Уильям Гамильтон, механик-теоретик и физик-теоретик

Уильям Роуэн Гамильтон — опередивший время

Уильям Гамильтон,  механик-теоретик и физик-теоретик

В плеяде великих математиков XIX века одним из самых известных является ирландец сэр Уильям Роуэн Гамильтон.

Сделанные им открытия в физике и математике были прорывными для своего времени и послужили фундаментом для дальнейшего развития науки на многие десятилетия вперед. Успех Гамильтона как ученого можно объяснить его разносторонними талантами.

Его труды отличались глубиной проработки и оригинальностью способов решения, а расчеты всегда были безупречно точны и скрупулезны.

Родился будущий выдающийся математик 4 августа 1805 года в столице Ирландии. Его отец был юристом. С трехлетнего возраста Гамильтон воспитывался у дяди по отцу, который был викарием и учителем.

Примерно в это время Гамильтон научился читать, а в семь лет уже освоил древнееврейский язык. Дядя великого математика, Джеймс Гамильтон был хорошим языковедом, и умело обучал своего племянника.

Когда Уильяму исполнилось 12 лет, он владел двенадцатью языками, а еще через год написал труд по грамматике сирийского языка.

Вскоре Гамильтон всерьез увлекся математикой. Еще в одиннадцатилетнем возрасте он основательно изучил «Начала» Евклида на латыни. Это разогрело интерес Гамильтона к математике. К шестнадцати годам он прочитал «Арифметику» и «Математические начала» Исаака Ньютона.

В эти годы он потерял своих родителей – мать умерла в 1818 году. А еще через два года умер и отец. Уильям был четверым ребенком в семье, в которой было девять детей. Вскоре после смерти отца Уильям стал опекать трех своих сестер. Это не помешало ему заниматься своим образованием.

Пытливый юноша Гамильтон даже нашел ошибку в трактате Лапласа, о чем известил королевского астронома Ирландии Джона Бринкли. Тот заинтересовался юным дарованием и охотно поддерживал его стремление развиваться. Именно Джон Бринкли стал на долгие годы добрым советчиком будущего светила математики, так как крупных ученых в Ирландии того времени было очень мало.

По протекции Бринкли, в возрасте 22 лет, Гамильтон, сам еще студент, был назначен его приемником на посту Королевского астронома Ирландии и вступил в должность профессора астрономии Дублинского университета. До этого назначения Гамильтон четыре года был лучшим учеником в Тринити-колледже этого университета.

В этом назначении, королевским астрономом, Гамильтон пребывал тридцать восемь лет – дольше, чем все, когда-либо занимавшие этот пост. По совместительству Гамильтон был директором обсерватории в Дансинке.

Ученый живо интересовался оптикой и сделал несколько открытий, которые послужили развитию оптических инструментов.

В тоже время, к самой астрономии Гамильтон относился достаточно прохладно, за что дважды получил критические замечания от членов комиссии из Лондона.

В 1833 году Гамильтон сочетается браком с Хелен Бэйли. Хотя в браке у них родилось трое детей, семейной идиллии не получилось. Из-за семейных неурядиц Гамильтон пристрастился к алкоголю.

В 34-35 годах позапрошлого века вышли в свет труды по «гамильтоновой механике», которые современники называли самыми значительными разработками в этой области со времен Ньютона и Лагранжа. Заслуги Гамильтона были оценены, и ему пожаловали рыцарское звание в 1835 году с назначением денежного пособия.

Еще одним знаком признания его заслуг стало награждение Королевской медалью. А двумя годами позже Гамильтон был избран президентом Ирландской королевской академии. В том же 1837 году произошло еще одно событие в жизни математика: благодаря рекомендациям русских ученых М. В. Остроградского, В. Я. Буняковского и П. Н.

Фусса Уильям Гамильтон стал членом-корреспондентом Петербургской академии наук за труд “Об общем методе в динамике”.

Сделанные Гамильтоном открытия в оптике намного опережали научную мысль той эпохи. Созданная им концепция послужила фундаментом созданной в следующем веке квантовой физики.

Полезными оказались его труды и для разработки общей теории относительности. Удивительно, но некоторые разработки Гамильтона были просто недопоняты научной общественностью того времени.

Только через несколько десятилетий его открытия были открыты заново и положили начало квантовой механике.

Не менее впечатляющими выглядят его достижения в классической механике. В одной из своих работ Гамильтон привел метод обобщения вычисления интегральных уравнений, который послужил основой для дальнейшего развития вычислений в динамике тел.

В 40 годы XIX века математики пытались решить задачу, которая возникала из-за ошибочного предположения существования расширения поля комплексных чисел с несколькими мнимыми единицами. Некорректность данного предположения была доказана намного позже. Дальше всех смог продвинуться тогда Гамильтон, открывший кватернионы.

Открытие кватернионов определило направление работ великого математика. Он занимался исследованиями кватернионов оставшиеся два десятилетия своей жизни. За это время он опубликовал более сотни трудов на эту тему. Работы Гамильтона придали мощный импульс развитию алгебры не только в Ирландии или Великобритании, но и во всем мире.

Побочным результатом этих исследований стало создание векторного анализа и введение в науку понятия векторного поля. До сих пор кватернионы используются для вычислений движения в трехмерном пространстве, успешно конкурируя в этом с более поздними открытиями. Например, они используются в компьютерной графике и программировании видео игр.

Примерно в это же время великий математик ввел понятие годографа, которое используется в кинематике и динамике. Годограф применяется для описания траектории точки, движущейся в пространстве. Этот метод применим для описания как прямолинейного, так и криволинейного движения.

Всю свою жизнь Гамильтон посвятил науке. Этому способствовал и склад ума и выдающиеся способности. Также, возможно, одной из причин была неудавшаяся личная жизнь великого математика.

Сегодня таких людей называют трудоголиками.

Несмотря на сложности ознакомления с новейшими открытиями в математике, которые объяснялись удаленностью Ирландии от Европы, Гамильтон всегда был в авангарде математической науки.

Он был глубоко верующим человеком и даже избирался окружным церковным старостой. Среди его работ есть два труда посвященных религиозной теме.

Гамильтон был очень трудолюбив, все его работы поражают глубиной проработки изложенных мыслей. В его рабочих записях видно, что он тщательно изучал частные случаи, анализировал, обобщал и делал выводы. Конечные результаты работы, выходившие в свет, были настолько тщательно отделаны, что было почти невозможно проследить, как великий математик продвигался к конечному результату.

В начале 1865 года его состояние стало ухудшаться. Перед смертью Гамильтон успел закончить работу над обширным трудом «Элементы кватернионов», которому посвятил последние годы своей жизни. Величайший математик Ирландии закончил свой земной путь 2 сентября того же года. Похоронен Гамильтон в родном городе Дублине.

Источник: https://calculator888.ru/blog/biografiya/gamilton-uiliyam.html

Уильям Роуэн Гамильтон

Уильям Гамильтон,  механик-теоретик и физик-теоретик

Ирландский математик, механик-теоретик, физик-теоретик, «один из лучших математиков XIX века».

Известен фундаментальными открытиями в математике (кватернионы, основы векторного анализа, вариационное исчисление, обоснование комплексных чисел), аналитической механике (гамильтонова механика) и оптике.

Автор предельно общего вариационного принципа наименьшего действия, применяемого во многих разделах физики.

24.02.2020

Королевский астроном Ирландии (1827—1865). Член Ирландской королевской академии (1837; в 1837—1845 годах — её президент). Член-корреспондент многих академий наук и научных обществ, в том числе Российской академии наук (1837), первый иностранный член Национальной академии нау

Уильям Роуэн Гамильтон фотография

к США (1864). Академик А. Н. Крылов писал, что Гамильтон — «один из величайших математиков, отличавшийся многочисленностью своих работ, важностью заключавшихся в них открытий, глубиною мысли, оригинальностью методов, вместе с тем и как вычислитель имевший мало себе равных».

Реклама:

Детство и юность

Уильям Роуэн Гамильтон фотография

Гамильтон был четвёртым из девяти детей в семье ирландки Сары Хаттон (англ. Sarah Hutton, 1780—1817) и полуирландца, полушотландца Арчибальда Гамильтона (англ. Archibald Hamilton, 1778—1819). Арчибальд, родом из городка Данбойн, работал в Дублине юристом.

Из-за финансовых затруднений и плохого здоровья родителей было решено с годовалого возраста передать мальчика на воспитание дяде по отцу. Дядя, Джеймс Гамильтон, человек хорошо образованный, служил викарием и учителем в городе Трим; он с симпатией отнёсся к племяннику и всячески помогал его развитию.

Вскоре Уильям окончательно остался без родителей — мать умерла, когда мальчику было 12 лет, отец пережил её на два года. Позднее Гамильтон взял на себя заботу о трёх своих осиротевших сёстрах.

Уже в детстве мальчик проявил необыкновенные дарования. В 3 года он свободно читал и начал осваивать арифметику. В 7 лет он знал латынь, греческий и древнееврейский языки. В 12 — под руководством дяди Джеймса, хорошего лингвиста, — знал уже 12 языков и среди них персидский, арабский и санскрит.

В 13 лет он написал руководство по сирийской грамматике. Литературу и поэзию Гамильтон всю жизнь высоко ценил и время от времени сам пробовал писать стихи.

Среди его литературных знакомых были знаменитый поэт-романтик Уильям Вордсворт, дружба между ними продолжалась до конца жизни Вордсворта, а также Сэмюэл Кольридж, с которым Гамильтон завязал оживлённую переписку.

После языков настала пора увлечения математикой.

Ещё в десятилетнем возрасте Гамильтону попался латинский перевод «Начал» Евклида, и он детально изучил это сочинение; в 13 лет он прочёл «Универсальную арифметику» Ньютона; в 16 лет — большую часть «Математических начал натуральной философии» Ньютона (при этом Гамильтон — по работам Клеро и Лапласа — изучал и континентальную математику, что в Великобритании было ещё новостью). В 17 лет Уильям приступил к изучению «Небесной механики» Лапласа; в этом трактате он обнаружил логическую ошибку и сообщил о ней королевскому астроному Ирландии Джону Бринкли. Тот оценил способности юноши и стал помогать его научному развитию. Надо отметить, что крупных учёных в Ирландии было совсем мало, и фактически Гамильтон изучал математику и физику самоучкой, в затруднительных случаях прибегая к помощи Бринкли. Ирландская писательница Мария Эджуорт, с семьёй которой подружился Уильям, назвала его «чудом талантливости, о котором профессор Бринкли говорит, что он может стать вторым Ньютоном».

В 1815—1823 годах Уильям учился в школе, затем 18-летний юноша поступил в Тринити-колледж Дублинского университета.

Там он показал столь блестящие способности (первый по всем предметам), что в 1827 году, ещё 22-летним студентом, по рекомендации ушедшего в отставку Бринкли был назначен на его место — профессором астрономии в Дублинском университете и королевским астрономом Ирландии. В университете бывший студент Гамильтон, так никогда и не защитивший диссертацию, читал курс небесной механики.

Королевский астроном

Невероятно сексуальнаПосетило:78Людмила ПобединскаяПосетило:67Наталья ПочинокПосетило:61

В 1827 году Гамильтон занял пост королевского астронома Ирландии (что автоматически означало по совместительству пост директора Дансинкской обсерватории) и занимал его на протяжении 38 лет — дольше, чем кто бы то ни было на этой должности.

Он опубликовал ряд работ по геометрической оптике, представляющих большую ценность для теории оптических инструментов, но чисто астрономическими проблемами занимался мало; комиссии из Лондона дважды подвергали его критике за недостаточное усердие.

В 1833 году Гамильтон женился на Хелен Бэйли (Helen Maria Bayley). У них родились два сына и дочь. Брак оказался не слишком удачным, и Гамильтон начал злоупотреблять алкоголем.

В период 1834—1835 годов появились классические работы по «гамильтоновой механике». Шотландский математик Питер Тэт назвал эти работы «крупнейшим дополнением теоретической динамики со времени великих эпох Ньютона и Лагранжа».

За открытия в оптике и по совокупности научных заслуг вице-король Ирландии возвёл Гамильтона в рыцарское достоинство (1835) и назначил ежегодное пособие в 200 фунтов, а лондонское Королевское общество наградило его (совместно с Фарадеем) Королевской медалью.

Однако впереди был ещё целый ряд крупных открытий. В том же 1835 году Гамильтон завершил разработку нового, чрезвычайно общего подхода к решению задач динамики в виде вариационного принципа (принцип Гамильтона).

Спустя почти столетие именно этот подход оказался ключевым для создания квантовой механики, а открытый Гамильтоном вариационный принцип с успехом был использован при разработке уравнений поля общей теории относительности.

В 1837 году Гамильтона избрали президентом Ирландской королевской академии. В том же году по представлению академиков В. Я. Буняковского, М. В. Остроградского и П. Н. Фусса он был избран членом-корреспондентом Петербургской академии наук за работу «Об общем методе в динамике».

1843 год стал в жизни Гамильтона переломным. В этом году он открыл алгебраическую систему кватернионов — обобщение системы комплексных чисел — и оставшиеся два десятилетия своей жизни посвятил их исследованию.

В Великобритании теорию кватернионов встретили с необыкновенным энтузиазмом и «глубоким уважением, доходящим до благоговения»; в Ирландии (а затем — и в Англии) она стала обязательным элементом образования.

В 1846 году случился неприятный скандал на обеде Геологической ассоциации, куда Гамильтон явился в состоянии чрезвычайно сильного опьянения: в результате он подал в отставку с поста президента Ирландской академии. Год спустя скончался дядя Джеймс, заменивший Уильяму отца.

Весной 1865 года здоровье Гамильтона стало быстро ухудшаться. Свой многолетний труд, монографию «Элементы кватернионов», он успел завершить за несколько дней до смерти. Гамильтон скончался 2 сентября в возрасте 60 лет. Похоронен на дублинском кладбище Mount Jerome Cemetery and Crematorium.

Научный вклад

Во всех своих основных работах Гамильтон стремился поставить и решить задачу максимально общим, универсальным способом, глубоко исследовать открытые им методы и ясно очертить области их практического применения.

АлгуПосетило:2415Звезда «Камеди Клаб»Посетило:294Трехкратный чемпионПосетило:428

Источник: https://www.peoples.ru/science/mathematics/william_rowan_hamilton/

Уильям Гамильтон, механик-теоретик и физик-теоретик

Уильям Гамильтон,  механик-теоретик и физик-теоретик

Родился Уильям Роуэн (Роуан) Гамильтон в 1805 году в Дублине в семье адвоката и нотариуса.

В возрасте чуть более трех лет Гамильтон свободно читал по английский и знал большую часть курса арифметики того времени.

В пять лет он хорошо знал географию, Библию, читал и переводил с латыни, греческого, древнееврейского, декламировал отрывки Гомера, Драйдена, Мильтона. Позднее он освоил еще ряд языков.

К 12 годам Гамильтон стал полиглотом, но и в физическом развитии, он не отставал от своих сверстников.

Во время учения в школе с 1815 по 1823 годы у него выявились замечательные способности к математике. Он осваивает высшую математику и небесную механику. Изучая «Небесную механику» Лапласа, он находит ошибку, которую раньше никто не замечал.

С 1823 по 1827 г Гамильтон учился в Тринити-колледж.

Самые значимые достижения ученого

Исследования в области естественных наук Гамильтон начал с оптики. Так с 1825 по 1832 г. он работал над «Теорией систем лучей». Результатом оптических исследований стало предсказание внутренней и внешней конической рефракции света, которую позднее подтвердили эксперименты Х. Ллойда.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В 1830 году он начал вплотную заниматься алгеброй.

Работы У. Гамильтона относятся:

  • к «чистой» математике (например, исчисление кватерионов);
  • прикладной математике (математической физике).

Наиболее распространенные разработки и физико-математические объекты, которые связывают с именем Гамильтона — это:

  • гамильтониан;
  • канонические уравнения Гамильтона;
  • уравнения Гамильтона – Якоби;
  • оптико-механическая аналогия Гамильтона;
  • открытие внешней и внутренней конической рефракции;
  • исчисление кватернионов (прародитель векторного исчисления).

Оптические исследования ученого

Свой интерес к оптике Гамильтон проявил, еще будучи 14 летним юношей. В семнадцать лет он стал писать на данную тему. Все свободное время молодой человек во время учебы в Тринити-колледж использовал для своих исследований. Первой его научной работой стала в 1824 году работа по математической оптике «О каустиках».

Можно сказать, что эта статья об обобщённой теореме Малюса. В ней рассматривались свойства общих прямолинейных конгруэнций. Проблемы оптики в данной статье не рассматривались.

Гамильтон был убежден в существовании «универсальной математической схемы», это определяло характер исследований ученого. Конкретная же тематика была связана:

  1. с его работой в качестве королевского астронома Ирландии и главы астрономической обсерватории;
  2. с прикладным вопросами приборостроения в оптике.

В работе «Теория систем лучей» содержатся задачи оптики, которые исследуются при помощи характеристической функции.

Центральной идеей, которую далее развивал Гамильтон, стала идея характеристической функции для любой оптической системы лучей. Такой функцией ученый считал соотношение, разное для каждой системы, такое, что геометрические свойства системы могут быть получены из него.

Все свойства систем в оптике для каждой кривой или поверхности следуют из этого основного соотношения.

При этом в теории установлена связь восьми параметров, шесть – это координаты пары переменных оптически связанных точек в пространстве, седьмая – это индекс цвета, а восьмая, называемая Гамильтоном характеристической функцией, есть действие между парой переменных точек.

Данная функция является характеристической, так как Гамильтон показал, что в способе связи данной функции и семи названных выше переменных заключаются все свойства оптической системы.

Замечание 1

Стремление к общности результатов, к соединению в единой математической схеме всех явлений и процессов природы появилось у Гамильтона в самых первых научных работах.

С 1832 года Гамильтон начал исследовать физику распространения света и выступил на стороне волновой природы света.

Гамильтон установил различие между групповой и фазовой скоростями света.

Роль Гамильтона в развитии механики

Гамильтон создал основы гамильтоновой динамики. К огромному достижению классической динамики можно отнести то, что все свойства и движение динамической системы могут быть полностью определены, законы выражены при использовании одной величины ($H$) функции Гамильтона.

Динамика обладает непротиворечивостью и полнотой. Канонические уравнения Гамильтона, которые связывают обобщенные координаты и импульсы со временем, используя производные гамильтониана, включают в себя общие свойства всех динамических изменений.

Вариационный принцип Гамильтона отражает в простом и инвариантном виде:

  • уравнения движения,
  • уравнения полей;
  • синтез дискретной и континуальной сторон движения;
  • выражает обобщенный принцип причинности в физике.

Имея гамильтониан, мы принципиально можем решить любую задачу динамики.

Исчисление кватернионов

В 1835 году ученый публикует труд, названный «Теория алгебраических пар». В ней он предлагает построенную им теорию комплексных чисел. Комплексное число Гамильтон представлял как пару действительных чисел. Далее ученый несколько лет работал над обобщением понятия комплексного числа, так возникли кватернионы – четырехчленные числа.

Кватернионы Гамильтон представлял четверками действительных чисел или записывал их в виде формальных сумм:

$q=a+bi+cJ+dk (1),$

где $i,j,k,$ — кватернионные единицы (аналогичные мнимой единице).

Еще одним достижением Гамильтона стала разработка исчисления кватернионов. Идея состояла в объединении всех ветвей математики, таких как:

  • теории комплексных переменных;
  • алгебры;
  • математического анализа;
  • геометрии;
  • сферической тригонометрии и т.д.

Использование кватернионов в физике приобрело важное значение в квантовой физике. Из этого исчисления родилось векторное исчисление.

Работы по исчислению кватернионов ученый проводил с 1843 по 1865 годы. Он исследовал свойства новых чисел, искал им практическое применение.

При исследовании кватернионов ученый ввел понятие векторного поля и заложил основы векторного анализа.

Символы, применяемые Гамильтоном, например, его оператор набла, позволяют компактно записывать основные операторы векторного анализа, такие как:

  • градиент;
  • ротор;
  • дивергенция.

Источник: https://spravochnick.ru/fizika/uilyam_gamilton_mehanik-teoretik_i_fizik-teoretik/

Уильям роуан гамильтон

Уильям Гамильтон,  механик-теоретик и физик-теоретик

Уильям роуан гамильтон (1805—1865)

Уильям Роуан Гамильтон (1805—1865) был одним из ге­ниальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными, разнообразными способностями.

В четырехлетием возрасте он недурно знал географию и свободно читал литературу на англий­ском языке, а восьми лет овладел итальянским и фран­цузским языками, изучал арабский, санскрит и латынь.

Особенно большую склонность проявлял юноша к математике.

В 1824 г. Гамильтон поступил в Тринити — колледж Дублинского университета, где успешно изучал матема­тические науки и разрабатывал геометрическую оптику, или теорию лучей.

В возрасте 22-х лет молодой ученый бьгл назначен профессором астрономии колледжа св. Ан­дрея Дублинского университета и королевским астроно­мом Ирландии.

В течение ряда лет он возглавлял также Дублинскую астрономическую обсерваторию и читал лек­ции по астрономии.

В 1837 г. Гамильтон был избран президентом Ир­ландской академии наук. Научные заслуги его нашли широкое признание во всем мире.

В 1828 г. в «Известиях» Ирландской академии наук Гамильтон опубликовал одну из своих самых знамени­тых работ — «Теорию систем лучей». Исследуя системы оптических лучей, он исходил прежде всего из практи­ческих запросов их применения в оптических приборах.

В третьем добавлении к этому труду ученый на основа­нии сложных математических вычислений предсказал су­ществование нового, до тех пор неизвестного явления — внешней и внутренней конической рефракции в двухос­ных кристаллах. Открытие Гамильтона вызвало огром­ный интерес и впоследствии сравнивалось с открытием планеты Нептун на основе вычислений Леверье.

Руководствуясь идеей оптико-механической аналогии, усматривая ее прежде всего в единой математической форме законов движения лучей и материальных частиц, Гамильтон использует в механике так называемый прин­цип наименьшего действия.

Применяя этот принцип к определенным явлениям, Гамильтон исходил из того, что для действительного, осуществляющегося движения тел величина, равная произведению энергии на время и на­званная им «действием», должна иметь некоторое мини­мальное значение. Несколько позже Гамильтона и неза­висимо от него принцип наименьшего действия был раз­работан русским ученым М. В. Остроградским, который распространил его на значительно более широкий круг явлений. Этот принцип теперь справедливо называется принципом Гамильтона—Остроградского. Он оказался мощным математическим оружием физики и был широко использован в работах Максвелла, Гельмгольца, Умова, Эйнштейна, де Бройля, Шредингера и других ученых.

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его харак­теристическая функция для задач механики («функция Гамильтона» Н) оказалась, при довольно широких усло­виях, совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений («канонические уравнения») равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответ­ствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория.

Она дала новую удобную форму уравнений дви­жения, новый подход к проблеме их решения (интег­рирования).

Она вскрывала более полно и глубоко анало­гии между механикой и оптикой, выявила новые воз­можности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и корпускулярными представлениями — но последнее достаточно полно раскрылось лишь через столетие.

Необходимо сказать, что описанная выше теория не была дана Гамильтоном в достаточно общем и закончен­ном виде: он вел свои исследования, переходя к меха­нике, преимущественно в предположении, что имеет дело с системой свободных материальных точек, взаимодей­ствующих с силами, зависящими только от взаимных расстоянии.

Обобщение результатов и методов Гамильто­на, устранение излишних ограничений, тщательная раз­работка математических методов является заслугой К. Якоби и М. В. Остроградского.

Поэтому часто можно встретить в литературе термин «теория Гамильтона — Якоби», но исторически более справедливо говорить о тео­рии Гамильтона — Якоби — Остроградского.

Эта теория является основным достижением аналити­ческой механики XIX в. Поначалу казалось, что ее глав­ное значение — в развитии аналитических методов.

Но более глубокое выявление связи механики с оптикой и раскрытая возможность нового геометрического истолко­вания механических проблем имела принципиальное зна­чение. Во второй половине XIX в. накопление новых фак­тов и разработка новых методов в аналитической меха­нике шло главным образом по линии геометризации.

В начале XX столетия, когда это направление сочета­лось с новыми течениями в физике, именно на создан­ной им основе были пересмотрены основные понятия классической механики.

Гамильтона всегда привлекала проблема мнимых ве­личин, значение и геометрическая природа которых не были ясны математикам того времени.

Замечательным вкладом в науку явилось открытие им в 1843 г.

исчис­ления кватернионов — своеобразной системы чисел, пред­ставляющей собой обобщенную комплексную величину, которая состоит из суммы четырех членов.

Первый член был назван ученым скаляром, три остальных — вектора­ми (термин, введенный Гамильтоном и получивший широ­кое распространение в физике, механике и технических науках).

В основе арифметики кватернионов лежат не две единицы, как в арифметике комплексных чисел (т. е. действительная и мнимая единицы), а четыре, операции над которыми подчинены определенным законам.

Особые трудности представило для Гамильтона установление за­кона умножения кватернионов, который он нашел много времени спустя после того, как разработал правила их сложения и вычитания.

Гамильтон с большой глубиной и подробностью раз­работал теорию кватернионов, ее приложения в геометрии и механике, а также кватернионный и векторный анализы.

Развитию этой теории он посвятил почти целиком последние двадцать два года своей жизни. В 1853 г. был опубликован капитальный труд Гамильтона по этой теории под названием «Лекция о кватернионах».

Историческая роль этой работы двоякая. Во-первых, в ней заложены основы нынешнего векторного исчисле­ния.

Во-вторых, теория кватернионов Гамильтона являет­ся одним из главных источников развития такой отрасли математики, как некоммутативная алгебра, т. е.

алгебра, в которой не действует переместительный закон умноже­ния. Такая некоммутативная алгебра получила широкое применение в современной теоретической физике.

Источник: https://prosopromat.ru/istoriya-sopromata/velikie-uchyonye/uilyam-rouan-gamilton.html

Booksm
Добавить комментарий