции тела относительно той же оси.

Если , то и Р = 0, т. е. тело не имеет углового ускорения, и, значит, угловая скорость тела

ω = const.

Если в начальный момент угловая скорость равнялась нулю, то и в дальнейшем тело не будет совершать вращательное движение. Следовательно, равенство

(при ω = 0) является вторым условием, необходимым для равновесия твердого тела.

При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси(1), равна нулю.

В общем случае произвольного числа внешних сил условия равновесия твердого тела запишутся в виде:

Эти условия необходимы и достаточны для равновесия любого твердого тела. Если они выполняются, то векторная сумма сил (внешних и внутренних), действующих на каждый элемент тела, равна нулю.

Равновесие деформируемых тел

Если тело не абсолютно твердое, то под действием приложенных к нему внешних сил оно может не находиться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равна нулю. Это происходит потому, что под действием внешних сил тело может деформироваться и в процессе деформации сумма всех сил, действующих на каждый его элемент, в этом случае не будет равна нулю.

Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и равна нулю сумма их моментов относительно оси, проходящей через любую точку шнура.

При деформации тел, кроме того, происходит изменение плеч сил и, следовательно, изменение моментов сил при заданных силах. Отметим еще, что только у твердых тел можно переносить точку приложения силы вдоль линии действия силы в любую другую точку тела. Это не меняет момента силы и внутреннего состояния тела.

В реальных телах переносить точку приложений силы вдоль линии ее действия можно лишь тогда, когда деформации, которые вызывает эта сила, малы и ими можно пренебречь. В этом случае изменение внутреннего состояния тела при переносе точки приложения силы несущественно. Если же деформациями пренебречь нельзя, то такой перенос недопустим.

Так, например, если вдоль резинового бруска к двум его концам приложить две равные по модулю и прямо противоположные по направлению силы 1 и 2 (рис. 8.3, а), то брусок будет растянут. При переносе точек приложения этих сил вдоль линии действия в противоположные концы бруска (рис. 8.

3, б) те же силы будут сжимать брусок и его внутреннее состояние окажется иным.

Рис. 8.3

Для расчета равновесия деформируемых тел нужно знать их упругие свойства, т. е. зависимость деформаций от действующих сил. Эту сложную задачу мы решать не будем. Простые случаи поведения деформируемых тел будут рассмотрены в следующей главе.

Для равновесия твердого тела должны равняться нулю сумма внешних сил и сумма моментов сил, действующих на тело. Должны быть также равны нулю начальная скорость центра масс и угловая скорость вращения тела.

(1) Мы рассматривали моменты сил относительно реальной оси вращения тела. Но можно доказать, что при равновесии тела сумма моментов сил равна нулю относительно любой оси (геометрической линии), в частности относительно трех осей координат или относительно оси, проходящей через центр масс.

Источник: http://tepka.ru/fizika_10/106.html

Условия равновесия тел

Условия равновесия тел

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение.

В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга.

При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

Рисунок 1.14.1. Равновесие твердого тела под действием трех сил. При вычислении равнодействующей все силы приведены к одной точке C.

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в ньютон-метрах (Н∙м).

Рисунок 1.14.2. Силы, действующие на рычаг, и их моменты. M1 = F1 · d1 > 0; M2 = – F2 · d2 < 0. При равновесии M1 + M2 = 0.

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов.

Оба эти условия не являются достаточными для покоя.

Рисунок 1.14.3. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю.

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают устойчивые и неустойчивые состояния равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в безразличном состоянии равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Рисунок 1.14.4. Различные типы равновесия шара на опоре. (1) – безразличное равновесие, (2) – неустойчивое равновесие, (3) – устойчивое равновесие.

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс.

При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым.

Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 1.14.5).

Рисунок 1.14.5. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C – центр массы диска; – сила тяжести; – упругая сила оси; d – плечо.

Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры.

Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Рисунок 1.14.6. Падающая Пизанская башня. Точка C – центр масс, точка O – центр основания башни, CC' – вертикаль, проходящая через центр масс.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/4_134877_usloviya-ravnovesiya-tel.html

Равновесие тел — Класс!ная физика

Условия равновесия тел

«Физика — 10 класс»

Вспомните, что такое момент силы.
При каких условиях тело находится в покое?

Если тело находится в покое относительно выбранной системы отсчёта, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы.

Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются.

Во многих случаях, которые встречаются на практике, деформации тел при их равновесии незначительны. В этих случаях деформациями можно пренебречь и вести расчёт, считая тело абсолютно твёрдым.

Для краткости абсолютно твёрдое тело будем называть твёрдым телом или просто телом. Изучив условия равновесия твёрдого тела, мы найдём условия равновесия реальных тел в тех случаях, когда их деформации можно не учитывать.

Вспомните определение абсолютно твёрдого тела.

Раздел механики, в котором изучаются условия равновесия абсолютно твёрдых тел, называется статикой.

В статике учитываются размеры и форма тел, в этом случае существенным является не только значение сил, но и положение точек их приложения.

Выясним вначале с помощью законов Ньютона, при каком условии любое тело будет находиться в равновесии. С этой целью разобьём мысленно всё тело на большое число малых элементов, каждый из которых можно рассматривать как материальную точку.

Как обычно, назовём силы, действующие на тело со стороны других тел, внешними, а силы, с которыми взаимодействуют элементы самого тела, внутренними (рис. 7.1). Так, сила 1,2 — это сила, действующая на элемент 1 со стороны элемента 2. Сила же 2,1 действует на элемент 2 со стороны элемента 1.

Это внутренние силы; к ним относятся также силы 1,3 и 3,1, 2,3 и 3,2. Очевидно, что геометрическая сумма внутренних сил равна нулю, так как согласно третьему закону Ньютона

12 = -21, 23 = -32, 31 = -13 и т.д.

Статика — частный случай динамики, так как покой тел, когда на них действуют силы, есть частный случай движения ( = 0).

На каждый элемент в общем случае может действовать несколько внешних сил. Под 1, 2, 3 и т. д. будем понимать все внешние силы, приложенные соответственно к элементам 1, 2, 3, … . Точно так же через '1, '2, '3 и т. д. обозначим геометрическую сумму внутренних сил, приложенных к элементам 2, 2, 3, … соответственно (эти силы не показаны на рисунке), т. е.

'1 = 12 + 13 + … , '2 = 21 + 22 + … , '3 = 31 + 32 + … и т.д.

Если тело находится в покое, то ускорение каждого элемента равно нулю. Поэтому согласно второму закону Ньютона будет равна нулю и геометрическая сумма всех сил, действующих на любой элемент. Следовательно, можно записать:

1 + '1 = 0, 2 + '2 = 0, 3 + '3 = 0.         (7.1)

Каждое из этих трёх уравнений выражает условие равновесия элемента твёрдого тела.

Первое условие равновесия твёрдого тела.

Выясним, каким условиям должны удовлетворять внешние силы, приложенные к твёрдому телу, чтобы оно находилось в равновесии. Для этого сложим уравнения (7.1):

(1 + 2 + 3) + ('1 + '2 + '3) = 0.

В первых скобках этого равенства записана векторная сумма всех внешних сил, приложенных к телу, а во вторых — векторная сумма всех внутренних сил, действующих на элементы этого тела.

Но, как известно, векторная сумма всех внутренних сил системы равна нулю, так как согласно третьему закону Ньютона любой внутренней силе соответствует сила, равная ей по модулю и противоположная по направлению.

Поэтому в левой части последнего равенства останется только геометрическая сумма внешних сил, приложенных к телу:

1 + 2 + 3 + … = 0.         (7.2)

В случае абсолютно твёрдого тела условие (7.2) называют первым условием его равновесия.

Оно является необходимым, но не является достаточным.

Итак, если твёрдое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось ОХ можно записать:

F1x + F2x + F3x + … = 0.         (7.3)

Такие же уравнения можно записать и для проекций сил на оси OY и OZ.

Второе условие равновесия твёрдого тела.

Убедимся, что условие (7.2) является необходимым, но недостаточным для равновесия твёрдого тела. Приложим к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2. Сумма этих сил равна нулю:

+ (-) = 0. Но доска тем не менее будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис. 7.3).

Какое же ещё условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твёрдое тело находилось в равновесии? Воспользуемся теоремой об изменении кинетической энергии.

Найдём, например, условие равновесия стержня, шарнирно закреплённого на горизонтальной оси в точке О (рис. 7.4). Это простое устройство, как вам известно из курса физики основной школы, представляет собой рычаг первого рода.

Пусть к рычагу приложены перпендикулярно стержню силы 1 и 2.

Кроме сил 1 и 2, на рычаг действует направленная вертикально вверх сила нормальной реакции 3 со стороны оси рычага. При равновесии рычага сумма всех трёх сил равна нулю: 1 + 2 + 3 = 0.

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол α. Точки приложения сил 1 и 2 пройдут пути s1 = ВВ1 и s2 = CC1 (дуги ВВ1 и СС1 при малых углах α можно считать прямолинейными отрезками).

Работа А1 = F1s1 силы 1 положительна, потому что точка В перемещается по направлению действия силы, а работа А2 = -F2s2 силы 2 отрицательна, поскольку точка С движется в сторону, противоположную направлению силы 2.

Сила 3 работы не совершает, так как точка её приложения не перемещается.

Пройденные пути s1 и s2 можно выразить через угол поворота рычага а, измеренный в радианах: s1 = α|ВО| и s2 = α|СО|. Учитывая это, перепишем выражения для работы так:

А1 = F1α|BO|,         (7.4)
А2 = -F2α|CO|.

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил 1 и 2, являются перпендикулярами, опущенными из оси вращения на линии действия этих сил

Как вы уже знаете, плечо силы — это кратчайшее расстояние от оси вращения до линии действия силы. Будем обозначать плечо силы буквой d. Тогда |ВО| = d1 — плечо силы 1, а |СО| = d2 — плечо силы 2. При этом выражения (7.4) примут вид

А1 = F1αd1, А2 = -F2αd2.         (7.5)

Из формул (7.5) видно, что работа каждой из сил равна произведению момента силы на угол поворота рычага. Следовательно, выражения (7.5) для работы можно переписать в виде

А1 = М1α, А2 = М2 α,         (7.6)

а полную работу внешних сил можно выразить формулой

А = А1 + А2 = (М1 + М2)α. α,         (7.7)

Так как момент силы 1 положителен и равен М1 = F1d1 (см. рис. 7.4), а момент силы 2 отрицателен и равен М2 = -F2d2, то для работы А можно записать выражение

А = (М1 — |М2|)α.

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершать работу, т. е. в этом случае А ≠ 0 и соответственно М1 + М2 ≠ 0.

Если работа внешних сил равна нулю, то кинетическая энергия тела не изменяется (остаётся равной нулю) и тело остаётся неподвижным. Тогда

М1 + М2 = 0.         (7.8)

Уравнение (7.8) и есть второе условие равновесия твёрдого тела.

При равновесии твёрдого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твёрдого тела следующие:

1 + 2 + 3 + … = 0,         (7.9)
М1 + М2 + М3 + … = 0
.

Второе условие равновесия можно вывести из основного уравнения динамики вращательного движения твёрдого тела. Согласно этому уравнению где М — суммарный момент сил, действующих на тело, М = М1 + М2 + М3 + … , ε — угловое ускорение. Если твёрдое тело неподвижно, то ε = 0, и, следовательно, М = 0. Таким образом, второе условие равновесия имеет вид М = М1 + М2 + М3 + … = 0.

Если тело не абсолютно твёрдое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равны нулю.

Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Следующая страница «Примеры решения задач по теме «Равновесие твёрдых тел»»
Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Статика — Физика, учебник для 10 класса — Класс!ная физика

Равновесие тел — Примеры решения задач по теме «Равновесие твёрдых тел»

Источник: http://class-fizika.ru/10_a40.html

Booksm
Добавить комментарий