Типы ядерных реакций

Типы ядерных реакций

Типы ядерных реакций

Сначала реакции проводились использовав излучение, которое возникает в результате природной радиоактивности. Резерфорд в $1919$ году осуществил реакцию, которою можно записать у виде:

Искусственное преобразование ядер, вызванное бомбардировкой $\alpha $ — частицами, привело к открытию нейтрона. В $1930$ г. В. Боте и Г. Беккер открыли, что при бомбардировке ядер изотопа ${}9_4{Be}$ $\alpha $ — частицами возникает излучение большей проницаемой способности, которое считали потоком $\gamma $ — квантов.

При излучении поглощения этого излучение свинцом было установлено, что энергия этого излучения равна около $7$ МэВ. В $1932$ г. Определили, что ионизирующее действие бериллиевого излучения растет, если его пропустить через пластинку парафина, которая содержит много атомов водорода.

Излучение выбивает с пластинки протон, пробег которого в воздухе достигает $40$ см, что соответствует энергии в $5$ МэВ. Если предположить что протон получил такую энергию в результате соударения с $\gamma $ — квантом, то его энергия должна равняться 55 МэВ, что не совпадает со значением энергии поглощения и с расчётами на основании дефекта масс. Дж.

Чедвик показал, что все затруднения исчезают, если предположить, что бериллиевое излучение — это поток нейтральных частиц с массой близкой к массе протона. Тогда реакцию можно записать у виде:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

По сколько нейтроны не имеют заряда, то при бомбардировке атомных ядер для них не существует потенциального барьера. По этой причине после открытия нейтроны начали широко использовать при проведении ядерных реакций.

Ядерные реакции под действием нейтронов

Эти реакции самые многочисленные и имеют большое практическое применение. Ряд массивных ядер $({}{233}_{92}U,\ {}{235}_{92}U,\ {}{239}_{94}{Pu})$ претерпевает раздел при захвате медленных нейтронов.

Эти ядерные реакции лежат в основе работы ядерных реакторов на медленных нейтронах.

Самыми распространенными реакциями является реакция радиационного захвата ($n,\ \gamma $), которые используются как для управления работой реактора с помощью кадмиевых регулировочных стержней, так и для получения в реакторах разных радиоактивных изотопов.

С увеличением энергии нейтронов увеличивается вероятность неупругого рассеяния ($n,\ n$), а при энергиях в несколько МэВ имеют место реакции ($n,\ p$) ($n,\ \alpha $). Такие реакции, как и реакции ядерного захвата, приводят к созданию $\beta $ — активных ядер.

В отличии от ядер ${}{233}_{92}U,\ {}{235}_{92}U,\ {}{239}_{94}{Pu}$ которые испытывают деление под действием медленных нейтронов, ядра ${}{238}_{92}U$ и ${}{232}_{90}U$ делятся только под действием быстрых нейтронов, энергия которых достигает нескольких МэВ. На таких реакциях базируется работа реакторов на быстрых нейтронах.

При энергии нейтронов в $10-20$ МэВ возможна реакция ($n,2n$), а при энергиях в $20-40$ МэВ — и реакция ($n,\ 3n$).

Ядерные реакции под действием протонов

В то время как эффективное сечение $\sigma $ ядерных реакций под действием медленных нейтронов достаточно большое и превышает геометрическое сечение ядра, величина $\sigma $ для ядерных реакций под действием протонов малых энергий бесконечно мала и увеличивается с увеличением их энергии.

Это объясняется тем, что для протонов существует потенциальный барьер ядра и частица должна преодолеть кулоновское отталкивание. По этой причине, только в случае существования большей собственной энергии протон может подойти близко к ядру и вызвать ядерную реакцию.

В случае ядер с малым массовым числом ядерные реакции под действием протонов могут происходить при меньших значениях энергии протонов, поскольку возникает вероятность туннельного эффекта. Под действием протонов возможны ядерные реакции ($p,\ \gamma $), ($p,\ n$) и ($p,\ \alpha $).

Реакция ($p,\ \alpha $) под действием протонов была получена в ускорителях в $1932$ г. Дж. Кокрофтом и Э. Уолтоном: ${}7_3{Li}{\rm (}p,\ \alpha {\rm )}{}4_2{He}$, реакция : ${}7_3{Li}{\rm (}p,\gamma {\rm )}{}8_4{Be}$ часто используется для получения $\gamma $ — лучей.

С помощью реакции ${}{27}_{13}{Al}{\rm (}\alpha ,n{\rm )}{}{30}_{15}P$ открыли искусственную радиоактивность.

Ядерные реакции под действием дейтронов

Если большинство ядерных реакций под действием частиц, энергии которых равны несколько эВ происходят с созданием промежуточного сложенного ядра, то для ядерных реакций под действием дейтронов характерными являются так званные прямые реакции без создания сложенных ядер.

Эта особенность обусловлена тем, что дейтрон представляет собой относительно слабо связанную и достаточно мощную систему двух нуклонов.

Энергия связи становит всего лишь $2,225$ МэВ, а среднее расстояние между нуклонами в дейтроне почти у два раза больше эффективного радиуса действия ядерных сил.

При изучении ядерных реакций под действием дейтронов установлено, что при энергиях дейтрона от $1$ до $8$ МэВ происходят преимущественно реакции $(D,\ p)$.

Энергетический порог реакции типа $(D,\ n)$, оказывается высшим, чем порог предыдущего типа реакций, что оставалось непонятным с точки зрения гипотезы строения ядра. Впервые механизм реакции под действием дейтронов объяснили у $1935$ г. Р Оппенгеймер и М. Филлипс.

Они предположили, что в случае бомбардировки ядер дейтронами с большей вероятностью происходит захват ядром только одного с нуклонов. При этом второй нуклон пролетает дальше, не поддавшись никакому взаимодействию с ядром.

Когда дейтрон сравнительно небольших энергий пролетает на близком расстоянии от ядра, то он попадает в электрическое поле ядра большей напряженности. Это поле с большей силой отталкивает ядро, не действуя на нейтрон.

Если нейтрон окажется возле ядра на расстоянии действия ядерных сил, а протон дейтрона будет на сравнительно большем расстоянии, то нейтрон захватывается ядром, а протон отрывается и продолжает движение не проникая в ядро. Таким образом, ядерная реакция с участием дейтрона происходит не внутри ядра, а за его пределами. Такие реакции называют реакциями взрыва.

При энергиях дейтронов более $100$ МэВ основным процессом реакции так же остается реакция взрыва одного с нуклонов. Но кулоновское отталкивание не играет такую роль, как у реакциях с малой энергией дейтронов. Здесь отрыв происходит в результате соударения одного с нуклонов и ядра.

В этом случае с одинаковой вероятностью происходит как реакция поглощения протона так и реакция поглощения нейтрона. Реакция отрыва дает возможность получить нейтроны с высокими энергиями.

Кроме этого, реакция под действием дейтронов дает возможность исследовать энергетические уровни атома.

Ядерные реакции под действием $\gamma$- квантов

Такие реакции могут происходить когда энергия $\gamma $ — квантов больше энергии связи нуклонов в ядре. Они называются фотоядерными реакциями. К ним относят реакции: $\left(гa,\ n\right),\ \left(\gamma ,\ p\right),\ (\gamma ,\ n,\ p)$.

Под действием $\gamma $ -нов высоких энергий и частиц, энергия которых выше $100$ МэВ, ядро может «взорваться», распавшись на большое количество осколков. Эти осколки в камере Вильсона или у фотоэмульсиях образуют картинку, которая напоминает звезду.

Такой процесс называется созданием «звезд».

Ядерные реакции при высоких энергиях. Ядерные реакции, которые происходят в результате проникновения в ядра частиц с большими энергиями (сотни и более эВ), имеют ряд особенностей. Это обусловлено тем, что энергия, внесенная частицей, может оказаться больше не только энергии отдельного нуклона, но и энергии связи ядра.

Поэтому даже после равномерного распределения энергии между нуклонами может оказаться, что энергия каждого нуклона будет больше энергии связи и он может покинуть ядро. В связи с этим, первым этапом взаимодействия частиц высокой энергии с ядром наблюдают вылет нескольких нуклонов с ядра.

После этого ядро может находится в достаточно возбужденном состоянии, что приводит к последующему вылету нуклонов подобно испарению молекул нагретой капли жидкости.

При достаточно высоких энергиях бомбардирующих частиц (несколько сотен МэВ) ядро может «взорваться», т.е. произойдет процесс создания «звезды».

Деление тяжелых ядер

Начало изучения деления тяжелых ядер было положено Э. Ферми у $1934$ г. После открытия нейтрона и искусственной радиоактивности он облучил нейтронами почти все элементы периодической системы. Поскольку в результате реакций создавались $\beta $ — активные ядра, то считалось, что при бомбардировке ядер урана можно получить трансурановые элементы.

Было установлено, что в результате проникновения нейтрона в ядро урана последнее делится на два ядерных осколки. Принудительное деление тяжелых ядер под действием нейтронов имеет чрезвычайно важное как теоретическое так и практическое значение. Такую ядерную реакцию можно записать у виде $(n,\ f)$.

Предполагается, что деление тяжелых ядер должно обладать следующими свойствами:

  • При делении тяжелого ядра должна выделятся большая энергия. Такой вывод выплывает с того, что удельная энергия связи нуклонов в ядрах конца периодической системы элементов уменьшается. Так, для ядер ${}{235}_{92}U$ она составляет приблизительно $7,6$ МэВ, а для ядер с массовым числом $100$ — приблизительно $8,5$ МэВ. Поскольку средняя удельная энергия связи нуклонов у ядре в данном интервале массовых чисел $8,5$ МэВ, то при делении ядра должна выделится энергия $Q=\left(8.5-7.6\right)\cdot 238МэВ\approx 200\ МэВ$.
  • Преимущественная часть энергии деления должна освобождаться у форме кинетической энергии осколков деления ядра $Q_f$. Это выходит с того что осколки, которые создаются в результате деления ядра на две части, должны разлететься под действием кулоновских сил отталкивания своих зарядов. Потенциальная энергия кулоновского взаимодействия ядер двух осколков, которые находятся на расстоянии $r$, определяется как:\[V_k=\frac{Z_1Z_2e2}{4\pi {\varepsilon }_0r}\] $Z_1\ и\ Z_2$ — заряды осколков, $r=R_1+R_2$, $R_1\ и\ R_2$ — радиусы ядер осколков, которые можно вычислить как\[R=r_0A{1/3}=1.4\cdot {10}{-13}A{\frac{1}{3}}\ см.\] Если считать, что деление ядра урана ${}{238}_{92}U$ произошло на два одинаковые осколки, то $V_k\approx 200\ МэВ$, т.е. величина такая же как и $Q$.
  • Осколки, которые создаются при деление тяжелых ядер, должны быть ${\beta }-$ — радиоактивными и могут излучать нейтроны. Это выплывает с соотношения между числом нейтронов и протонов в разных стабильных ядрах периодической системы.

Источник: https://spravochnick.ru/fizika/yadernaya_fizika/tipy_yadernyh_reakciy/

Ядерные реакции и их основные типы

Типы ядерных реакций

Ядерная реакцияэто превращение атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ-квантами ) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

, или ,

где X и Y – исходные и конечные ядра, а и b – бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частица.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением σ. С каждым видом взаимодействия частицы с ядром связывают своё эффективное сечение: эффективное сечение рассеяния; эффективное сечение поглощения.

Эффективное сечение ядерной реакции σ находится по формуле:

, (9.5.1)

где N – число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объёма nядер; dN– число этих частиц, вступающих в реакцию в слое толщиной dx. Эффективное сечение σ имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдёт реакция.

Единица измерения эффективного сечения ядерных процессов – барн (1 барн = 10–28 м2).

В любой ядерной реакции выполняютсязаконы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который всегда протекает с выделением энергии, ядерные реакции могут быть какэкзотермические (с выделением энергии), так и эндотермические (с поглощением энергии).

Важнейшую роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936 г.) о том, что ядерные реакции протекают в две стадии по следующей схеме:

. (9.5.2)

Первая стадия – это захват ядром Xчастицы a, приблизившейся к нему на расстояние действия ядерных сил (примерно ), и образование промежуточного ядра С, называемого составным (или компаунд-ядром).

Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбуждённом состоянии. При столкновении нуклонов составного ядра, один из нуклонов (или их комбинация, например дейтрон) или αчастица могут получить энергию, достаточную для вылета из ядра.

В результате наступает вторая стадия ядерной реакции – распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное времявремя, необходимое для пролета частицей расстояния порядка величины равной диаметру ядра ( ). Так для частицы с энергией 1 МэВ (что соответствует её скорости 107 м/с) характерное ядерное время .

С другой стороны, доказано, что время жизни составного ядра 10–16 – 10–12 с, т.е. составляет (106 – 1010)τ. Это означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т.е. перераспределение энергии между нуклонами действительно возможно.

Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускаемые им частицы b) – вторая стадия ядерной реакции – не зависит от способа образования составного ядра, первой стадии.

Если испущенная частица тождественна с захваченной ( ), то схема (4.5.2) описывает рассеяние частицы: упругое – при ; неупругое – при . Если же испущенная частица не тождественна с захваченной ( ), то имеем сходство с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями(например реакции, вызываемые быстрыми нуклонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

· по роду участвующих в них частиц – реакции под действием нейтронов; реакции под действием заряженных частиц (например протонов, дейтронов, α-частиц); реакции под действием γ-квантов;

· по энергии вызывающих их частиц – реакции при малых энергиях (порядка электронвольтов), происходящие в основном с участием нейтронов; реакции при средних энергиях (порядка до нескольких МэВ), происходящие с участием γ-квантов и заряженных частиц (протоны, α-частицы); реакции, происходящие при высоких энергиях (сотни и тысячи МэВ), приводящие к появлению отсутствующих в свободном состоянии элементарных частиц и имеющих большое значение для их изучения;

· по роду участвующих в них ядер – реакции на лёгких ядрах (А < 50); реакции на средних ядрах (50 < A < 100); реакции на тяжёлых ядрах (A > 100);

· по характеру происходящих ядерных превращений – реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переход в основное состояние, испускании одинго или нескольких γ-квантов).

. 55. Позитрон. В+распад. Электронный захват

Позитро́н (от англ. positiveположительный) — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 имассу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже — трёх и более) гамма-квантов.

Позитроны возникают в одном из видов радиоактивного распада (позитронная эмиссия), а также при взаимодействии фотонов с энергией больше 1,022 МэВ свеществом.

Последний процесс называется «рождением пар», ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем ядра, образует одновременно электрон и позитрон.

Также позитроны способны возникать в процессах рождения электрон-позитронных пар в сильном электрическом поле.

Бета-распад

Бе́та-распа́д — тип радиоактивного распада, обусловленного слабым взаимодействием и изменяющего заряд ядра на единицу. При этом ядро может излучать бета-частицу(электрон или позитрон).

В случае испускания электрона он называется «бета-минус-распадом» ( ), а в случае испускания позитрона — «бета-плюс-распадом» ( ). Кроме и -распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон.

Во всех типах бета-распада ядро излучает электронноенейтрино ( -распад, электронный захват) или антинейтрино ( -распад).

Диаграмма Фейнмана для бета-распада нейтронана протон, электрон и электронное антинейтринопри участии тяжёлого W-бозона

Бета-минус-распад атомного ядра

В -распаде слабое взаимодействие превращает нейтрон в протон, при этом испускаются электрон и антинейтрино:

.

На фундаментальном уровне (показанном на Фейнмановской диаграмме) это обусловлено превращением d-кварка в u-кварк с испусканием W-бозона.

В -распаде протон превращается в нейтрон, позитрон и нейтрино:

.

Таким образом, в отличие от -распада, -распад не может происходить в отсутствие внешней энергии, поскольку масса самого нейтрона больше массы протона.

-распад может случаться только внутри ядер, где абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра.

Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц.

Во всех случаях, когда β+-распад энергетически возможен (и протон является частью ядра с электронными оболочками), он сопровождается процессом электронного захвата, при котором электрон атома захватывается ядром с испусканием нейтрино:

.

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ), то электронный захват происходит, не сопровождаясь конкурирующим процессом позитронного распада; последний в этом случае запрещёнзаконом сохранения энергии.

Когда протон и нейтрон являются частями атомного ядра, эти процессы распада превращают один химический элемент в другой. Например:

( распад),

( распад),

(электронный захват).

Бета-распад не меняет число нуклонов в ядре A, но меняет только его заряд Z. Таким образом может быть введён набор всех нуклидов с одинаковым A; эти изобарные нуклиды могут превращаться друг в друга при бета-распаде.

Среди них некоторые нуклиды (по крайней мере, один) бета-стабильны, поскольку они представляют собой локальные минимумы излишка массы: если такое ядро имеет (A, Z) числа, соседние ядра (A, Z−1) и (A, Z+1) имеют больший излишек массы и могут распадаться посредством бета-распада в (A, Z), но не наоборот.

Необходимо заметить, что бета-стабильное ядро может подвергаться другим типам радиоактивного распада (альфа-распаду, например). Большинство изотопов, существующих в природных условиях на Земле, бета-стабильны, но существует несколько исключений с такими большими периодами полураспада, что они не успели исчезнуть за примерно 4,5 млрд лет, прошедшие с момента нуклеосинтеза.

Например, 40K, который испытывает все три типа бета-распада (бета-минус, бета-плюс и электронный захват), имеет период полураспада 1.277·109 лет.

Бета-распад можно рассматривать как переход между двумя квантовомеханическими состояниями, обусловленный возмущением, поэтому он подчиняется золотому правилу Ферми.

Электро́нный захва́т, e-захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу.

Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Этот процесс характерен для протонноизбыточных ядер.

Если энергетическая разница между родительским и дочерним атомом (доступная энергия бета-распада) превышает 1,022 МэВ (удвоенную массу электрона), электронный захват всегда конкурирует с другим типом бета-распада, позитронным распадом.

Например, рубидий-83превращается в криптон-83 только посредством электронного захвата (доступная энергия около 0,9 МэВ), тогда как натрий-22 распадается в неон-22 посредством как электронного захвата, так и позитронного распада (доступная энергия около 2,8 МэВ).

Поскольку число протонов в ядре (т.е. заряд ядра) при электронном захвате уменьшается, этот процесс превращает ядро одного химического элемента в ядро другого элемента, расположенного ближе к началу таблицы Менделеева.

Общая формула электронного захвата

Примеры:

⇐ Предыдущая567891011121314

Рекомендуемые страницы:

Источник: https://lektsia.com/7x523c.html

Ядерные реакции: просто и понятно

Типы ядерных реакций

  • Что такое ядерные реакции
  • Немного истории ядерных реакций
  • Какие ядерные реакции есть в физике
  • Деление атомных ядер
  • Термоядерные реакции
  • Ядерные реакции, видео
  • Расщепление ядра атома и способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

    Что такое ядерные реакции

    Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

    Немного истории ядерных реакций

    Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

    А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

    Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми.

    В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных.

    Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

    Типичная формула ядерной реакции.

    Какие ядерные реакции есть в физике

    В целом известные на сегодняшний день ядерные реакции можно разделить на:

    • деление атомных ядер
    • термоядерные реакции

    Ниже детально напишем о каждой из них.

    Деление атомных ядер

    Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф.

    Штрассманом было открыто деления ядер атома урана, продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

    Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ.

    Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее.

    В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

    Вот так она выглядит на схеме.

    При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

    Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

    Термоядерные реакции

    В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

    Термоядерные реакции, как это следует из самого из названия (термо – температура) могут протекать исключительно при очень высоких температурах.

    Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах.

    Следует заметить, что на Солнце происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

    Ядерные реакции, видео

    И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/fizika/yadernyie-reaktsii-prosto-i-ponyatno/

    Ядерные реакции. Выделение и поглощение энергии при ядерных реакциях. Термоядерные реакции синтеза лёгких ядер. урок. Физика 11 Класс

    Типы ядерных реакций

    Ядерными реакциями называют превращение одних ядер в другие при взаимодействии с какими-то частицами.

    В начале развития ядерной физики учёные располагали лишь одним «орудием» для «разбития» ядра – это альфа-частицы, которые при радиоактивном распаде излучали радиоактивные препараты.

    Первая ядерная реакция была осуществлена Резерфордом. Он бомбардировал атомы азота α-частицами, в результате получался кислород и вылетал протон.

    Джеймс Чедвик при бомбардировке α-частицами бериллия обнаружил, что из ядра бериллия вылетает нейтрон и получается ядро углерода.

    Однако α-частицы не всегда способны разбить ядро, так как они также обладают положительным зарядом и, при определённых условиях, электрическое отталкивание со стороны ядра настолько большое, что α-частица не сможет с ним столкнуться.

    Рис. 1. 27-дюймовый циклотрон С. Ливингстоуна и Э. Лоуренса, разгонявший частицы до 5 МэВ (1932 г.)

    Следующий этап исследований ядерных реакций был связан с конструированием ускорителей заряженных частиц (см. Рис. 1). В данных приборах частицы разгонялись и, вылетая из ускорителя, ударялись об исследуемые ядра.

    Хотя мощность первых установок была невелика, но разгонявшиеся в них протоны или дейтроны были более эффективными для создания ядерных реакций, чем α-частицы.

    Это объясняется тем, что протоны имеют заряд равный единице и энергия электрического отталкивания при взаимодействии с ядром у них в два раза меньше.

    Впервые ускоренный протон использовали для взаимодействия с ядром лития , при этом ядро разбивалось на две α-частицы (два ядра гелия).

    Данная реакция имела большой энергетический выход, около . Ещё больше энергии выделилось при реакции, в которой разогнанный ускорителем дейтрон попал в ядро лития  и также разбил его на два ядра гелия.

    Характерной особенностью ядерных реакций является выполнение законов сохранения. То есть сумма зарядовых чисел до реакции должна быть равна сумме зарядовых чисел после реакции. Также выполняется закон сохранения массового числа. Однако масса ядер, которые вошли в реакцию, не равны массе ядер, которые вышли из реакции. 

    Энергетический выход реакции равен:

    На примере предыдущей реакции:

    Эта энергия распределяется между двумя α-частицами.

    Каждая такая частица приобретает энергию, следовательно, приобретает скорость. Если вычислить по формулам теории относительности изменение массы этих α-частиц, то, с большой степенью точности, получим закон сохранения масс, учитывая релятивистские эффекты. То есть массу  «уносят» с собой α-частицы.

    Третьим этапом исследования ядерных реакций были реакции на нейтронах. Нейтрон является нейтральной частицей, поэтому он не испытывает электрического отталкивания ядра. Следовательно, реакции на нейтронах практически не требуют энергетических затрат (необходимо ждать, пока ядро захватит нейтрон при подходе последнего на расстояние ).

    Одна из первых таких реакций была реакция захвата нейтрона ядром алюминия, в итоге оно распадается и образуется ядро натрия, при этом вылетает α-частица.

    При бомбардировке ядер изотопа азота  нейтронами образуется изотоп бора . Какая ещё частица образуется в этой реакции? Варианты ответа: 1. протон; 2. 2 протона; 3. 2 нейтрона; 4. α-частица.

    Решение

    Зарядовое и массовое число установим по законам сохранения.

    Общее зарядовое число после реакции должно быть равно 7, следовательно:

    Массовое число после реакции должно быть равно 15. У бора оно равно 11, поэтому у неизвестного элемента это число – 4.

    Неизвестный элемент имеет заряд равный двум, а массу – четыре. Следовательно, это α-частица.

    Ответ: 4. α-частица

    Рис. 2. Взрыв водородной бомбы мощностью 57 мегатонн (Источник)

    Термоядерная реакция (см. Рис. 2) – реакция синтеза лёгких ядер. Синтез лёгких ядер может происходить только при высоких температурах, так как эти ядра должны разогнаться до энергии, при которой могут сблизиться на расстояние, равное радиусу ядра (). Эта энергия должна быть порядка десятков МэВ.

    Например, дейтрон может провести вместе с тритием реакцию синтеза. При этом получается гелий  (очень устойчивое ядро) и выбрасывается нейтрон. Энергетический выход этой реакции равен .

    Если вступает в реакцию 1 моль дейтерия (2 г) и 1 моль трития (3тг), то произойдёт  (число Авогадро) таких реакций. Следовательно, общий выход энергии будет равен:

    Чтобы получить такую энергию при сжигании керосина, необходимо  топлива.

    Домашнее задание

    1. Вопросы в конце параграфа 106 и 110 (стр. 312 и 322); – Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин. Физика 11 (см. список рекомендованной литературы)
    2. Рассчитать энергетический выход реакции .
    3. Ядро , захватывая протон, распадается на две α-частицы. Определить сумму кинетических энергий этих частиц. Кинетической энергией протона пренебречь.

    Список литературы

    1. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика 11 кл.: учеб. для общеобразоват. учреждений. – М.: Просвещение, 2010. 
    2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. – М.: Дрофа, 2005.
    3. Г.Я. Мякишев, А.З. Синяков. Физика: Оптика. Квантовая физика. 11 кл.: Учеб. для углубленного изучения физики – М.: Дрофа, 2002.

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    1. Интернет-портал Class-fizika.narod.ru (Источник).
    2. Интернет-портал Physics.ru (Источник).
    3. Интернет-портал Nado5.ru (Источник).
    4. Интернет-портал Google.com.ua (Источник).

    Источник: https://interneturok.ru/lesson/physics/11-klass/fizika-atomnogo-jadra/yadernye-reaktsii-vydelenie-i-pogloschenie-energii-pri-yadernyh-reaktsiyah-termoyadernye-reaktsii-sinteza-lyogkih-yader

    Booksm
    Добавить комментарий