Уравнение Пуассона и математическая постановка задач электростатики

1.15. Расчет одномерных электростатических полей по уравнениям Пуассона и Лапласа

Уравнение Пуассона и математическая постановка задач электростатики

Электростатическое поле в однородной среде с постоянной диэлектрической проницаемостью полностью характеризуется уравнением Пуассона (1.11) или (если в рассматриваемой области отсутствуют объемные связанные заряды) уравнением Лапласа (1.12).

Наиболее просто уравнения Пуассона и Лапласа решаются в случае одномерных полей, потенциалы которых зависят только от одной координаты. При этом дифференциальные уравнения в частных производных переходят в обыкновенные дифференциальные уравнения второго порядка, решение которых при известных граничных условиях является несложной задачей.

Так, в прямоугольной системе координат уравнения Пуассона и Лапласа для одномерного поля будут иметь следующий вид:

(1.22)

(1.23)

Решение уравнения (1.22), очевидно, может быть получено лишь тогда, когда объемная плотность заряда r и абсолютное значение диэлектрической проницаемости e заданы как функции координат во всем пространстве. Например, если объемная плотность r изменяется вдоль оси ОХ по закону

(где коэффициент а и показатель степени n являются постоянными), то, в случае, когда e=const, частное решение уравнения Пуассона будет иметь следующий вид:

(1.24)

где С1 и С2 – постоянныеинтегрирования, которые определяются из граничных условий.

В случае, когда объемная плотность заряда r также является постоянной величиной, решение имеет вид

Частное решение уравнения Лапласа (1.29) можно представить следующим образом:

(1.25)

В цилиндрической системе координат для одномерного поля вид уравнения Пуассона или Лапласа и их решение зависят от того, функцией какой координаты является искомый потенциал U. Например, если потенциал U зависит только от радиальной координаты r (U=U(r)), то уравнения (1.11) и (1.12) будут иметь вид

(1.26)

(1.27)

Решение уравнения (1.26) определяется видом функции r. Если, например, объемная плотность заряда r изменяется вдоль радиуса r по закону

то искомое решение будет иметь вид:

(1.28)

Для случая, когда объемная плотность заряда r не зависит от координаты r, решение уравнения (1.26) можно представить следующим образом:

(1.29)

Решение уравнения Лапласа (1.27) имеет вид:

(1.30)

Если искомый потенциал является функцией только одной угловой координаты j, то уравнения Пуассона и Лапласа приобретают следующий вид:

(1.31)

(1.32)

При постоянном значении r уравнение (1.31) имеет частное решение

.

(1.33)

Решение уравнение Лапласа (1.32) можно записать следующим образом:

(1.34)

В сферической системе координат для одномерного поля вид уравнения Пуассона или Лапласа и их решение зависят также от того, функцией какой координаты является искомый потенциал U.

Так, если потенциал U зависит только от радиальной координаты r, то уравнения Пуассона и Лапласа будут иметь вид:

(1.35)

(1.36)

При изменении объемной плотности заряда r по закону

,

решение уравнения (1.35) можно представить следующим образом:

(1.37)

Если r является постоянной величиной, решение будет иметь вид

(1.38)

Уравнение Лапласа (1.36) имеет следующее решение:

(1.39)

В случае, если потенциал U зависит только от одной координаты q, уравнение Лапласа (1.12) будет иметь вид

(1.40)

Решение этого уравнения можно представить следующим образом:

(1.41)

Если потенциал U является функцией только одной координаты j, то уравнение (1.12) будет иметь вид

а его решение является линейной функцией этой координаты

Пример 1. Плоский конденсатор с двумя слоями диэлектрика подключен к источнику постоянного напряжения U0=100В (рис. 1.25). Относительные значения диэлектрической проницаемости слоев er1=3, er2=6. Толщина слоев – d1=d2=1мм.

Один из слоев заряжен с объемной плотностью r, которая изменяется по толщине по закону r=10-4х Кл/м3.

Пренебрегая краевым эффектом, найти распределение потенциала и напряженности поля в слоях диэлектрика.

Построить графики изменения потенциала и напряженности электрического поля вдоль оси ОХ.

Решение.

Данная задача по расчету электрического поля является одномерной. В первом слое электрический потенциал отвечает уравнению Лапласа (1.23), а во втором – уравнению Пуассона (1.22). Решение этих уравнений можно представить с помощью выражений (1.24) и (1.25) , соответственно, при n=1 и а=1.

Для определения постоянных интегрирования используем граничные условия на внешних границах области и на границе раздела двух диэлектриков (внутренней границе).

Будем при этом считать, что правая пластина имеет нулевой потенциал.

Здесь D1 и D2 – нормальные составляющие вектора электрического смещения.

Из первого равенства следует, что С2=U0.

Перепишем три следующих граничных условия, подставляя в них соответствующие выражения для потенциалов и вектора электрического смещения:

Решая последнюю систему из трех уравнений относительно неизвестных С1, С3, и С4, получим С1=-66670,

С3=-33333, С4=66.666.

Таким образом, окончательно выражения для напряженности поля и потенциалов можно записать в виде:

Графики изменения потенциала и напряженности поля представлены на рис. 1.26

На графике все значения представлены в относительных единицах, причем за базисные значения приняты значения потенциала и напряженности поля на поверхности левой пластины (Ub=100 В, Eb=66670 В/м).

Пример 2. Бесконечно длинный диэлектрический (er=4) полый цилиндр заряжен и находится в воздухе. Радиус внутренней поверхности цилиндра R1=2мм, наружной – R2=6мм (рис.1.27). Объемная плотность заряда r является функцией расстояния от оси цилиндра r=0.1r.

Найти законы изменения потенциала и напряженности поля в функции расстояния от оси цилиндра. Построить графики изменения указанных функций вдоль радиуса.

Решение. Поле в данном случае является одномерным, поскольку напряженность поля и потенциал зависят только от одной радиальной координаты.

При решении задачи по расчету электрического поля в заданной области, эту область необходимо разбить на три подобласти. В первой из них (0?r?R1) поле отсутствует (Е=0). Во второй подобласти (R1?r?R2) электрический потенциал отвечает уравнению Пуассона (1.26), а в третьей (R2? r??) – уравнению Лапласа (1.27), которые имеют решения (1.28) (при n=1,a=0.1) и (1.30).

Перепишем эти решения в следующем виде:

Здесь индексы у потенциалов обозначают их принадлежность ко второй и третьей подобластям.

Постоянные интегрирования определим из граничных условий, которые можно поставить как из классических граничных условий, так и из следующих соображений. Поскольку поле внутри цилиндра отсутствует, то при r=R1, можно принять Е2=0.

Отсюда сразу определяем постоянную С1=7.533. Примем потенциал равным нулю на наружной поверхности цилиндра (U2=0 при r=R2), тогда

(1.42)

и, таким образом, С2=106.335.

Потенциал U3 со стороны третьей подобласти на этой же поверхности (r=R2) также будет равен нулю.

Здесь же на границе раздела двух диэлектриков равны между собой нормальные составляющие векторов электрического смещения, а с учетом того, что в нашем случае вектор электрического смещения имеет одну составляющую, которая направлена по радиусу, то это означает, что на границе раздела равны между собой и сами векторы электрического смещения.

Перепишем последнее уравнение в следующем виде:

(1.43)

Решая совместно уравнения (1.42) и (1.43), находим постоянные интегрирования С3=-783.427, С4=-4008.

Таким образом, выражения для напряженности электрического поля и потенциала принимают вид

Потенциал в первой подобласти (внутри цилиндра) является величиной постоянной, равной значению потенциала со стороны второй подобласти на внутренней поверхности цилиндра.

График изменения потенциала и напряженности электрического поля представлен на рис. 1.28. Все значения на графике даны в относительных единицах. За базисное значение напряженности поля принято ее значение на наружной поверхности цилиндра Eb=130.6кВ/м.

В качестве базисного значения потенциала принято абсолютное значение потенциала на расстоянии 0.01м от оси цилиндра Ub=400.2В.

Это же расстояние r=0.01м принято за базисное значение радиальной координаты.

Пример 3. Цилиндрический бесконечно длинный конденсатор заполнен двухслойным диэлектриком, относительные значения диэлектрической проницаемости слоев которого равны соответственно er1=2 и er2=4.

Радиус внутренней жилы равен R1=1мм, внутренний радиус наружной обкладки – R3=4мм, радиус поверхности раздела слоев диэлектрика – R2=2мм (рис. 1.29). К обкладкам конденсатора приложено постоянное напряжение Uо = 100 В. Один из диэлектриков заряжен (внутренний).

Объемная плотность заряда является функцией расстояния r от оси конденсатора r=аr2 (а=10).

Определить закон изменения потенциала и напряженности электрического поля в каждом слое.

Построить графики изменения напряженности поля и потенциала вдоль радиуса.

Решение. В данной задаче поле так же является одномерным. Поэтому электрический потенциал в первом слое диэлектрика (R1?r?R2) удовлетворяет уравнению (1.26), а во втором слое (R2?r?R3) – уравнению (1.27). Эти уравнения имеют решения (1.28) и (1.30), соответственно. Перепишем их (при n=2) в следующем виде:

Для определения постоянных интегрирования С1, С2, С3, С4 поставим граничные условия.

Так, если принять потенциал наружного электрода равным нулю, то потенциал внутреннего электрода будет равен U0.

; (1.44)

.

(1.45)

На границе раздела слоев диэлектриков (r=R2) равны между собой потенциалы и векторы электрического смещения (вектор электрического смещения имеет одну составляющую, направленную вдоль радиуса).

Решая систему уравнений, составленную из последних двух уравнений и уравнений (1.44) и (1.45) относительно постоянных интегрирования, получаем С1=-94.917, С2=-555.628, С3=-48.588, С4=-268.279.

Таким образом, выражения для напряженности электрического поля и потенциала принимают вид

Графики изменения данных функций вдоль радиуса представлены на рис. 1.30.

Все значения на графике даны в относительных единицах. За базисное значение напряженности поля и потенциала приняты их значения на поверхности внутреннего электрода Eb=95.06кВ/м,

Ub=100В. За базисное значение радиальной координаты принят внутренний радиус наружного электрода R2.

Пример 4. Две протяженные проводящие пластины расположены в воздухе под углом a0=p/4 друг к другу и не соприкасаются (рис. 1.31). Напряжение между пластинами U0=100В.

Пренебрегая краевым эффектом, определить закон распределения потенциала и напряженности электрического поля между пластинами.

Поле между пластинами является одномерным (все величины зависят только от одной угловой координаты a цилиндрической системы координат). Потенциал, в этом случае, удовлетворяет уравнению (1.32) с решением (1.34).

Постоянные интегрирования определяются из граничных условий

или

Из данной системы уравнений определяем постоянные интегрирования С2=0, С1=U0/a0.

Таким образом, закон изменения искомых функций вдоль угловой координаты a цилиндрической системы координат можно окончательно представить следующим образом:

Как видно из последних выражений, эквипотенциальными поверхностями являются полуплоскости, проходящие через ось OZ и изолированными драг от друга, а линиями поля являются дуги окружностей с центром в начале координат.

Пример 5. Шар из диэлектрика (er = 4) заряжен и расположен в воздухе. Объемная плотность заряда является функцией расстояния r от центра шара: r = k*r (k = 0,05p). Радиус шара R = 2см.

Рассчитать потенциал и напряженность электрического поля внутри и вне шара.

Данная задача была решена в примере 3 раздела 1.14 с помощью теоремы Гаусса.

Покажем, что этой же цели можно добиться и путем решения уравнений Пуассона (1.35) и Лапласа (1.36), которым удовлетворяет потенциал поля внутри и вне шара, соответственно.

Выражения, определяющие этот потенциал внутри (1.37) и вне шара (1.39), можно для данного случая представить в следующем виде:

Постоянные интегрирования определяются из известных граничных условий и с помощью некоторых физических соображений. Так, потенциал в центре шара (r=0) имеет конечное значение, поэтому постоянную С1 необходимо принимать равной нулю (С1=0). Далее, принимая потенциал равный нулю в точке, лежащей в бесконечности (r=?), получаем С4=0.

Оставшиеся две постоянные С2 и С3 определяем исходя из того, что на поверхности шара (r=R) равны между собой потенциалы и нормальные составляющие вектора электрического смещения

Перепишем данные граничные условия в следующем виде:

Решая совместно последние уравнения, находим постоянные интегрирования. C2=38460, С3=-709,964.

Подставляя значения этих постоянных в формулы для потенциалов, получаем

Отсюда видно, что данные выражения полностью аналогичны тем, которые были получены в примере 3 предыдущего раздела.

Пример 6. Две тонкие проводящие поверхности в виде коаксиальных конусов с изолированными вершинами расположены в воздухе. Потенциал первой поверхности U1=0, второй – U2=100В (рис. 1.32), q1=p/6, q2=2p/3.

Найти закон распределения потенциалов и напряженности электрического поля в пространстве между конусами.

Данная задача является одномерной, поскольку, в силу симметрии, решение для потенциала U зависит только от угла q. Поле в данном случае характеризуется уравнением (1.40) и имеет решение (1.41).

Исходя из заданных граничных условий составим уравнения для нахождения постоянных интегрирования С1 и С2

Решая данную систему, получим С1=53.583, С2=70.567.

Таким образом, выражение для определения потенциала будет иметь вид

Напряженность электрического поля имеет одну составляющую

Эквипотенциальными поверхностями являются поверхности конусов с изолированными вершинами. При q=p/2 один из конусов переходит в плоскость. Линии поля лежат на меридианах.

Источник: https://electrono.ru/dopolnitelnye-glavy/1-15-raschet-odnomernyx-elektrostaticheskix-polej-po-uravneniyam-puassona-i-laplasa

Уравнение Пуассона и распределение Больцмана (часть 1)

Уравнение Пуассона и математическая постановка задач электростатики

В продолжение предыдущей статьи «Есть ли плазма в космосе?» я хотел бы в познавательных целях рассказать об уравнениях, которые применялись при выводе уравнения Дебая-Хюккеля. Это уравнение Пуассона и распределение Больцмана.

Уравнение Пуассона

Мы выяснили, что плазма квазинейтральна в равновесном состоянии и что под действием электрического поля от движущихся зарядов, заряженные частицы смещаются на дебаевскую длину и поле в пределах этой длины затухает. В электростатике взаимодействие заряженных частиц описывается кулоновским уравнением:
где – величины взаимодействующих точечных зарядов, – квадрат расстояния между зарядами. Коэффициент k является константой. Если мы используем систему в электростатических единицах СГС, обозначаемых СГСЭq, то k = 1. Если используется система СИ, то , где – диэлектрическая проницаемость среды, в которой расположены заряды, – электрическая постоянная, равная 8,86 ∙ .

В физике непосредственно силой не пользуются, а вводят понятие электростатического поля распределённых зарядов и измеряют поле величиной напряженности электрического поля. Для этого в каждую точку поля мысленно помещают единичный пробный заряд и измеряют силу, с которой поле зарядов действует на пробный заряд: Отсюда, если подставить в это уравнение силу Кулона, то получим: Но и этим физики не ограничиваются, для того чтобы описать полноценно электрическое поле. Рассмотрим единичный заряд, помещённый в электростатическое поле. Поле выполняет работу по перемещению этого заряда на элементарное расстояние ds из точки P1 в точку P2:
Величину называют разностью потенциалов или напряжением. Напряжение измеряется в Вольтах. Знак минус говорит нам о том, что само поле выполняет работу для переноса единицы положительного заряда. Силы, перемещающие заряды являются консервативными, так как работа по замкнутому пути равна всегда нулю, независимо от того, по какому пути перемещается заряд. Отсюда следует глубокий смысл разности потенциалов. Если зафиксировать точку Р1 и перемещать заряд в переменную точку Р2, то работа зависит только от положения второй точки Р2. Таким образом мы можем ввести понятие потенциала. Потенциал – это силовая функция, показывающая какую необходимо выполнить работу полю, чтобы переместить заряд из бесконечности в данную точку P2, где условно принимают потенциал в бесконечности равным нулю. Чтобы понять уравнение Пуассона, необходимо разбираться в «особой» векторной математике. Я вкратце расскажу про такие понятия как градиент поля и дивергенции (подразумевается, что читатель знаком с математическим анализом)

Пусть f(x,y,z) является некоторой непрерывной дифференцируемой функцией координат. Зная её частные производные в каждой точке пространства можно построить вектор, компоненты которого x, y, z равны соответствующим частным производным:

где – единичные векторы соответствующих осей x, y, z. Значок читается «набла» и является дифференциальным оператором Этот оператор ввёл в математику Гамильтон. С набла можно выполнять обычные математические операции, такие как обычное произведение, скалярное произведение, векторное произведение и так далее. Теперь вернёмся к электростатическому полю E. С одной стороны изменение потенциала при переходе из одной точки в другую имеет следующий вид: С другой стороны, согласно формуле (*) Применяя только что введённое понятие градиент, эта формула преобразуется в: Теперь разберёмся с таким понятием, как дивергенция поля. Рассмотрим конечный замкнутый объем V произвольной формы (см. рис. ниже). Обозначим площадь этой поверхности S. Полный поток вектора F, выходящего из этого объема по определению равно , где da является бесконечно малым вектором, величина которого равна площади малого элемента поверхности S, а направление совпадает с наружной нормалью к этому элементу.

Возьмём этот поток вектора F поделим на объём и найдём предел при стремящейся к нулю, т.е. будем стягивать объём в бесконечно малую точку.

Мы подошли к понятию дивергенции. Обозначается дивергенция символом div и является отношением потока вектора F к объёму V, при V стремящейся к нулю. Прежде чем показать, как получается уравнение Пуассона, важно знать закон Гаусса и теорему Гаусса. Представим себе сферу, внутри которой находится заряд q. Заряд создаёт вокруг себя электрическое поле напряжённости E. Возьмём поток вектора E
где S площадь нашей сферы равная . Следовательно
Это и есть закон Гаусса, утверждающий, что поток электрического поля E через любую замкнутую поверхность равен произведению на полный заряд, охватываемый поверхностью:
где – плотность объёмного заряда, т.е. величина электрического заряда в единице объёма, и – элементарный объём, выделенный внутри нашего замкнутого объёма. Теорема Гаусса (полное название теорема Гаусса-Остроградского) чисто математическая теорема о дивергенции. Перепишем полный поток вектора F следующим образом:
В пределе, когда N → ∞, →0 величина в скобках становится дивергенцией и сумма переходит в объёмный интеграл: Это и есть теорема Гаусса, и является поистине самой важной формулой полевой теории. Применим эту теорему к электростатическому полю. С одной стороны, согласно закону Гаусса А с другой стороны, согласно теореме Гаусса (только не путайте теорему с законом Гаусса): Комбинируя два последних уравнения, получим: Вспомним формулу (**) и подставим сюда вместо E потенциал поля
Дивергенция градиента это новый оператор, который в математике называют оператор Лапласа, или сокращённо лапласиан. Лапласиан обозначается значком набла следующим образом и равен Перепишем предыдущую формулу в форме лапласиана:
Наконец мы получили уравнение Пуассона. В первой статье это уравнение было немного в другой форме, с учётом диэлектрической проницаемости среды. Вспомните силу Кулона в системе СИ, там константа . Соответственно в законе Гаусса будет не , а коэффициент . Таким образом получаем уравнение Пуассона в форме представленной в предыдущей статье Таким образом по сути уравнение Пуассона – это закон Кулона (а точнее закон Гаусса) переписанный в другой форме, в обозначениях векторного дифференциального анализа.

В следующей статье мы разберём важное распределение из математической статистики — распределение Больцмана.

Источник: https://habr.com/post/370799/

Уравнение Пуассона и математическая постановка задач электростатики

Уравнение Пуассона и математическая постановка задач электростатики

В достаточно большом количестве случаев наиболее удобным методом поиска напряженности поля является решение дифференциального уравнения для потенциала. Получим его, используя в качестве основы теорему Остроградского — Гаусса в дифференциальной форме:

где $\rho $ — плотность распределения заряда, ${\varepsilon }_0$ — электрическая постоянная, $div\overrightarrow{E}=\overrightarrow{abla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) — дивергенция вектора напряженности и выражение связывающее напряженность поля и потенциал:

Подставим (2) в (1), получим:

Учитываем, что $divgrad\varphi ={abla }2\varphi =\frac{{\partial }2\varphi }{\partial x2}+\frac{{\partial }2\varphi }{\partial y2}+\frac{{\partial }2\varphi }{\partial z2}$, где $\triangle ={abla }2$- оператор Лапласа, тогда равенство (3) запишем как:

Уравнение (4) называется уравнением Пуассона (для вакуума) в системе СИ. Если заряды отсутствуют, то уравнение (4) преобразуется в уравнение Лапласа:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

После того, как найден потенциал из уравнения Пуассона, обычно вычисляется напряженность по формуле (2). Решения уравнения Пуассона должны удовлетворять таким требованиям:

  1. Потенциал должен быть непрерывной функцией.
  2. Потенциал должен быть конечной функцией.
  3. Производные от потенциала как функции по координатам должны быть конечными.

Если заряды сосредоточены в объеме V, то решением уравнения (4) будет выражение для потенциала вида:

Итак, общая задача электростатики сводится к нахождению решения дифференциального уравнения (уравнения Пуассона), которое удовлетворяет выше перечисленным требованиям.

Нахождение решения — задача весьма сложная. Теоретические решения известны для небольшого количества частных случаев.

Если удалось подобрать функцию $\varphi $, которая удовлетворяет всем условиям задачи, то она единственная.

Не всегда есть необходимости задавать заряды или потенциалы во всем пространстве. Например, если необходимо найти электрическое поле в полости, которая окружена проводящей оболочкой, то можно найти поле только для тел внутри самой полости.

Каждое решение уравнения Пуассона в ограниченной области однозначно определяется краевыми условиями, которые накладывают на поведение решения. На границе перехода из одной среды в другую выполняются граничные условия:

\[E_{2n}-E_{1n}=4\pi \sigma ,\ или\ \frac{\partial {\varphi }_1}{\partial n}-\frac{\partial {\varphi }_2}{\partial n}=0.\] \[E_{1\tau }=E_{2\tau }.\] \[{\varphi }_1=ц_{2\ }\]

где $\sigma $- поверхностная плотность свободных зарядов, n- единичный вектор нормали к границе раздела, проведенный из среды 1 в 2, $\tau -\ $единичный вектор, касательный к границе.

Данные уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной составляющей вектора напряженностей электрического поля при переходе через любую заряженную поверхность не зависимо от формы этой поверхности и наличия и отсутствия зарядов вне ее.

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Уравнение Пуассона может быть записано не только в декартовых координатах, но также в сферических и цилиндрических, полярных.

В сферических координатах ($r,\theta ,\vartheta)$ уравнение Пуассона имеет следующий вид:

\[\frac{1}{r2}\cdot \frac{\partial }{\partial r}\left(r2\frac{\partial \varphi }{\partial r}\right)+\frac{1}{r2sin\theta \partial \theta }\left(sin\theta \cdot \frac{\partial \varphi }{\partial \theta }\right)+\frac{{\partial }2\varphi }{r2{sin}2\theta \partial {\varphi }2}=-\frac{1}{{\varepsilon }_0}\rho \left(7\right).\]

В полярных координатах ($r,\theta )$ система координат уравнение имеет вид:

\[\frac{1}{r}\cdot \frac{\partial }{\partial r}\left(r\frac{\partial \varphi }{\partial r}\right)+\frac{{\partial }2\varphi }{r2\partial {\theta }2}=-\frac{1}{{\varepsilon }_0}\rho \left(8\right).\]

В цилиндрических координатах ($r,\vartheta,z)$ уравнение имеет вид:

\[\frac{1}{r}\cdot \frac{\partial }{\partial r}\left(r\frac{\partial \varphi }{\partial r}\right)+\frac{{\partial }2\varphi }{\partial z2}+\frac{{\partial }2\varphi }{r2\partial \vartheta2}=-\frac{1}{{\varepsilon }_0}\rho \left(9\right).\]

Пример 1

Задание: Найдите поле между двумя коаксиальными цилиндрами с радиусами $r_1$ и $r_2$, разность потенциалов между которыми равна $\triangle U={\varphi }_1-{\varphi }_2.$

Рис. 1

Решение:

Запишем уравнение Лапласа в цилиндрических координатах с учетом аксиальной симметрии:

$\frac{1}{r}\cdot \frac{\partial }{\partial r}\left(r\frac{\partial \varphi }{\partial r}\right)=0$(1.1)

Оно имеет решение $\varphi =-Aln(r)$+B. Выберем нулевой потенциал на наружном цилиндре, найдем, получим:

$\varphi \left(r_2\right)=0=-Alnr_2+B,$ следовательно

\[B=Alnr_2.\ \] $\varphi \left(r_1\right)=\triangle U=-Alnr_1+B$, получим: \[A=\frac{\triangle U}{{ln \left(\frac{r_2}{r_1}\right)\ }}.\]

В результате имеем: $\varphi (r)=-\frac{\triangle U}{{ln \left(\frac{r_2}{r_1}\right)\ }}ln\left(r\right)+\frac{\triangle U}{{ln \left(\frac{r_2}{r_1}\right)\ }}lnr_2$

Ответ: Поле между двумя коаксиальными цилиндрами задается функцией $\varphi (r)=-\frac{\triangle U}{{ln \left(\frac{r_2}{r_1}\right)\ }}ln\left(r\right)+\frac{\triangle U}{{ln \left(\frac{r_2}{r_1}\right)\ }}lnr_2$

Пример 2

Задание: Найти, используя уравнение Пуассона потенциал поля, которое создает бесконечно длинный круглый цилиндр радиуса R с объемной плотностью заряда $\rho $.

Решение:

Ось Z направим по оси цилиндра. Так как цилиндрическое распределение заряда аксиально симметрично, то потенциал обладает той же симметрией, то есть он является функцией $\varphi \left(r\right),\ $где r — расстояние от оси цилиндра. Поэтому используем цилиндрическую систему координат. Запишем уравнение Пуассона в ней с учетом симметрии:

\[\frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r\frac{\partial {\varphi }_1}{\partial r}\right)=- \frac{1}{ \varepsilon_0} \rho \ \left(0 Общие решения уравнений (2.1) (2.2) имеют вид: \[{\varphi }_1=-\frac{1}{4}\frac{\rho }{{\varepsilon }_0}r2+C_1lnr+{C'}_1\left(2.3\right),\] \[{\varphi }_2=C_2lnr+{C'}_2\left(2.4\right),\]

где $C_1$,$\ {C'}_1,C_2$,$\ {C'}_2$ — постоянные интегрирования. Так как потенциал во всех точках должен быть конечным, а ${\mathop{lim}_{r\to 0} lnr\ }=\infty $, следовательно, $C_1=0.$ Пронормируем потенциал условием:${\varphi }_1\left(0\right)=0$, тогда: ${C'}_1=0.$

Так как поверхностных зарядов нет, то напряженность электрического поля на поверхности шара непрерывна, то есть непрерывна производная от потенциала при r=R. И непрерывен сам потенциал. Эти условия дают два алгебраических уравнения для того, чтобы найти постоянные $C_2$,$\ {C'}_2:$

\[C_2lnR+{C'}_2=-\frac{1}{4}\frac{\rho }{{\varepsilon }_0}R2(2.5)\] \[\frac{C_2}{R}=-\frac{1}{2}\frac{\rho }{{\varepsilon }_0}R\left(2.6\right).\]

Следовательно, получаем выражения для потенциалов:

\[{\varphi }_1\left(r\right)=-\frac{1}{4}\frac{\rho }{{\varepsilon }_0} r 2 \left(0 Ответ: Потенциал поля равен: $$ \varphi_1 \left(r \right)=-\frac{1}{4}\frac{\rho }{\varepsilon_0} r2 \left (0

Источник: https://spravochnick.ru/fizika/elektrostatika/uravnenie_puassona_i_matematicheskaya_postanovka_zadach_elektrostatiki/

Booksm
Добавить комментарий