Температура как мера средней кинетической энергии молекул

Температура — мера средней кинетической энергии молекул. урок. Физика 10 Класс

Температура как мера средней кинетической энергии молекул

На этом уроке мы будем разбирать физическую величину, уже знакомую нам из курса восьмого класса – температуру. Мы дополним её определение как меру теплового равновесия и меру средней кинетической энергии.

Опишем недостатки одних и преимущества других методов измерения температур, введём понятие шкалы абсолютных температур и, наконец, выведем зависимость кинетической энергии молекул газа и давления газа от температуры.

Как уже было сказано выше, понятие температура не является новым для нас. В восьмом классе мы определяли её как меру нагретости тела. Теперь же мы расширим это понятие. Ведь температура является очень важным макропараметром, который определяет величину теплового хаотического движения молекул и атомов.

Для начала вспомним, как нужно измерять температуру какого-либо тела. Мы приводим прибор для измерения температуры – термометр –  в контакт с телом, температуру которого хотим замерить, и ждём некоторое время.

Зачем мы это делаем? Чтобы температура тела и температура термометра стали одинаковыми (термометр способен показывать лишь свою температуру).

Или же говорят, что термометр и тело находятся в состоянии теплового равновесия.

Определение. Тепловое равновесие – такое состояние тела, при котором его макроскопические параметры не меняются длительное время.

Так вот температура – мера теплового равновесия тела или системы тел. И сведения о температурах двух тел дают нам представление о направлении перехода тепла – от более нагретого тела к менее нагретому.

Следует отметить, что наиболее распространённые в быту термометры – ртутные, спиртовые и т.д. (рис. 1) – не отвечают физическим стандартам измерения температур.

Рис. 1. Спиртовой и ртутный термометры соответственно (Источник), (Источник)

Причины этому две:

  1. Различные термометры используют различные вещества в качестве индикатора, поэтому на одно и то же изменение температуры в зависимости от свойств конкретного вещества термометры реагируют по-разному;
  2. Произвольность выбора начала отсчёта шкалы температур.

Поэтому для любых точных замеров температур такие термометры не годятся. И начиная с восемнадцатого века, используются более точные термометры, коими является газовые термометры (см. рис. 2)

Рис. 2. Газовый термометр (Источник)

Причиной этого является тот факт, что газы расширяются одинаково при изменении температуры на одинаковые значения. Для газовых термометров справедливо следующее:

При  

При  

То есть для измерения температуры либо фиксируется изменение давления при постоянном объёме, либо объём при постоянном давлении.

В газовых термометрах часто используют разреженный водород, который, как мы помним, очень хорошо подходит под модель идеального газа.

Кроме неидеальности бытовых термометров имеет место быть неидеальность многих шкал, которые используются в быту. В частности, шкала Цельсия, как наиболее нам знакомая. Как и в случае с термометрами эти шкалы выбирают случайным образом начальный уровень (для шкалы Цельсия это температура плавления льда). Поэтому для работы с физическими величинами необходима другая, абсолютная шкала.

Эту шкалу ввёл в 1848 г английский физик Уильям Томпсон (лорд Кельвин) (рис. 3).

Зная, что при росте температур тепловая скорость движения молекул и атомов тоже растёт, нетрудно установить, что при уменьшении температур скорость будет падать и при определённой температуре рано или поздно станет нулём, как и давление (исходя и основного уравнения МКТ). Эту температуру и выбрали за начало отсчёта.

Совершенно очевидно, что температура не может достигнуть значения меньше этого значения, поэтому оно получило название «абсолютный ноль температур». Для удобства же 1 градус по шкале Кельвина был приведён в соответствии с 1 градусом по шкале Цельсия.

Итак, получаем следующее:

Обозначение температуры – ;

Единица измерения – К, «кельвин»

Перевод к шкале Кельвина: 

Следовательно, абсолютный ноль температур – это температура

Рис. 3. Уильям Томпсон (Источник)   

Теперь для определения температуры как меры средней кинетической энергии молекул имеет смысл обобщить те рассуждения, которые мы приводили в определении абсолютной шкалы температур:

Итак, как видим, температура и правда является мерой средней кинетической энергией поступательного движения. Конкретное же формульное соотношение вывел австрийский физик Людвиг Больцман (рис. 4):

Здесь  – так называемый коэффициент Больцмана. Это константа, численно равная:

Как мы видим, размерность этого коэффициента – , то есть это своего рода коэффициент пересчёта из шкалы температур в шкалу энергий, ведь мы понимаем теперь, что, по сути, должны были измерять температуру в единицах энергии.

Теперь рассмотрим, как будет зависеть давление идеального газа от температуры. Для этого запишем основное уравнение МКТ в следующем виде:

и подставим в эту формулу выражение для связи средней кинетической энергии с температурой. Получим:

Рис. 4. Людвиг Больцман (Источник)

На следующем занятии мы сформулируем уравнение состояния идеального газа.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. – М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Стр. 66: №  478–481. Физика. Задачник. 10-11 классы.  Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
  2. Как определяют шкалу температур по Цельсию?
  3. Укажите температурный диапазон по шкале Кельвина для вашего города летом и зимой.
  4. Воздух состоит в основном из азота и кислорода. Кинетическая энергия молекул какого газа больше?
  5. *Чем отличается расширение газов от расширения жидкостей и твёрдых тел?

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-molekulyarno-kineticheskoy-teorii/temperatura-mera-sredney-kineticheskoy-energii-molekul

Абсолютная температура. Температура — мера средней кинетической энергии молекул — Класс!ная физика

Температура как мера средней кинетической энергии молекул

«Физика — 10 класс»

Абсолютная температура.

Вместо температуры Θ, выражаемой в энергетических единицах, введём температуру, выражаемую в привычных для нас градусах.

Будем считать величину Θ прямо пропорциональной температуре Т, измеряемой в градусах:

Θ = kТ,           (9.12)

где k — коэффициент пропорциональности.

>Определяемая равенством (9.12) температура называется абсолютной.

Такое название, как мы сейчас увидим, имеет достаточные основания. Учитывая определение (9.12), получим

По этой формуле вводится температурная шкала (в градусах), не зависящая от вещества, используемого для измерения температуры.

Температура, определяемая формулой (9.13), очевидно, не может быть отрицательной, так как все величины, стоящие в левой части этой формулы, заведомо положительны. Следовательно, наименьшим возможным значением температуры Т является значение Т = 0, если давление р или объём V равны нулю.

Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объёме или при которой объём идеального газа стремится к нулю при неизменном давлении, называют абсолютным нулём температуры.

Это самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказывал Ломоносов.

Английский учёный У. Томсон (лорд Кельвин) (1824—1907) ввёл абсолютную шкалу температур. Нулевая температура по абсолютной шкале (её называют также шкалой Кельвина) соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия.

Единица абсолютной температуры в СИ называется кельвином (обозначается буквой К).

Постоянная Больцмана.

Определим коэффициент k в формуле (9.13) так, чтобы изменение температуры на один кельвин (1 К) было равно изменению температуры на один градус по шкале Цельсия (1 °С).

Мы знаем значения величины Θ при 0 °С и 100 °С (см. формулы (9.9) и (9.11)). Обозначим абсолютную температуру при 0 °С через Т1, а при 100 °С через Т2. Тогда согласно формуле (9.12)

Θ100 — Θ0 = k(T2 -T1),

Θ100 — Θ0 = k • 100 K = (5,14 — 3,76) • 10-21 Дж.

Отсюда

Коэффициент

k = 1,38 • 10-23 Дж/К         (9.14)

называется постоянной Больцмана в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории газов.

Постоянная Больцмана связывает температуру Θ в энергетических единицах с температурой Т в кельвинах.

Это одна из наиболее важных постоянных в молекулярно-кинетической теории.

Зная постоянную Больцмана, можно найти значение абсолютного нуля по шкале Цельсия. Для этого найдём сначала значение абсолютной температуры, соответствующее 0 °С. Так как при 0 °С kT1 = 3,76 • 10-21 Дж, то

Один кельвин и один градус шкалы Цельсия совпадают. Поэтому любое значение абсолютной температуры Т будет на 273 градуса выше соответствующей температуры t по Цельсию:

Т (К) = (f + 273) (°С).         (9.15)

Изменение абсолютной температуры ΔТ равно изменению температуры по шкале Цельсия Δt: ΔТ(К) = Δt (°С).

На рисунке 9.5 для сравнения изображены абсолютная шкала и шкала Цельсия. Абсолютному нулю соответствует температура t = -273 °С.

В США используется шкала Фаренгейта. Точка замерзания воды по этой шкале 32 °F, а точка кипения 212 °Е Пересчёт температуры из шкалы Фаренгейта в шкалу Цельсия производится по формуле t(°C) = 5/9 (t(°F) — 32).

Отметим важнейший факт: абсолютный нуль температуры недостижим!

Температура — мера средней кинетической энергии молекул.

Из основного уравнения молекулярно-кинетической теории (9.8) и определения температуры (9.13) вытекает важнейшее следствие:
абсолютная температура есть мера средней кинетической энергии движения молекул.

Докажем это.

Из уравнений (9.7) и (9.13) следует, что Отсюда вытекает связь между средней кинетической энергией поступательного движения молекулы и температурой:

Средняя кинетическая энергия хаотичного поступательного движения молекул газа пропорциональна абсолютной температуре.

Чем выше температура, тем быстрее движутся молекулы. Таким образом, выдвинутая ранее догадка о связи температуры со средней скоростью молекул получила надёжное обоснование. Соотношение (9.16) между температурой и средней кинетической энергией поступательного движения молекул установлено для идеальных газов.

Однако оно оказывается справедливым для любых веществ, у которых движение атомов или молекул подчиняется законам механики Ньютона. Оно верно для жидкостей, а также и для твёрдых тел, где атомы могут лишь колебаться возле положений равновесия в узлах кристаллической решётки.

При приближении температуры к абсолютному нулю энергия теплового движения молекул приближается к нулю, т. е. прекращается поступательное тепловое движение молекул.

Зависимость давления газа от концентрации его молекул и температуры. Учитывая, что из формулы (9.13) получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (9.17) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро, известный вам из курса химии.

Закон Авогадро:

В равных объёмах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Следующая страница «Измерение скоростей молекул газа»
Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Основные положения МКТ. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Почему тепловые явления изучаются в молекулярной физике — Основные положения молекулярно-кинетической теории. Размеры молекул — Примеры решения задач по теме «Основные положения МКТ» — Броуновское движение — Силы взаимодействия молекул. Строение газообразных, жидких и твёрдых тел — Идеальный газ в МКТ.

Среднее значение квадрата скорости молекул — Основное уравнение молекулярно-кинетической теории газов — Примеры решения задач по теме «Основное уравнение молекулярно-кинетической теории» — Температура и тепловое равновесие — Определение температуры. Энергия теплового движения молекул — Абсолютная температура.

Температура — мера средней кинетической энергии молекул — Измерение скоростей молекул газа — Примеры решения задач по теме «Энергия теплового движения молекул» — Уравнение состояния идеального газа — Примеры решения задач по теме «Уравнение состояния идеального газа» — Газовые законы — Примеры решения задач по теме «Газовые законы» — Примеры решения задач по теме «Определение параметров газа по графикам изопроцессов»

Источник: http://class-fizika.ru/10_a193.html

Температура как мера средней кинетической энергии молекул

Температура как мера средней кинетической энергии молекул

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ — концентрация частиц в газе, N — количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление — макропараметр, который довольно легко измерять с микропараметрами — средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси.

Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем.

Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

\[\theta =kT\ \left(4\right),\]

где T — термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны.

С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул.

Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}{-7}м$, взвешенной в воздухе.

Решение:

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}{-23}\cdot {10}{-7}=6\cdot {10}{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}3.$

Рис. 1

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м3}$:$\ тогда$

\[m=1000\cdot \frac{3,14}{6}{{(10}{-7})}3=5,2\cdot {10}{-19}\ \left(кг\right)\]

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d3}}=3\sqrt{\frac{2kT}{\pi \rho d3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}{-21}}{5,2\cdot {10}{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

Решение:

За основу для решения задачи возьмет уравнение состояния идеального газа:

\[p=nkT\ \left(2.1\right).\]

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

\[n=\frac{p}{kT}\ \left(2.3\right)\]

Из $\left(2.2\right)\ $выразим $kT$:

\[kT=\frac{2}{3}\left\langle E\right\rangle \ \left(2.4\right).\]

Подставим (2.4) в (2.3):

\[n=\frac{3p}{2\left\langle E\right\rangle }\]

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.

Источник: https://spravochnick.ru/fizika/molekulyarnaya_fizika/temperatura_kak_mera_sredney_kineticheskoy_energii_molekul/

Booksm
Добавить комментарий