Тепловой двигатель

Принцип действия теплового двигателя — termodinamikaVM.ru

Тепловой двигатель

Тепловой двигатель – устройство преобразующее внутреннюю энергию топлива в механическую энергию. Основные части теплового двигателя: нагреватель, рабочее тело и холодильник. Чтобы получить полезную работу, необходимо сделать работу сжатия газа меньше работы расширения.

Для этого нужно, чтобы каждому объёму при сжатии соответствовало меньшее давление, чем при расширении. Поэтому газ перед сжатием должен быть охлажден.Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины.

Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле.

В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 температурой нагревателя.'

Рассмотрим это на примере идеальной тепловой машины.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т1 и отдает некоторое количество теплоты Q1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q1 превращается в работу, а только некоторая ее частьА = Q1 – Q2 (4.

8)Другая часть теплоты Q2 передается телу с более низкой температурой (Т2) – теплоприемнику.

Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q2теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т1 > Т2).

Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т1 = Т2), невозможно превратить теплоту в работу.Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины.

Идеальной называют машину, которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.В результате математических преобразований получают(Q1 – Q2)/Q1 = (Т1 – Т2)/Т1 (4.9)или h = А/Q1; h = (Т1 – Т2)/Т1 (4.10)где h – коэффициент полезного действия (КПД) тепловой машины.

Роторно-поршневого двигателя.

Установленный на валу ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре.

Такая конструкция позволяет осуществить 4-тактный цикл без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r: R = 2: 3, которые устанавливают на автомобилях, лодках и т.п. Масса и габариты двигателя Ванкеля в 2-3 раза меньше соответствующих им по мощности двигателей внутреннего сгорания обычной схемы.

Дизельного двигателя.

Воздух сначала поступает в цилиндр, сжимается и нагревается до высокой температуры. В раскаленный воздух с помощью форсунки впрыскивается самовоспламеняющееся и быстро сгорающее топливо, за счет чего мотор и начинает работать. Для таких двигателей необходимо специальное дизельное топливо. Из уроков физики все мы знаем, что тепловая энергия может преобразовываться в механическую.

Именно это и происходит, когда в цилиндре двигателя сгорает топливо. Тепло, превращаясь в механическую работу, начинает двигать поршень, который в цилиндре двигается возвратно-поступательно. Коленчатый вал, связанный с поршнем при помощи шатуна, вращается.Во время работы, поршень то приближается, то удаляется от коленчатого вала.

Когда эти две детали сближаются, то в цилиндр поступает горючая смесь. При движении цилиндра в обратную сторону, в нем увеличивается давление. Сжатая горючая смесь в этот момент готова к сгоранию, едва стоит вспыхнуть искре, как смесь легко воспламеняется и выделяет газы, которые нужны для того, чтобы привести мотор в движение.

Цилиндр соединен с трубопроводом, через который из двигателя выбрасываются отработанные газы.Одно движение поршня к коленчатому валу или обратно называется ходом. Если за четыре хода поршня вал сделает два оборота вокруг своей оси, значит, закончился так называемый рабочий цикл. Двигатель, рабочий цикл которого совершается за два оборота коленчатого вала, называется четырехкратным.

Существуют также и двукратные двигатели. Рабочий цикл у них совершается за два хода поршня и за один оборот коленчатого вала. В автомобильных моторах такие двигатели практически не применяются, зато их широко используют для мотоциклов.

Чем сильнее будет давление на поршень при сгорании горючей смеси, тем больше мощность двигателя. Поэтому выгодно увеличивать степень сжатия в двигателе.

В этом случае из той же порции топлива получается больше полезной работы. Многие автолюбители пытаются самостоятельно отрегулировать двигатель так, чтобы расходовать меньше топлива, но при этом не терять мощности.

Но увлекаться этим не следует, поскольку при сильном увеличении степени сжатия горючая смесь сгорает слишком быстро (этот процесс называется детонация), что вызывает неустойчивую работу двигателя. При этом в работающем двигателе слышен стук, мощность значительно снижается, а из глушителя идет черный дым.

Источник: https://www.sites.google.com/site/stepafterstepru/princip-dejstvia-teplovogo-dvizenia

Тепловой двигатель

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Определение 1

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Определение 2

Устройство, от которого рабочее тело получает тепло Qn, называю нагревателем.

Это понимается как расширение от объема V1 к V2 V2>V1, затем сжатие до первоначального объема.

Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии.

То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Qn, то при сжатии Q'ch теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆U=0, то значение работы газа в круговом процессе запишется как:

A=Qn-Q'ch (1).

Отсюда теплота Q'ch≠0. Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

η=AQn (2).

Запись уравнения (2) при учитывании (1) примет вид:

η=Qn-Q'chQn (3), КПД всегда.

Определение 3

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Qch и отдающая его Q'n телу с наиболее высокой температурой с Q'n>Qch, получила название холодильной машины.

Данная машина должна совершить работу A' в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a=Q'nA'=Q'nQ'n-Qch (4).

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

Кпд теплового двигателя

Французским инженером Саади Карно была установлена зависимость Кпд теплового двигателя от температуры нагревателя Tn и холодильника Tch. Форма конструкции теплового двигателя и выбор рабочего тела не влияет на КПД идеальной тепловой машины:

ηmax=Tn-TchTn (5).

Любой реальный тепловой двигатель может обладать КПД η≤ηmax.

Принцип работы теплового двигателя

Идеальная машина, модель которой разработал Карно, работает по обратимому циклу, состоящему из двух изотерм (1-2, 4-3) и двух адиабат (2-3, 4-1), изображенная на рисунке 1. В качестве рабочего тела выбран идеальный газ. Прохождение адиабатного процесса происходит без подвода и отвода тепла.

Рисунок 1

Участок 1-2 характеризуется сообщением рабочему телу от нагревателя с температурой Tn количества тепла Qn. При изотермическом процессе запись примет вид:

Qn=Tn(S2-S1) (6), где S1, S2 являются энтропиями в соответствующих точках цикла из рисунка 1.

Видно, что участок 3-4 характеризуется отдачей тепла холодильнику с температурой Tch идеальным газом, причем количество теплоты равняется получению газом теплоты -Qch, тогда:

-Qch=Tch(S1-S2) (7).

Выражение, записанное в скобках в (7), указывает на приращение энтропии процесса 3-4.

Принцип действия тепловых двигателей КПД

Произведем подстановку (6), (7) в определение Кпд теплового двигателя и получаем:

η=Tn(S2-S1)+Tch(S1-S2)Tn(S2-S1)=Tn-TchTn (8).

В выведенном выражении (8) не выполнялось предположений о свойствах рабочего тела и устройстве теплового двигателя.

По уравнению (8) видно, что для увеличения КПД следует повышать Tn и понижать Tch. Достижение значения абсолютного нуля невозможно, поэтому единственное решение для роста КПД – увеличение Tn.

Задача по созданию теплового двигателя, совершающего работу без холодильника, очень интересна. В физике она получила название вечного двигателя второго рода.

Такая задача не находится в противоречии с первым законом термодинамики. Данная проблема считается неразрешимой, как и создание вечного двигателя первого рода.

Этот опытный факт в термодинамике приняли в качестве постулата – второго начала термодинамики.

Пример 1

Рассчитать Кпд теплового двигателя с температурой нагревания 100 °С и температурой холодильника, равной 0 °С. Считать тепловую машину идеальной.

Решение

Необходимо применение выражения для Кпд теплового двигателя, которое записывается как:

η=Tn-TchTn.

Используя систему СИ, получим:

Tn+100 °C+273=373 (К).Tch=0 °C+273=273 (К).

Подставляем числовые значения и вычисляем:

η=373-273373=0,27=27%.

Ответ: Кпд теплового двигателя равняется 27%.

Пример 2

Найти КПД цикла, представленного на рисунке 2, если в его пределах объем идеального газа проходит изменения n раз. Считать рабочим веществом газ с показателем адиабаты γ.

Рисунок 2

Решение

Основная формула для вычисления КПД, необходимая для решения данной задачи:

η=Qn-Q'nQn (2.1).

Получения тепла газом происходит во время процесса 1-2 Q12=Qn:

Q12=∆U12+A12 (2.2), где A12=0 потому как является изохорным процессом. Отсюда следует:

Q12=∆U12=i2RT2-T1 (2.3).

Процесс, когда газ отдает тепло, обозначается как 3-4, считается изохорным -Q34=Q'ch. Формула примет вид:

Q34=∆U34=i2vRT4-T3 (2.4).

Адиабатные процессы проходят без подвода и отвода тепла.

Произведем подстановку полученных количеств теплоты в выражение для КПД, тогда:

η=i2vRT2-T1+i2vRT4-T3i2vRT2-T1=T2-T1+T4-T3T2-T1=1-T3-T4T2-T1 (2.5).

Следует применить уравнение для адиабаты процессу 2-3:

T2V1γ-1=T3V2γ-1→T2=T3V2γ-1V1γ-1=T3nγ-1 (2.6).

Используем выражение для адиабаты процесса 4-1:

T1V1γ-1=T3V2γ-1→T1=T4V2γ-1V1γ-1=T4nγ-1 (2.7).

Перейдем к нахождению разности температур T2-T1:

T2-T1=T3-T4nГ-1 (2.8).

Произведем подстановку из (2.8) в (2.5):

η=1-T3-T4T3-T4nγ-1=1-1nγ-1=1-n1-γ (2.9).

Ответ: КПД цикла равняется η=1-n1-Г.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/termodinamika/teplovoj-dvigatel/

Проекты по физике. — Тепловые двигатели

Тепловой двигатель

                                                              Тепловые двигатели

Введение

1.История создания

2.Работа совершаемая двигателем

3.КПД замкнутого цикла

4.Цикл Карно

5. Типы тепловых двигателей

6.Тепловые двигатели и охрана окружающей среды

7.Задачи

8.Опыт

9.Заключение

10.Список используемой литературы

Введение.

История тепловых машин уходит в далекое прошлое. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара.

Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи. Я выбрал тему «тепловой двигатель» потому что она заинтересовала меня по несколько пунктам.

Во-первых, тепловой двигатель — необходимый атрибут современной цивилизации. С их помощью вырабатывается около 80% электроэнергии. Без тепловых двигателей невозможно представить, современный транспорт.

В то же время повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду. На мой взгляд, эта тема очень интересна и занимательна. Поэтому я выбрал эту тему для изучения и хотел бы рассмотреть несколько вопросов:

1.Работу теплового двигателя

2. История его создания

3. КПД замкнутого цикла

4. Цикл Карно.

5.Виды тепловых двигателей

6.Провести опыт с тепловым двигателем

7.Решение задач

8. Влияние тепловых двигатель на окружающую среду.

1. История создания

Появление тепловых двигателей связано с возникновением и развитием промышленного производства в начале XVII в. главным образом в Англии. Копи, в которых добывали руду, нуждались в устройствах для откачки воды. Глубина шахт стала достигать 200 м. Приходилось держать до пятисот лошадей на одном руднике.

Эта чисто практическая задача и стала причиной того, что первым тепловым двигателем стала машина для откачки воды. В 1698 г. Томас Севери, шахтовладелец, получил патент № 356 с формулировкой, что он выдан на устройство «для подъема воды и для получения движения всех видов производства при помощи движущей силы огня…».

Севери первым отделил рабочее тело (водяной пар) от перекачиваемой воды. Для этого он сделал отдельный котел, а пар, который поломали в котле, через кран выпускал в сосуд с водой, и пар вытеснял воду в напорную (верхнюю) трубу. Впоследствии машина Севери была усовершенствована Дезагюлье, предложившим охлаждать пар в сосуде путем впрыскивания в него воды.

Это существенно увеличило частоту рабочих циклов. Одна из таких машин была выписана Петром I и установлена в Летнем саду. Машины Севери оказались очень надежными и долговечными. Вслед за Севери паровую машину (также приспособленную для откачивания воды из шахты) сконструировал английский кузнец Томас Ньюкомен.

Он умело использовал многое из того, что было придумано до него. Ньюкомен взял цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле. Первый универсальный тепловой двигатель был создан в России выдающимся изобретателем, механиком Воскресенских заводов на Алтае И.И.Ползуновым.

Кроме того, Ползунов внес серьезные усовершенствования в конструкцию рабочих органов двигателя, применил оригинальную систему паро- и водораспределения, и в отличие от машин Ньюкомена ось вала его машины была параллельна плоскости цилиндров. Проект своей машины Ползунов изложил в 1763 г.

в записке, адресованной начальнику Колывано-Воскресенского горного округа А. И. Порошину. Первый патент на двигатель, использующий нагретый(Пидр) воздух, выдан в Великобритании в 1816 г. пастору Роберту Стирлингу. Изготовление двигателей Стирлинга началось в 1818 г. их применяли там где не годились громоздкие паровые машины.

Роберт Стирлинг вместе со своим братом долгие годы испытывал затруднения с выбором конструктивных материалов и в конце своей жизни, в 1876 г., выразил надежду, что препятствия, которые возникают из-за отсутствия соответствующих материалов, будут со временем устранены

2. Работа совершаемая двигателем.

Совершение механической работы в современных машинах и механизмах в основном происходят за счет внутренней энергии веществ. Примером такого механизма может служит тепловой двигатель. Тепловой двигатель-устройство преобразующее внутреннюю энергию топлива в механическую энергию.

Механическая работа в двигателе совершается при расширении рабочего вещества, перемещающего поршень в цилиндре. Для цикличной, непрерывной работы двигателя необходимо возращение поршня в первоначальное положение, т.е. сжатие рабочего вещества.

Легко сжимаемым является вещество в газообразном состоянии, поэтому в качестве рабочего вещества в тепловых двигателях используется газ или пар. Сжатие газа не может быть самопроизвольным, оно происходит только под действием внешней силы, например за счет энергии, запасенной маховиком двигателя при расширении газа.

Полная механическая работа А складывается из работы расширение газа и работы сжатия. Так как при сжатии дельта V

Источник: https://fizik-school11.ucoz.ru/index/teplovye_dvigateli/0-20

Урок 25. тепловые двигатели. кпд тепловых двигателей — Физика — 10 класс — Российская электронная школа

Тепловой двигатель

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве.

Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д.

Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу.

На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень.

Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным.

Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов.

Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах.

Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры.

На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

Источник: https://resh.edu.ru/subject/lesson/3763/conspect/

Booksm
Добавить комментарий