Теоретическая механика и кинематика

Техническая механика

Теоретическая механика и кинематика


Кинематика – часть теоретической механики, в которой изучаются движения материальных тел без учета их масс и действующих на них сил.

Когда в механике говорят о движении тела, то подразумевают под этим изменение с течением времени его положения в пространстве по отношению к другим телам.

Обычно с телом, по отношению к которому изучают движение, связывают какую-нибудь систему координат, которую вместе с выбранным способом измерения времени называют системой отсчета. Если координаты всех точек тела в выбранной системе отсчета остаются неизменными во времени, то тело находится в покое.

Если рассматривается движение тела по отношению к условно неподвижной системе отсчета, то движение называют абсолютным; движение тела по отношению к подвижной системе отсчета называют относительным.

В мире все находится в непрерывном движении, поэтому все движения являются относительными, однако условно можно представить себе и абсолютное движение, например, движение по отношению к Земле.

Итак, движение тело совершается в пространстве с течением времени. Пространство и время, как и движение, согласно учению диалектического материализма – формы существования материи.

Классическая механика полагает, что пространство и время имеют абсолютный, независимый друг от друга характер, и что их свойства не зависят от распределения и движения материи.

Такая точка мировоззрения господствовала в науке до начала XX века, пока гениальный А. Эйнштейн (1879-1955) не поставил ее под сомнение своей теорией относительности.

Этот человек сломал вековое представление человечества о самом главном – об абсолютности времени и пространства.

Теория относительности Эйнштейна – это современная физическая теория пространства и времени, связывающая эти доселе незыблемые независимые постулаты с движением, массой и энергией.

До А. Эйнштейна считалось, что все в мире относительно. Если тело движется по отношению к какой-либо подвижной системе, то оно имеет другой характер движения по отношению к той системе, относительно которой движется данная система.

Это утверждение являлось одним из китов, на которых восседала наука до начала прошлого века. Теория относительности Эйнштейна основывается на том, что скорость света является постоянной величиной, не зависящей от скорости источника этого света.

На основании этого противоречащего здравому смыслу вывода можно утверждать, что и пространство, и время – суть понятия относительные, зависящие от скорости света.

Гениальность Эйнштейна заключается в том, что он увидел и объял неочевидное.

Современная физика, на основании множества экспериментов, опытов и исследований полностью подтвердила его теорию.

Тем не менее, несмотря на открытия Эйнштейна, классическая механика не потеряла свою актуальность, так как при скоростях движения, далеких от скорости света, результаты, даваемые классической механикой, ничтожно мало отличаются от результатов механики теории относительности и вполне пригодны для практики. Можно сказать, что классическая механика является частным случаем механики теории относительности, предполагающая упрощенные расчеты с допустимыми погрешностями.

***

Основные определения кинематики

Чтобы понять смысл определений кинематики следует ознакомиться с понятиями и определениями другого раздела технической механики – теорией механизмов и машин, которая занимается приложением законов теоретической механики для практических расчетов деталей, механизмов и машин.

Механизмом называется совокупность связанных между собой тел, имеющих определенные движения и служащих для передачи и преобразования движения.

Машиной называют механизм или сочетание механизмов, служащих для преобразования энергии (энергетические машины), изменения формы, свойств, состояния и положения предмета труда (рабочие машины), или для сбора, переработки и использования информации (информационные машины).
Таким образом, любая машина состоит из одного или нескольких механизмов, но не всякий механизм является машиной, т. е. машина – понятие более широкое.

Простейшей частью любой машины является ее звено – одно тело или неизменяемое во время работы машины сочетание группы тел.
Два звена, соединенные между собой и допускающие относительное движение, называются кинематической парой.

Кинематические пары бывают низшие и высшие. Звенья низших пар соприкасаются по поверхностям (поступательные, вращательные и винтовые пары), звенья высших пар соприкасаются по линиям и точкам (зубчатые пары, подшипники качения и т. п.).

Совокупность кинематических пар называется кинематической цепью.
Кинематические пары и цепи могут быть плоскими и пространственными. Механизм – это кинематическая цепь, у которой одно из звеньев лишено движения (закреплено). Такое звено называют станиной или стойкой.

Звено, вращающееся вокруг неподвижной оси, называют кривошипом, качающееся вокруг неподвижной оси – балансиром или коромыслом.
Звено, совершающее сложное движение параллельно какой-то плоскости, называют шатуном.

Звено, совершающее возвратно-поступательное движение по станине или стойке, называют ползуном.

Ведущим звеном механизма считается то, которому извне сообщается определенное движение, передаваемое посредством этого звена другим звеньям, называемым ведомыми.

Кинематика изучает закономерности относительного движения и перемещения отдельных звеньев механизмов, без учета сил, вызывающих эти движения и перемещения.

Основными физическими величинами, которыми оперирует кинематика, являются расстояние (длина) и время. Единицей измерения длины в системе СИ является метр (м), единицей измерения времени – секунда (с).

***



Знание законов движения тела означает знание законов движения каждой его точки, поэтому изучение кинематики основывается на изучении геометрии движения точки.

Траекторией точки называется множество (геометрическое место) положений движущейся точки в рассматриваемой системе отсчета. Проще говоря, траектория движения – это линия, которую описывает подвижная точка относительно выбранной системы отсчета. В зависимости от формы траектории различают прямолинейное и криволинейное движение.

Движение любой точки тела можно описать (задать) тремя способами – естественным, векторным и координатным (см. рисунок 1).

Естественный способ (рис. 1а) заключается в том, что движение точки задается ее траекторией, началом отсчета и уравнением движения по этой траектории (законом движения).
В общем виде уравнение движения записывается так: s = f(t), где s – расстояние от точки до начального положения (начала отсчета), являющееся функцией времени; t – время движения точки от начального отсчета.

Зная траекторию и закономерность (уравнение) движения точки по этой траектории, можно в любой момент времени определить, где она находится.

При своем движении точка проходит некоторый путь, который также является функцией времени. Следует отметить, что путь, пройденный точкой, совпадает с расстоянием от начала отсчета лишь в том случае, если траектория движения точки представляет собой прямую линию, и точка движется по ней в одном направлении, а начало движения точки совпадает с началом отсчета.

Векторный способ (рис. 1б) основывается на том, что положение точки в пространстве однозначно определяется радиусом-вектором r, проведенным из некоторого неподвижного центра к данной точке. При этом положение точки в данный момент времени определяется направлением и модулем вектора. Математически функция изменения радиуса-вектора от времени записывается так:

r = rf(t)

Координатный способ (рис. 1в) заключается в том, что движение точки задается движением ее проекций вдоль осей координат. В общем виде уравнение движения точки можно записать следующим образом:

x = f(t),      y = f1(t),      z = f2(t).

Зная уравнения движения точки в координатной форме, можно, подставив в эти уравнения время, определить положение проекций точки, а следовательно, и самой точки в любой момент времени.
Если точка движется в плоскости, то для определения ее местоположения в данный момент времени достаточно знать две координаты, если движение происходит по прямой – достаточно одной координаты.

***

Скорость и ускорение



Олимпиады и тесты

Правильные ответы на тестовые вопросы раздела «Кинематика»: Тест №1    1-4-1-2-3 Тест №2    3-3-2-4-1 Тест №3    2-3-1-4-4 Тест №4    4-1-2-3-2 Тест №5    2-4-1-1-4 Тест №6    3-1-2-4-4

Источник: http://k-a-t.ru/tex_mex/12-kinematika/index.shtml

Лекция 1. Введение в теоретическую механику. Кинематика точки

Теоретическая механика и кинематика

Теоретическая механика— это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел

Механическим движением называется перемещение тела по отношению к другому телу, происходящее в пространстве и во времени.

Механическим взаимодействием называется такое взаимодействие материальных тел, которое изменяет характер их механического движения.

Статика — это раздел теоретической механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Кинематика  — это раздел теоретической механики, в котором изучаетсядвижение материальных тел в пространстве с геометрической точки зрения, независимо от действующих на них сил.

Динамика — это раздел механики, в котором изучается движение материальных тел в пространстве в зависимости от действующих на них сил.

Объекты изучения в теоретической механике:

материальная точка,

система материальных точек,

        абсолютно твердое тело.

Абсолютное пространство и абсолютное время независимы одно от другого. Абсолютное пространство — трехмерное, однородное, неподвижное евклидово пространство. Абсолютное время — течет от прошлого к будущему непрерывно, оно однородно, одинаково во всех точках пространства и не зависит от движения материи.

2. Предмет кинематики

Кинематика — это раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (т.е. массы) и действующих на них сил

Для определения положения движущегося тела (или точки) с тем телом, по отношению к которому изучается движение данного тела, жестко, связывают какую-нибудь систему координат, которая вместе с телом образует систему отсчета.

Основная задача кинематики состоит в том, чтобы, зная закон движения данного тела (точки), определить все кинематические величины, характеризующие его движение (скорость и ускорение).

·        Естественный способ

Должно быть известно:

 — траектория движения точки;

 — начало и направление отсчета;

 — закон движения точки по заданной траектории в форме (1.1)

  (1.1)

·        Координатный способ

    (1.2)

Уравнения (1.2) – уравнения движения точки М.

Уравнение траектории точки М можно получить, исключив параметр времени «t» из уравнений (1.2)

·        Векторный способ

                  (1.3)Связь между координатным и векторным способами задания движения точки         (1.4)

Связь между координатным и естественным способами задания движения точки

         —  определить траекторию точки, исключив время из уравнений (1.2);

  — найти закон движения точки по траектории (воспользоваться выражением для дифференциала дуги)

После интегрирования получим закон движения точки по заданной траектории:

Связь между координатным и векторным способами задания движения точки определяется уравнением (1.4)

4. Определение скорости точки при векторном способе задания движения

Пусть в момент времени t положение точки определяется радиусом-вектором  , а в момент времени t1– радиусом-вектором  , тогда за промежуток времени точка совершит перемещение .

          (1.5)средняя скорость точки,направлен вектор также как и вектор

Скорость точки в данный момент времени

         Чтобы получить скорость точки в данный момент времени, необходимо совершить предельный переход

   (1.6)

  (1.7)

Вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора по времени  и направлен по касательной к траектории в данной точке.

(единица измерения ¾ м/с, км/час)

Ускорение точки при векторном способе задания движения

(1.8)    (1.9)(1.10)

Вектор среднего ускорения имеет то же направление, что и вектор Δv, то есть, направлен в сторону вогнутости траектории.

Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.

(еденица измерения — )

Как располагается вектор  по отношению к траектории точки?

При прямолинейном движении вектор  направлен вдоль прямой, по которой движется точка. Если траекторией точки является плоская кривая, то вектор ускорения , также как и вектор ср лежит в плоскости этой кривой и направлен в сторону ее вогнутости.

Если траектория не является плоской кривой, то вектор ср будет направлен в сторону вогнутости траектории и будет лежать в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке М1. В пределе, когда точка М1 стремится к М эта плоскость занимает положение так называемой соприкасающейся плоскости. Следовательно, в общем случае вектор ускорения  лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.

Источник: http://student-com.ru/%D0%BA%D0%B8%D0%BD%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D1%8F-1-%D0%B2%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B2-%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D1%83%D1%8E-%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D1%83-%D0%BA%D0%B8%D0%BD%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-%D1%82%D0%BE%D1%87%D0%BA%D0%B8.html

Теоретическая механика и кинематика

Теоретическая механика и кинематика

Механика — это наука о простейших формах движения материи, которые сводятся к простым перемещениям или переходам физических тел с одного положения или состояния в пространстве и времени в другое, в результате взаимодействия между ними.

Теоретическая механика

Механика охватывает целый комплекс дисциплин, изучающих движение и взаимодействие различных материальных тел, например, прикладная механика, гидромеханика, аэромеханическая, небесная механика, биомеханика и др. Изучение наиболее общих свойств движения и взаимодействия всех тел является предметом специальной дисциплины, которую называют теоретическая механика.

Итак, теоретическая механика изучает наиболее общие законы движения и взаимодействия тел, считая своей главной задачей познания количественных и качественных закономерностей, наблюдаемых в природе. С определения теоретической механики следует, что она принадлежит к фундаментальным естественным наукам.

История развития теоретической механики убеждает в том, что она является одной из научных основ техники и технологии, поскольку существует взаимосвязь между проблемами теоретической механики, проблемами техники и технологии.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Теоретическая механика широко применяет такие методы:

  • абстракции;
  • обобщение;
  • математические методы;
  • методы формальной логики.

Критерием истинности наших знаний является опыт и практика. Таким образом, теоретическая механика имеет дело не с самими материальными объектами, а с их моделями.

Теоретическая механика — это важная наука для подготовки инженерных кадров. Она является основой для изучения таких дисциплин, как:

  • теория колебаний, гидравлика;
  • сопротивление материалов;
  • теория машин, механизмов и тому подобное.

Знание законов теоретической механики, отражающие объективно существующие взаимосвязи, взаимообусловленности механических движений и преобразования энергии, позволяет научно предсказать ход процессов в новых задачах, возникающих при развитии науки, техники и технологии.

Замечание 1

Статикой называется раздел теоретической механики, в котором изучают методы преобразования одних систем сил в другие, эквивалентные им, а также условия равновесия различных систем сил, действующих на твердое тело.

Одним из основных понятий в статике, как и во всей механике, является понятие о силе. Величина, являющаяся мерой механического взаимодействия материальных тел, называется силой.

Сила, действующая на тело, является вектором. Она характеризуется точкой приложения, направлением и величиной.

В теоретической механике силу принято обозначать $\vec {F} $ cила, $A$- точка приложения силы, прямая $AB$ — линия действия силы.

Рисунок 1. Сила $\vec {F} $. Автор24 — интернет-биржа студенческих работ

В Международной системе единиц (СИ) за единицу силы принимают один ньютон (1Н). Ньютон — это такая сила, которая массе в 1 кг оказывает ускорение в 1 $мс_2$ (1Н = 1кг • м • с-2).

Основные понятия теоретической механики

К основным понятиям теоретической механики, прежде всего, относятся понятия материальной точки и абсолютно твердого тела. Они являются идеальными моделями материальных тел с той или иной степенью абстракции конкретных свойств реальных физических тел.

Определение 1

Материальной точкой называется геометрическая точка, которой приписана определенная масса.

Например, изучая движение планет вокруг Солнца, их рассматривают как материальные точки, в каждой из которых сосредоточена вся масса соответствующей планеты, абстрагируясь при этом от размеров планет.

С понятием материальной точки тесно связано понятие о системе материальных точек.

Определение 2

Абсолютно твердым телом называется тело, которое состоит из системы материальных точек, которые непрерывно заполняют определенную часть пространства таким образом, что расстояние между любыми двумя его точками остается неизменной.

Отметим, что абстракция абсолютно твердого тела позволяет изучать механическое движение тел, не связанных с существующим изменением их формы, в частности с деформацией. Изучение механических движений тел, зависит от их деформируемости, а также движения жидкости и газов, которые приводят к новой абстракции в виде понятие сплошной среды.

Раздел кинематика

Замечание 2

Кинематикой называется раздел теоретической механики, в котором изучается движение системы материальных точек с геометрической точки зрения. Кинематику называют также геометрией движения, поскольку в ней рассматриваются геометрические свойства движения.

Механические движения, что изучаются в кинематике, осуществляются в пространстве и времени.

Отметим, что в теоретической механике пространство, в котором происходит движение тел, рассматривается как трехмерное, и все измерения выполняются на основании методов евклидовой геометрии.

В механике время считается одинаковым в любых системах отсчета (системах координат) и не зависит от движения этих систем относительно друг друга. Время сказывается буквой $t$ и рассматривается как непрерывная переменная величина, которая применяется в качестве аргумента.

Изучая движение тела, всегда следует знать, в отношении какого другого тела, которое называется телом отсчета, рассматривается это движение. Совокупность тела отсчета, с которым связана система координат, и часов называют системой отсчета.

Эта система может быть как подвижной, так и условно неподвижной. Точки тела, постоянно движущиеся, осуществляют в общем случае различные движения. Поэтому, в первую очередь, возникает необходимость изучить движение отдельных точек тела.

Поскольку движение геометрического образа тела будет известным, когда станет известен закон движения всех его точек, определение движения любого геометрического образа предшествует изучению движения одной его точки.

Эта логика лежит в основе разделения кинематики на такие разделы, как кинематика точки и кинематика твердого тела. Для определения положения точки в пространстве выбирают некоторую систему отсчета (систему координат).

Определение 3

Линия, которую описывает точка при своем движении, называется траекторией. Если траектория точки прямая линия, то движение точки называется прямолинейным, если траектория точки кривая, то — криволинейным.

Движение точки относительно выбранной системы отсчета считается заданным, если известно, с помощью которого способа можно определить положение точки в любой момент времени. Основными пространственно-временными (кинематическими) характеристиками движения точки является ее положение, скорость и ускорение.

Исходя из этого, основная задача кинематики точки заключается в нахождении способов задания ее положения и методов определения скорости и ускорения. Движение точки можно определить тремя способами: векторным, координатным и натуральным.

Векторный. Положение точки можно определить с помощью радиус-вектора $\vec {r}$, проведенного с некоторой заданной неподвижной точки $О$ в данную точку $М$. При движении точки радиус-вектор $\vec {r} $меняется по величине и направлению.

Каждому моменту времени $t$ соответствует определенное значение $\vec {r}$. Следовательно, $\vec {r}$ является функцией времени $t$, т.е. $\vec {r} = \vec {r} (t) $. Функцию $\vec {r} (t) $ считают однозначной и непрерывной функцией.

Уравнение $\vec {r} = \vec {r} (t) $ называется кинематической уравнением движения точки в векторной форме. Это уравнение выражает закон движения точки, а также уравнение траектории точки в векторной форме.

Замечание 3

Кривую, которую описывает конец любого вектора при условии, что начало его находится все время в одной и той же точке, называют годографом вектора.

Итак, траектория точки являются годографом радиус-вектора $\vec{r}$.

Рисунок 2. Траектория точки — годограф радиус-вектора $\vec{r}$. Автор24 — интернет-биржа студенческих работ

Основные формулы кинематики

Поступательное равномерное движение:

$S = vt$

$v = const$

$a = 0$

Вращательное равномерное движение:

$\varphi = \omega t$

$\omega = const$

$\varepsilon = 0$

Поступательное равнопеременное движение:

$S = V_0 t + \frac {at2}{2}$

$v = v_0 + at$

$a = const$

Вращательное равнопеременное движение:

$\omega = \omega_0 t + \frac {\varepsilon t2}{2}$

$\omega = \omega_0 + \varepsilon t$

$\varepsilon = const$

Поступательное неравномерное движение:

$S = f(t)$

$v = \frac {dS}{dt}$

$a = \frac {dv}{dt} = \frac {d2 S}{dt2}$

Вращательное неравномерное движение:

$\varphi = f(t)$

$\varphi = \frac {d \varphi}{dt}$

$\varepsilon = \frac {d \omega}{dt} = \frac {d2 \varphi }{dt2}$

Источник: https://spravochnick.ru/fizika/teoreticheskaya_mehanika/teoreticheskaya_mehanika_i_kinematika/

Booksm
Добавить комментарий