Теория механических колебаний

Конспект

Теория механических колебаний

Раздел ОГЭ по физике: 1.23. Механические колебания. Амплитуда, период и частота колебаний. Формула, связывающая частоту и период колебаний. Механические волны.

Продольные и поперечные волны. Длина волны и скорость распространения волны. Звук. Громкость и высота звука. Скорость распространения звука. Отражение и преломление звуковой волны на границе двух сред.

Инфразвук и ультразвук.

Движение, при котором состояния движущегося тела с течением времени повторяются, причём тело проходит через положение своего устойчивого равновесия поочерёдно в противоположных направлениях, называется механическим колебанием.

Условием возникновения колебания является наличие в системе возвращающей силы, всегда направленной к положению устойчивого равновесия. Каждый законченный цикл колебательного движения, после которого оно вновь повторяется, называется полным колебанием.

Смещением х называется отклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитудой колебанийхm называется модуль наибольшего смещения тела от положения равновесия при колебательном движении.

Периодом колебания Т называется время, за которое совершается одно полное колебание: Т = t/N.

Величину, равную числу колебаний, совершаемых за единицу времени, называют частотой колебаний 

Механическое колебание, при котором координата тела меняется по закону синуса или косинуса, называется гармоническим колебанием.

Математическим маятником называют материальную точку, подвешенную на тонкой нерастяжимой нити. Маленький металлический шарик, подвешенный на длинной нити, можно условно считать математическим маятником.

При колебаниях математического маятника (в отсутствие сил трения) выполняется закон сохранения механической энергии и периодически происходит переход потенциальной энергии в кинетическую и обратно.

В положении максимального отклонения от положения равновесия потенциальная энергия маятника максимальна, а кинетическая равна нулю.

При приближении к положению равновесия потенциальная энергия уменьшается, а кинетическая увеличивается, достигая максимального значения в положении равновесия, в котором потенциальная становится равной нулю: Wполн = Wп + Wк = const Eполн = Eк max = Еп maх.

 Затухающими называются колебания, амплитуда которых уменьшается с течением времени. Затухание свободных механических гармонических колебаний связано с уменьшением механической энергии колебательной системы за счёт работы сил сопротивления (трения).

Механические волны. Звук

Если в упругой среде (газ, жидкость или твёрдое тело) имеется источник колебаний, то в ней с течением времени происходит процесс распространения колебаний, этот процесс называется волной.

Волны, распространяющиеся в упругой среде, называются механическими волнами. В волне осуществляется перенос энергии колебательного движения без переноса вещества (массы) среды, в которой распространяется волна.

Периодом Т волны является период колебаний точек среды при распространении волны.

Длиной волны λ называется расстояние, на которое распространяется волна за один период колебаний: λ = ʋT; ʋ = λv.

Продольными волнами называются волны, в которых направление колебаний частиц происходит в направлении распространения волны. Продольные механические волны могут распространяться в твёрдых, в жидких и в газообразных средах.

Поперечными называются волны, в которых направление колебаний частиц происходит перпендикулярно направлению распространения волны. Поперечные механические волны могут распространяться только в твёрдых телах и на свободной поверхности жидкости.

Звуковыми волнами называются механические волны, вызывающие у человека ощущение звука: ʋзв = (16 ÷ 20 000) Гц.

Характеристики звука

Громкость звука определяется амплитудой колебаний.

Высота тона определяется частотой колебаний.

Скорость звука зависит от плотности среды. Скорость звука в твёрдых телах больше, чем в жидкостях, а в жидкостях больше, чем в газах. Скорость звука увеличивается с ростом температуры среды.

В случае, когда отражающая поверхность перпендикулярна распространению волны, звуковая волна после отражения возвращается обратно к источнику звука. Такой случай отражения называется эхом.

В гидролокации эхо используется для определения глубин, расстояний до преград и других судов.

Конспект урока «Механические колебания и механические волны. Звук».

Следующая тема: «МКТ. Агрегатные состояния вещества».

Источник: https://uchitel.pro/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F-%D0%B8-%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B-%D0%B7%D0%B2%D1%83%D0%BA/

Теория механических колебаний

Теория механических колебаний

Теория механических колебаний обычно используется в сфере машиностроения, судостроения, приборостроения, авиастроения, транспортного и промышленного строительства, а также в некоторых других технических областях.

Каждая из указанных сфер ставит перед сотрудниками ряд серьезных стратегических задач, непосредственно связанных с проблемой применения механических колебаний.

Несмотря на то, что постановка таких задач практически всегда характеризуется особой спецификой, все они, в результате, решаются на базе обобщенных методов и принципов, которые входят в разделы гипотезы колебаний.

Значимость теории механических колебаний признана во всем мире, и в ряде известных высших учебных учреждений России это научное направление и приближенные к нему модификации, выступают самостоятельным разделом учебного процесса, факультативной или обязательной дисциплиной. Во многих других российских вузах периодически открываются дополнительные курсы по теории колебательных явлений, привлекающие студентов, аспирантов и начинающих инженеров.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Формирование механической волны

Определение 1

Распространение механических колебаний из одного положения в другое носит название волнового перемещения, или просто волны.

Подобные элементы могут формироваться в результате обычных гармонических вибраций частиц окружающей среды от их среднего местонахождения. Вещество в пространстве не способно самостоятельно передвигаться, но передающие друг другу внутреннюю энергию элементы физического тела необходимы для полноценного распространения механических волн.

Таким образом, волна в теории механических колебаний является возмущением внешней среды, проходящим эту область с определенной скоростью, не изменяя начального вида. Если бросить камень в воду, то можно заметить, как от этого места появится одиночная волна. Однако волновые вибрации иногда могут быть систематическими.

Например, колеблющийся камертон осуществляет попеременные разрежения и сжатия окружающего его воздуха. Такие возмущения, которые воспринимаются человеком как звук, происходят регулярно с частотой вибрации камертона.

На сегодняшний день выделяют такие виды механических волн:

  1. Поперечное волновое перемещение. Этому виду механических волн свойственны вибрации элементарных частиц среды, которые происходят под прямым углом в сторону распространения компонентов. Указанные волны возникают только на поверхности жидкостей и в твердых веществах, где все элементы среды осуществляют несложное гармоническое движение возле средних положений. Позиция максимального возмущения вверх называется «пиком», а расположение максимального сдвига вниз — «углублением».
  2. Продольная волна. Данный вид волнового перемещения характеризуется систематическим колебаниями частиц пространства вдоль движения распространения волны. Такие волны могут появляться в газах, в жидкостях и твердых телах. В некоторых местах элементы среды находятся ближе, а в других — дальше, чем в обычном состоянии. Промежуток, где компоненты расположены близко, называются сферами сжатия, а места, где они функционируют на большом расстоянии друг от друга — средами разрежения.

Определение 2

Интервал между двумя систематическими разрежениями и сжатиями является длиной продольной волны.

Характеристики механических колебаний

Определение 3

Колебания в теории механических процессов представляют собой вид движения, при котором положение физического тела повторяется за одинаковые промежутки времени и на равном расстоянии.

Выделяют такие основные характеристики волн:

  1. Амплитуда — максимальное перемещение колеблющегося элемента среды от ее начального положения равновесия (A).
  2. Время — период который необходим частице для осуществления одного полного колебания (T). $T = \frac {t}{N}$ $v = \frac {M}{t}$
  3. Частота колебаний – показатель, демонстрирующий количество произведенных компонентов пространства, за определенную единицу времени (ν). $v = [\frac {1}{C}] = [c-1] = [Гц]$, $T = \frac {1}{v}$, $v = \frac {1}{v}$
  4. Скорость механической волны – быстрота распространения частиц в среде пика волны (v). Совокупность элементов поверхности, вибрирующих в одинаковой фазе, создают фронт волны. $\omega = 1 \pi v = \frac {2 \pi}{T}$ $\omega = [\frac {рад}{c}]$

Замечание 1

Смещение расположения частиц плоской волны можно записать общим уравнением для всех видов волнового перемещения: $S = A sin \omega (t — \frac {t}{v})$

Это означает, что параметр смещения $(S)$ для каждого определения времени $(t)$ и расстояния от начала формирования волны $(x)$ напрямую зависит от колебательной амплитуды $(A)$, угловой плотности $(ω)$ и скорости волновых процессов $(v)$.

В целом, волна переносит импульс и внутреннюю энергию вибрирующих частиц среды, но не трансформирует само вещество.

Примером механического волнового процесса выступает звук. Ухо человека воспринимает колебания в диапазоне от 16 до 20000 Гц. Скорость данного природного явления в воздухе при обычном атмосферном давлении приравнивается к 332 м/с.

Также механические волны имеют двоякую периодичность:

  • цикличность во времени;
  • цикличность в пространстве.

Место колебательных процессов в науке

В технике, особенно в судостроении и промышленном производстве, широко используют термин «механическая вибрация». Он является синонимом терминов «колебания» или «перемещения в механической системе».

Подобным определением чаще всего пользуются там, где начальные колебания тел имеют небольшую амплитуду и достаточно высокую частоту (например, понятием вибрация едва ли можно охарактеризовать принцип действия маятника часов или раскачивания качелей).

Огромное количество процессов, наблюдаемых в технике и природе, являются колебательными.

К указанным явлениям относятся самые разные феномены и события: от ритмов биения человеческого сердца и работы головного мозга до колебаний туманностей, звезд и иных космических объектов; от вибраций молекул или атомов в физическом теле до климатических перемен на земной поверхности; от е=колебаний звучащей струны до мощных подземных толчков. Все акустические процессы и явления, непосредственно связанные с распространением магнитных волн, также сопровождаются механическими колебаниями.

Источник: https://spravochnick.ru/fizika/teoriya_kolebaniy/teoriya_mehanicheskih_kolebaniy/

Колебательное движение. Свободные колебания — урок. Физика, 9 класс

Теория механических колебаний

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, крыльев насекомых во время полёта и многих других тел.

В движении этих тел можно найти много различий. Например, качели движутся криволинейно, а игла швейной машины — прямолинейно; маятник часов колеблется с большим размахом, чем крылья стрекозы.

За одно и то же время одни тела могут совершать большее число колебаний, чем другие.

Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Промежуток времени, через который движение повторяется, называется периодом колебаний.

Поэтому говорят, что колебательное движение периодично.

В движении колеблющихся тел кроме периодичности есть ещё одна общая черта.

Обрати внимание!

За промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями.

Под действием сил, возвращающих тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эти силы возникают благодаря совершению над телом некоторой работы (растяжению пружины, поднятию на высоту и т. п.), что приводит к сообщению телу некоторого запаса энергии. За счёт этой энергии и происходят колебания.

Пример:

чтобы заставить качели совершать колебательные движения, нужно сначала вывести их из положения равновесия, оттолкнувшись ногами, либо сделать это руками.

Колебания, происходящие благодаря только начальному запасу энергии колеблющегося тела при отсутствии внешних воздействий на него, называются свободными колебаниями.

Пример:

примером свободных колебаний тела являются колебания груза, подвешенного на пружине. Первоначально выведенный из равновесия внешними силами груз в дальнейшем будет колебаться только за счёт внутренних сил системы «груз-пружина» — силы тяжести и силы упругости.

Условия возникновения свободных колебаний в системе:

а) система должна находиться в положении устойчивого равновесия: при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия — возвращающая сила;б) наличие у системы избыточной механической энергии по сравнению с её энергией в положении равновесия;

в) избыточная энергия, полученная системой при смещении её из положения равновесия, не должна быть полностью израсходована на преодоление сил трения при возвращении в положение равновесия, т. е. силы трения в системе должны быть достаточно малы.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы.

Системы тел, которые способны совершать свободные колебания, называются колебательными системами.

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Пример:

в случае колебаний шарика на нити шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Колебательные системы — довольно широкое понятие, применимое к разнообразным явлениям.

Частным случаем колебательных систем являются маятники.

Маятником называется твёрдое тело, совершающее под действием приложенных сил

колебания около неподвижной точки или вокруг оси.

Пример:

груз, подвешенный на пружине и совершающий колебательные движения по вертикали под действием сил упругости, называется пружинным маятником.

Источники:

Физика. 9 кл.: учебник / Перышкин А. В., Гутник Е. М. — М.: Дрофа, 2014. — 319 с.
www.fizmat.by, сайт «Подготовка к ЦТ (ЕГЭ), задачи по физике и математике»

www.gavewrites.com

www.netnado.ru

www.astersoft.net, сайт «Умные программы для умных детей»

www.m.gifmania.ru

www.playcast.ru

www.litsait.ru

www.ru.solverbook.com

Источник: https://www.yaklass.ru/p/fizika/9-klass/mekhanicheskie-kolebaniia-i-volny-zvuk-18755/kolebatelnoe-dvizhenie-svobodnye-kolebaniia-amplituda-chastota-period-ko_-127400/re-4d32ef35-7403-478c-98fc-a24eb20c96fe

Колебательное движение. Свободные колебания. Колебательные системы (Ерюткин Е.С.). урок. Физика 9 Класс

Теория механических колебаний

Тема данного урока: «Колебательное движение. Свободные колебания. Колебательные системы». Вначале дадим определение нового вида движения, который мы начинаем изучать, – колебательного движения.

Рассмотрим в качестве примера колебания пружинного маятника и определим понятие свободных колебаний.

Также изучим, что такое колебательные системы, и обсудим условия, необходимые для существования колебаний.

Колебание – это периодическое изменение любой физической величины: колебания температуры, колебания цвета светофора и т. д. (рис. 1).

Рис. 1. Примеры колебаний

Колебания – самый распространенный вид движения в природе. Если касаться вопросов, связанных с механическим движением, то это самый распространенный вид механического движения.

Обычно говорят так: движение, которое с течением времени полностью или частично повторяется, называется колебанием.

Механические колебания – это периодические изменение физических величин, характеризующих механическое движение: положения тела, скорости, ускорения.

Примеры колебаний: колебание качелей, шевеление листьев и качание деревьев под воздействием ветра, маятник в часах, движение человеческого тела.

Рис. 2. Примеры колебаний

Наиболее распространенными механическими колебательными системами являются:

  • Грузик, закрепленный на пружине – пружинный маятник. Сообщая маятнику начальную скорость, его выводят из состояния равновесия. Маятник совершает колебания вверх-вниз. Для совершения колебаний в пружинном маятнике имеет значение количество пружин и их жесткость.

Рис. 3. Пружинный маятник

  • Математический маятник – твердое тело, подвешенное на длинной нити, совершающее колебание в поле тяготения Земли.

Рис. 4. Математический маятник

Условия существования колебаний

  • Наличие колебательной системы. Колебательная система – это система, в которой могут существовать колебания.

Рис. 5. Примеры колебательных систем

  • Точка устойчивого равновесия. Именно вокруг этой точки и совершаются колебания.

Рис. 6. Точка равновесия

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное. Устойчивое: когда система стремится вернуться в первоначальное положение при малом внешнем воздействии. Именно наличие устойчивого равновесия является важным условием того, что в системе могут происходить колебания.

  • Запасы энергии, которые приводят к тому, что совершаются колебания. Ведь колебания сами по себе не могут совершаться, мы должны вывести систему из равновесия, чтобы происходили эти колебания. То есть сообщить энергию этой системе, чтобы потом колебательная энергия превращалась в то движение, которое мы рассматриваем.

Рис. 7 Запасы энергии

  • Малое значение сил трения. Если эти силы будут большими, то о колебаниях речи идти не может.

Решение главной задачи механики в случае колебаний

Механические колебания – это один из видов механического движения. задача механики – это определение положения тела в любой момент времени. Получим закон зависимости  для механических колебаний.

Закон, который необходимо найти, мы постараемся угадать, а не вывести математически, потому что уровня знаний девятого класса недостаточно для строгих математических выкладок. В физике очень часто пользуются таким методом. Сначала пытаются предсказать справедливое решение, а потом его доказывают.

Колебания – это периодический или почти периодический процесс. Это значит, что закон  – периодическая функция. В математике периодическими функциями являются  или .

Закон  не будет являться решением главной задачи механики, так как  – безразмерная величина, а единицы измерения  – метры. Усовершенствуем формулу, добавив перед синусом множитель, соответствующий максимальному отклонению от положения равновесия – амплитудное значение: .

Обратите внимание, что единицами измерения времени  являются секунды. Подумайте, что значит, например, ? Данное выражение не имеет смысла. Выражение под синусом должно измеряться в градусах или радианах.

В радианах измеряется такая физическая величина, как фаза колебания  – произведение циклической частоты и времени.

Свободные гармонические колебания описывает закон:

Используя это уравнение, можно найти положение колеблющегося тела в любой момент времени.

Энергия и равновесие

Исследуя механические колебания, особый интерес следует уделять понятию положения равновесия – необходимому условию наличия колебаний.

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное.

На рисунке 8 изображен шарик, который находится в сферическом желобе.

Если вывести шарик из положения равновесия, на него будут действовать следующие силы: сила тяжести , направленная вертикально вниз, сила реакции опоры , направленная перпендикулярно касательной по радиусу.

Векторная сумма этих двух сил будет равнодействующей, которая направлена обратно к положению равновесия. То есть шарик будет стремится вернуться в положение равновесия. Такое положение равновесия называется устойчивым.

Рис. 8. Устойчивое равновесие

Положим шарик на выпуклый сферический желоб и немного выведем его из положения равновесия (рис. 9).

Сила тяжести  по-прежнему направлена вертикально вниз, сила реакции опоры  по-прежнему перпендикулярна касательной.

Но теперь равнодействующая сила направлена в сторону, противоположную начальному положению тела. Шарик будет стремится скатиться вниз. Такое положение равновесия называется неустойчивым.

Рис. 9. Неустойчивое равновесие

На рисунке 10 шарик находится на горизонтальной плоскости. Равнодействующая двух сил в любой точке на плоскости будет одинаковой. Такое положение равновесия называется безразличным.

Рис. 10. Безразличное равновесие

При устойчивом и неустойчивом равновесии шарик стремится занять такое положение, в котором его потенциальная энергия будет минимальной.

Всякая механическая система стремится самопроизвольно занять такое положение, в котором ее потенциальная энергия будет минимальной. Например, нам комфортнее лежать, чем стоять.

Итак, необходимо дополнить условие существования колебаний тем, что равновесие обязательно должно быть устойчивым.

Если данному маятнику, колебательной системе сообщили энергию, то колебания, происходящие в результате такого действия, будут называться свободными. Более распространенное определение: свободными называют колебания, которые происходят только под действием внутренних сил системы.

Свободные колебания еще называют собственными колебаниями данной колебательной системы, данного маятника. Свободные колебания являются затухающими. Они рано или поздно затухают, так как действует сила трения. В данном случае она хоть и малая величина, но не нулевая. Если никакая дополнительная сила не вынуждает двигаться тело, колебания прекращаются.

Уравнение зависимости скорости и ускорения от времени

Для того чтобы понять, меняются ли скорость и ускорение при колебаниях, обратимся к математическому маятнику.

Маятник вывели из положения равновесия, и он начинает совершать колебания. В крайних точках колебания скорость меняет свое направление, причем в точке равновесия скорость максимальная. Если меняется скорость, значит, у тела есть ускорение.

Будет ли такое движение равноускоренным? Конечно, нет, так по мере увеличения (уменьшения) скорости меняется и ее направление. Это значит, что ускорение также будет меняться.

Наша задача – получить законы, по которым будут меняться проекция скорости и проекция ускорения со временем.

Координата со временем меняется по гармоническому закону, по закону синуса или косинуса. Логично предположить, что скорость и ускорение также будут меняться по гармоническому закону.

Закон изменения координаты:

Закон, по которому будет меняться проекция скорости со временем:

Данный закон также является гармоническим, но если координата меняется со временем по закону синуса, то проекция скорости – по закону косинуса. Координата в положении равновесия равна нулю, скорость же в положении равновесия максимальная. И наоборот, там, где координата максимальная, скорость равна нулю.

Закон, по которому будет меняться проекция ускорения со временем:

Знак минус появляется, поскольку при приращении координаты возвращающая сила направлена в противоположную сторону. По второму закону Ньютона, ускорение направлено туда же, куда и результирующая сила. Итак, если координата растет, ускорение растет по модулю, но противоположно по направлению, и наоборот, о чем и говорит знак минус в уравнении.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. – 1983. – № 9. – С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  3. Черноуцан А.И. Гармонические колебания – обычные и удивительные // Квант. – 1991. – № 9. – С. 36-38.
  4. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: издательство «Ранок», 2005. – 464 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «.com» (Источник)
  2. Интернет-портал «eduspb.com» (Источник)
  3. Интернет-портал «physics.ru» (Источник)
  4. Интернет-портал «its-physics.org» (Источник)

Домашнее задание

  1. Что такое свободные колебания? Приведите несколько примеров таких колебаний.
  2. Вычислите частоту свободных колебаний маятника, если длина его нити 2 м. Определите, сколько времени будут длиться 5 колебаний такого маятника.
  3. Чему равен период свободных колебаний пружинного маятника, если жесткость пружины 50 Н/м, а масса груза 100 г?

Источник: https://interneturok.ru/lesson/physics/9-klass/mehanicheskie-kolebaniya-i-volny/kolebatelnoe-dvizhenie-svobodnye-kolebaniya-kolebatelnye-sistemy-eryutkin-e-s

История развития теории механических колебаний

Теория механических колебаний

Теория механических колебаний является одновременно и разделом механики и частью общей теории колебаний, которая является частью прикладной математики и математической физики и связана с наиболее сложным математическим аппаратом.

Первой задачей теории колебаний стала задача о колебаниях математического маятника, решением которой занимался Г. Галилей. Теорию колебаний физического маятника разработал Х. Гюйгенс и на основании ее создал маятниковые часы (1657 г.).

Механика Ньютона послужила основой для решения многих частных задач теории колебаний. Большой вклад в ее основы внес Л. Эйлер, который в работе «Корабельная наука» заложил основы теории статической устойчивости и теории малых колебаний.

Д'Аламбер в своих многочисленных трудах рассмотрел отдельные задачи, такие как колебания маятника, плавающего тела, пружины и т.д. Ш.

Кулон использовал крутильные колебания проволоки для определения жесткости своих знаменитых крутильных весов.

Среди задач первого периода на колебания упругих тел особое место занимает задача о поперечных колебаниях натянутой струны. Экспериментальные исследования были проведены И. Бекманом и М. Мерсенном.

Установленные ими закономерности были теоретически подтверждены Бруком Тейлором, который свел задачу к системе с одной степенью свободы и пользуется решением соответствующего дифференциального уравнения.

В развернувшейся позже острой полемике между д'Аламбером, Эйлером, Д.

Бернулли и Лагранжем не только была решена эта задача, но и сформировались понятия периода и частоты колебаний, формы колебаний, вошел в обиход термин малые колебания, сформулирован принцип суперпозиции решений, сделаны попытки разложения решения в тригонометрический ряд.

Для развития механики важным результатом стало применение принципа д’Аламбера для записи дифференциальных уравнений движения, а для математики – решение дифференциальных уравнений в частных производных и уточнение важнейшего в анализе понятия – функции.

Таким образом, в течение XVIII века в теории колебаний были выработаны основные физические схемы и разъяснены принципы, существенные для математического анализа проблем. Однако ученые, рассматривая только частные случаи, не создали единой теории колебаний. Основой для создания теории малых (линейных) колебаний стала «Аналитическая механика» Лагранжа.

В ней Лагранж получил уравнение частот в общем виде. Вместе с тем он повторяет ошибку, допущенную д'Аламбером в 1761 г., о том, что кратные корни векового уравнения соответствуют неустойчивому решению, так как якобы при этом в решении появляются вековые или секулярные члены, содержащие t не под знаком синуса или косинуса.

В связи с этим и д'Аламбер, и Лагранж считали, что уравнение частот не может иметь кратных корней (парадокс д'Аламбера – Лагранжа).

Достаточно было Лагранжу рассмотреть хотя бы сферический математический маятник или колебания стержня, сечение которого является, например, круглым или квадратным, чтобы убедиться, что кратные частоты в консервативных механических системах возможны.

Научный авторитет д'Аламбера и Лагранжа был так высок, что эту ошибку повторили и Лаплас, и Пуассон, а исправили ее только лишь спустя почти 100 лет независимо друг от друга в 1858 г. К. Вейерштрасс и, через несколько месяцев, в 1859 г. – Осип Иванович Сомов(1815–1876).

О. И. Сомов внес большой вклад в развитие теории колебаний дискретных систем. Он показал, что корни векового уравнения вещественны и положительны. Кратные корни в нем возможны и не приводят к неустойчивости движения, так как речь идет не об одном уравнении, а о системе уравнений.

Следующим важным шагом в развитии теории колебаний были работы Рэлея, особенно его фундаментальный труд «Теория звука» ‑ первое систематическое изложение общего учения о колебаниях. Рэлею принадлежит ряд фундаментальных теорем линейной теории колебаний.

Задачи о колебаниях континуальных систем близки к задачам сопромата и теории упругости. Из них наиболее практически важной была задача о поперечных колебаниях бруса. Первым ее для бруса постоянного сечения исследовал Даниил Бернулли, а полностью решил Леонард Эйлер.

Большой интерес к колебаниям пластин появился после знаменитых опытов Хладни. Уравнения колебаний пластины вывела Софи Жермен, которая, однако, допустила серьезную ошибку, правильное решение было получено Лагранжем.

Дальнейшее развитие теории колебаний континуальных систем связано с развитием теории упругости в основном представителями французской математической школа.

В течение XIX века были разработаны аналитические методы расчетов колебаний различных твердых тел геометрически правильной формы.

Из всех ученых можно отметить труды Пуассона, Кирхгоффа и основоположника Российской школы теории упругости А. Н. Динника.

Промышленная революция XVIII века, связанная с появлением и развитием паровой машины вызвала прогресс механики и выделение прикладной механики в отдельную дисциплину.

Однако вплоть до конца 19 века расчеты на прочность велись в статической постановке, так как машины были еще маломощными и тихоходными.

Что касается практических задач теории колебаний, то если не считать нескольких случаев обрушения мостов, в эпоху становления техники человечество не сталкивалось с явлением резонанса и даже само понятие резонанс трактовалось вплоть до начала XX века как явление акустическое.

Однако к концу XIX века, с ростом скоростей и уменьшением габаритов машин пренебрегать колебаниями стало невозможно. Многочисленные аварии, происходившие от наступления резонанса или усталостного разрушения при колебаниях, заставили инженеров обратить на них внимание.

Самой прогрессивной отраслью во второй половине 19-го столетия стало кораблестроение. Одной из первых масштабных задач прикладной теории колебаний стала задача о крутильных колебаниях пароходных валов.

Первым эту проблему рассматривал немецкий инженер Герман Фрам, статья которого положила основу обширной теме исследования этой проблемы, одной из важнейших в развитии теории колебаний.

Из множества предложенных методов наиболее распространенными стали методы М. Толле и В. П. Терских.

Второй важнейшей задачей является задача о поперечных колебаниях корпусов кораблей. При ее решении впервые использовались почти все методы исследования колебаний континуальных систем, в том числе Ритца и Бубнова – Галеркина.

Развитие техники в начале XX века, особенно турбо- и двигателестроения, появление облегченных конструкций расширило круг задач динамической прочности. Все чаще проблемы вибраций становятся решающими в вопросах прочности машин. Советских ученых и инженеров эти проблемы коснулись в 1930-е гг.

с началом индустриализации страны. Большой вклад в развитие прикладной теории колебаний внесли украинские ученые академики С. В. Серенсен, Г. С. Писаренко. В. О. Кононенко, в том числе сотрудники ХПИ академик А. П. Филиппов, профессоры И. М. Бабаков, С. И. Богомолов, Е. Г. Голоскоков, Л. И.

Штейнвольф и многие другие.

Особое место занимает Киевская научная школа нелинейной механики, сформировавшаяся в 1920-е гг. и получившая мировое признание. Ее основоположники школы академики Н. М. Крылов и Н. Н. Боголюбов создали новое научное направление – нелинейную механику.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/18_29154_istoriya-razvitiya-soprotivleniya-materialov-i-teorii-uprugosti.html

Booksm
Добавить комментарий