Техническое использование переменных токов. Генераторы и электродвигатели

Содержание
  1. Генератор переменного тока: схема и виды, индукционный и электромеханический
  2. Принцип действия и устройство простейшего генератора переменного тока
  3. Электрогенераторы переменного тока
  4. Синхронные электрогенераторы
  5. Асинхронные электрогенераторы
  6. Инверторные генераторы
  7. Привод генераторов переменного тока
  8. Опции и возможности бытовых электрогенераторов
  9. Особенности установки
  10. Техническое использование переменных токов. Генераторы и электродвигатели
  11. Генераторы переменного тока
  12. Электродвигатели
  13. Электрические машины: виды, классификация, принципы работы
  14. Коллекторные и бесколлекторные электрические машины
  15. Коллекторные машины
  16. Бесколлекторные машины
  17. Трансформаторы
  18. Принцип действия силового трансформатора
  19. Генераторы тока: переменного и постоянного
  20. Что такое генератор тока
  21. В чем разница между постоянным и переменным током
  22. В чем конструктивная разница между генераторами
  23. Особенности конструкции генераторов переменного тока
  24. Особенности конструкции генератора переменного тока
  25. Принцип работы генератора постоянного тока
  26. Принцип работы генератора переменного тока
  27. Основные достоинства генераторов переменного тока
  28. Где применяются генераторы постоянного и переменного тока
  29. Генератор постоянного тока: устройство, принцип работы, классификация
  30. Устройство и принцип работы
  31. Классификация
  32. С параллельным возбуждением
  33. с независимым возбуждением
  34. с последовательным возбуждением
  35. со смешанным возбуждением
  36. технические характеристики генератора постоянного тока
  37. Реакция якоря
  38. ЭДС
  39. Мощность
  40. КПД
  41. Применение
  42. по теме

Генератор переменного тока: схема и виды, индукционный и электромеханический

Техническое использование переменных токов. Генераторы и электродвигатели

Электрический генератор тока – это устройство, предназначенное для превращения неэлектрических видов энергии (химической, механической, тепловой) в электрическую. При этом его конструкция базируется на использовании принципа электроманитной индукции.

Принцип действия и устройство простейшего генератора переменного тока

Генератор переменного тока

Электромагнитная индукция – это явление, которое было открыто в 1831 году английским физиком Майклом Фарадеем (1791-1867), обнаружившим, что при прохождении изменяющегося во времени магнитного потока сквозь замкнутый проводящий контур в последнем возникает электрический ток. Именно этот принцип и положен в основу любого генератора.

На практике принцип электромагнитной индукции реализуется следующим образом: электрический ток возникает в замкнутой рамке (роторе) при пересечении ее вращающимся магнитным полем, образуемым в зависимости от назначения и конструкции генератора постоянными магнитами или специальными обмотками возбуждения. При вращении рамки изменяется величина магнитного потока. Чем быстрее она вращается, тем выше величина выходного напряжения.

В 1827 году этот эффект обнаружил и использовал при создании оригинальной модели генератора электрического тока венгерский физик Аньош Иштван Йедлик (1800-1895). Однако, полагая его известным, ученый не запатентовал свое открытие, а о создании первой динамо-машины объявил только в 1850 году.

Принцип действия генератора переменного тока

Для отвода электрического тока рамка оснащается токосъемником, который превращает ее в замкнутый контур и обеспечивает постоянный контакт вращающейся рамки со стационарно расположенными элементами генератора. Подпружиненные щетки прижимаются к коллекторным кольцам и таким образом электрический ток поступает на выходные клеммы генератора.

Вращаясь, половинки рамки последовательно проходят возле полюсов магнита. При этом происходит циклическая смена направления движения возникающего тока – у каждого полюса ток движется в одну сторону.

Конструкция якоря генератора постоянного тока

В зависимости от конструкции коллектора генератор может вырабатывать как постоянный, так и переменный ток.

  • В генераторах постоянного тока для каждой половины обмотки в коллекторном узле имеются изолированные друг от друга полукольца. Благодаря тому, что эти полукольца постоянно меняются щетками, ток не изменяет своего направления, а просто пульсирует.
  • В генераторах переменного тока концы рамки привязаны к контактным кольцам и вся эта конструкция вращается вокруг своей оси. При вращении рамки, щетки, каждая из которых плотно примыкает к своему кольцу, обеспечивают надежный токоотвод. При этом циклической смены положения щеток не происходит.

Вращающаяся часть генератора называется ротором, а неподвижная – статором.

Принцип действия электрогенераторов переменного и постоянного тока идентичен. Отличаются они между собой конструкцией контактных колец, расположенных на вращающемся роторе и конфигурацией обмоток.

В генераторах переменного тока часто используют оригинальное техническое решение, базирующееся на том, что ЭДС возникает в проводнике не только когда он вращается в магнитном поле, но и в том случае, когда относительно неподвижного проводника вращается само магнитное поле.

Этот эффект широко используется разработчиками, которые располагают на вращающемся роторе электрические или постоянные магниты. При этом напряжение снимается со стационарно установленной обмотки, что дает возможность избавиться от сложных конструкций токосъемных узлов.

Электрогенераторы переменного тока

Выпускается огромное количество самых разнообразных электрогенераторов переменного тока. Классифицировать их можно по таким параметрам:

  • конструктивное исполнение;
  • способ возбуждения;
  • количество фаз.

По способу возбуждения потребителю могут встретиться агрегаты:

  • с независимым возбуждением – обмотка возбуждения запитывается постоянным током от независимого источника электропитания;
  • с самовозбуждением – в обмотку возбуждения подается выпрямленный ток от самого генератора;
  • с возбуждением от постоянных магнитов – обмотка возбуждения отсутствует;
  • с возбуждением от возбудителя – маломощного генератора постоянного тока, «сидящего» на одном валу с обслуживаемым генератором.

Схема трехфазного генератора

По количеству фаз электрогенераторы бывают:

  • однофазные;
  • двухфазные;
  • трехфазные.

На практике чаще всего встречаются трехфазные генераторы переменного тока. Связано это с рядом преимуществ, характерных для этого вида агрегатов:

  • получение экономического эффекта при разработке систем передачи электроэнергии на большие расстояния – снижение материалоемкости трансформаторных устройств и силовых проводов; Этому способствует наличие кругового магнитного поля;
  • увеличенный эксплуатационный ресурс, который обеспечивает уравновешенность системы;
  • одновременное использование линейного и фазового напряжения.

Конструктивно трехфазный электрогенератор имеет три независимые обмотки, расположенные в статоре по окружности со смещением в 120° относительно друг друга.

При этом каждая обмотка представляет собой однофазный генератор, которая способна подавать переменное напряжение потребителю R. Такая единичная обмотка и получила название «фаза».

Фазные обмотки могут соединяться между собой «треугольником» или «звездой».

Существуют и другие схемы соединения обмоток, например, шестипроводная система «Тесла» или соединение «Славянка» (сочетание шести обмоток в виде одной «звезды» и одного «треугольника), однако широкого распространения они не получили.

Роль рамки в устройствах, вырабатывающих переменный ток, исполняет электромагнит, который вращаясь, смещает индуцированные в обмотках переменные ЭДС на треть такта относительно друг друга.

Среди множества генераторов переменного тока различают два основных вида их конструктивного исполнения: синхронные и асинхронные. В последнее время, учитывая большое количество сложных электронных устройств, управляемых при помощи микропроцессоров, появился новый тип электрогенераторов – инверторный.

Синхронные электрогенераторы

Устройство синхронного генератора

Синхронный генератор переменного тока конструктивно состоит из двух частей – подвижного ротора и неподвижного статора.

При вращении ротора, представляющего собой электромагнит с сердечником и обмоткой возбуждения, подключенный к внешнему источнику питания при помощи щеточного механизма, в обмотке статора индуцируется ЭДС, которая подается на выходные клеммы генератора.

Такая конструкция исключает необходимость применения скользящих контактов, что существенно упрощает конструкцию агрегата.

Изначально магнитный поток возбуждается от стороннего возбудителя, закрепленного на общем валу и подключаемого к системе при помощи муфты.

В синхронных электрогенераторах малой мощности обмотка возбуждения запитывается за счет выпрямленного тока. При этом электрическая цепь образуется за счет активации трансформаторов, входящих в цепь нагрузки. Туда же включен и полупроводниковый выпрямитель. В состав основной электрической цепи входят:

  • обмотка возбуждения;
  • регулировочный реостат.

Основная особенность синхронного генератора – частота генерируемого электрического тока пропорциональна скорости вращения ротора.

Асинхронные электрогенераторы

Асинхронный генератор переменного тока отличается от синхронного отсутствием жесткой связи между частотами вращения ротора и индуцированной ЭДС. Разница между этими параметрами называется «скольжением».

Между ротором и статором асинхронного генератора имеется воздушный зазор. При этом на частоту вырабатываемой ЭДС влияет тормозной момент, возникающий при подключении нагрузки и препятствующий вращению ротора.

Поэтому электроэнергия в асинхронных электрогенераторах вырабатывается при увеличенной скорости прокручивания ротора.

Конструкция асинхронных генераторов отличается простотой, однако имеет при этом худшие, по сравнению с синхронными агрегатами, технические характеристики – погрешность по частоте может достигать 4%, а по величине напряжения – до 10%.

Кроме того асинхронные электрогенераторы критичны к величине пускового тока.

Поэтому эксплуатировать их рекомендуется совместно со стабилизаторами, а в отдельных случаях, например, для плавного пуска электродвигателя, может понадобиться преобразователь частоты.

Инверторные генераторы

Инверторный генератор FUBAG Ti 3200

Инверторный электрогенератор – это обычный асинхронный генератор, на выходе которого установлен дополнительный стабилизатор выходных параметров.

Работает он следующим образом: вырабатываемое асинхронным генератором напряжение поступает в инвертор, где сначала выпрямляется, а затем из полученного постоянного напряжения формируются импульсы заданной частоты и скважности. На выходе устройства эти импульсы преобразуются в синусоидальное напряжение с почти идеальными техническими характеристиками.

Привод генераторов переменного тока

Бензиновый генератор Green-Field GF4500E

В бытовых условиях ротор генератора приводят в действие при помощи двигателей внутреннего сгорания (ДВС), работающих на таких видах топлива, как бензин или дизельное топливо. При этом эксплуатационный ресурс бензиновых генераторов, оснащенных двухтактными ДВС составляет порядка 500 часов в год (не более 4 часов в сутки); четырехтактными ДВС достигает 5000 часов в год.

Использовать бензиновые электрогенераторы целесообразно при непродолжительных отключениях электричества и/или для выезда на природу.

Генераторы, работающие на дизельном топливе, отличаются большой мощностью и значительно долговечнее бензиновых. Среди них встречаются модели с воздушным и жидкостным охлаждением. Агрегаты с воздушным охлаждением рекомендуется применять в тех местах, где электричество отключают часто и надолго.

Дизельный генератор ONIS VISA P 14 FOX

Пользоваться такими бытовыми устройствами предельно просто – нужно залить топливо в бак, поворотом ключа запустить двигатель и подключить нагрузку. Их панель управления снабжена всеми необходимыми и интуитивно понятными надписями и обозначениями.

Дизельные электрогенераторы с жидкостным охлаждением – это устройства совсем другой категории. Они способны работать сутками и используются в основном на предприятиях в качестве источников резервного питания.

Промышленные генераторы, предназначенные для выработки переменного тока и подачи его потребителям на большие расстояния с помощью высоковольтных линий электропередач (ЛЭП), работают за счет активации гидравлических или паровых турбин. В таких агрегатах роторный механизм соединяется непосредственно с колесом турбины.

Турбинные электрогенераторы отличаются большой мощностью (до 100000 кВт) и способны генерировать переменный ток напряжением до 16 кВ. При этом длина и диаметр их ротора может достигать 6,5 и 15 метров соответственно, а скорость вращения последнего находится в диапазоне 1500…3000 об/мин. Устанавливают такие агрегаты в отдельных помещениях на специально подготовленных бетонных основаниях.

Опции и возможности бытовых электрогенераторов

Для удобства эксплуатации производители оснащают свою продукцию рядом полезных опций, среди которых можно выделить:

  • устройство автоматического запуска агрегата при отключении электроэнергии;
  • наличие встроенного УЗО, отключающего устройство от электросети при пробое изоляции и появлении тока утечки;
  • контроль параметров и отображение их на дисплее;
  • защита от перегрузки.

При подключении к электрогенератору нагрузки, величина которой буде ниже паспортной, агрегат начнет «съедать» часть жидкого топлива впустую, не используя полностью свои возможности.

Не будет лишним наличие в комплекте поставки специального шумогасящего кожуха, топливного бака увеличенного объема, кожуха, защищающего агрегат от воздействия низкой температуры и пр.

Особенности установки

Использование дизельного генератора

Потенциальный владелец генератора переменного тока перед приобретением должен озаботиться подготовкой места для его установки.

Независимо от того, где будет установлен такой агрегат, в помещении или на свежем воздухе, для него понадобится ровная и твердая площадка.

Установка электрогенератора на неровной площадке приведет к увеличению вибрации, что ускорит износ деталей и может спровоцировать выход дорогостоящего устройства из строя.

Устанавливая генератор в помещении, важно предусмотреть наличие вытяжной вентиляции. Кроме того, во время работы агрегата рекомендуется оставлять дверь помещения открытой, что в свою очередь потребует установить в дверном проеме решетку, перекрывающую посторонним, а главное детям, доступ в опасную зону.

Соединяют электрогенератор с электросетью в строгом соответствии с требованиями, изложенными в инструкции по эксплуатации. При этом электрический кабель необходимо подключить после вводного автомата и электросчетчика.

Источник: https://StrojDvor.ru/elektrosnabzhenie/ustrojstvo-i-princip-dejstviya-generatorov-peremennogo-toka/

Техническое использование переменных токов. Генераторы и электродвигатели

Техническое использование переменных токов. Генераторы и электродвигатели

Очень часто уровень промышленного развития оценивают по количеству потребляемых энергоресурсов, в том числе и электроэнергии.

Это понятно, так как в среднем, промышленность потребляет около $70\%$ производимой электрической энергии. Большая часть электрической энергии превращается в механическую.

Подавляющее большинство механизмов в промышленности приводится в действие электрическими двигателями. Они весьма удобны, малогабаритны, их можно автоматизировать.

Около $\frac{1}{3}\ \ $элетрической энергии, которая используется в промышленности идет на осуществление технологических процессов, таких как плавка, сварка, электронагрев, электролиз и т.д. Промышленность потребляет около $70\%$ производимой электрической энергии.

Существенную часть электроэнергии потребляет транспорт. Так, например, метрополитен использует трехфазный переменный ток, напряжение которого $6$ или $10кВ$, частота $50Гц$. Наземный электрический транспорт (трамваи, троллейбусы, монорельсовый транспорт и т.д.), так же использует переменный ток. Большинство железнодорожных линий использует электрическую тягу.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Замечание

Широкое распространение переменный ток получил благодаря такому своему свойству как простая трансформация (получения заданных величин сил токов и напряжений).

Генераторы переменного тока

Переменный ток научились получать еще в 30-х годах 19 века, однако широкое распространение он получил значительно позже.

Существенным импульсом к развитию генераторов переменного тока стало изобретение Яблочковым электрической свечи. В 1884 г.

были созданы первые трансформаторы и генераторы переменного тока, с помощью которых реализованы пробные передачи электроэнергии.

В современной технике применяют в основном индукционные генераторы тока. Это машины, в которых ЭДС появляется как результат процесса электромагнитной индукции. В таком генераторе переменная ЭДС возникает в катушке, которая вращается в магнитном поле. Генератор, конечно, весьма сложное техническое устройство, однако в качестве его основных частей выделим:

  1. индуктор — это магнит или электромагнит, который создает магнитное поле;

  2. якорь — обмотка в ней появляется ЭДС индукции при изменении магнитного потока;

  3. контактные кольца и контактные пластинки (щетки), которые скользят по кольцам и с их помощью подводят или снимают электрический ток с вращающейся части генератора.

Часть генератора, которая вращается, называется ротором. Неподвижная часть — статор. Может вращаться как якорь, так и индуктор.

Однако в мощных генераторах чаще всего якорь используют как статор, а индуктор как ротор.

Так как небольшой ток, который необходим для намагничивания индуктора, удобнее подводить через скользящие контакты, чем снимать через них ток значительной величины, который генерируется в якоре.

Замечание 1

Для получения больших магнитных потоков через обмотки якоря его снабжают железным сердечником. Делают очень небольшой зазор между полюсами магнита и сердечником, который требуется для осуществления вращения. Как индукторы, которые вызывают магнитное поле, в технических генераторах чаще всего используют электромагниты. Только для генераторов малой мощности применяют постоянные магниты.

Рассмотрим генератор переменного тока, который имеет вращающийся индуктор и стационарный якорь. Ротор может иметь вид цилиндра с выступами, на которые надеты катушки. Обмотки катушек, по которым течет постоянный ток, соединены так, что на отдельных выступах имеются поочередно северные и южные полюсы электромагнитов. Количество пар полюсов: $4,6,8…

$ Если бы в индукторе была только одна пара полюсов, то период переменного тока был равен времени полного оборота ротора и для того, чтобы получать ток с частотой $50Гц$ ротор должен вращаться с частотой $50$ оборотов в секунду, что реализовать часто крайне сложно. При увеличении пар полюсов сокращается период тока.

Он соответствует времени, которое необходимо для поворота ротора на ту часть окружности, которую занимает одна пара полюсов.

В прочем, ротор может не иметь выступов, а быть гладким цилиндром на внешней поверхности которого, в пазах уложена обмотка. В случае быстрого вращения это бывает выгоднее. Выступы в роторе, создают воздушные вихри, из—за чего растут механические потери. Так поступают при конструировании паровых турбин, которые вращаются с частотой $1500 — 3000$ оборотов в минуту.

Форма полюсных наконечников рассчитывается так, чтобы ЭДС индукции изменялась по гармоническому закону.

Определение 1

Статор генератора — железное кольцо, в пазах которого находятся обмотки якоря. Для того чтобы потери на токи Фуко были минимальными это кольцо делают из отдельных изолированных друг от друга тонких листков.

Электродвигатели

Электродвигатели преобразуют электрическую энергию в механическую работу. Они основаны на использовании силы Ампера, действующей на проводник с током в магнитном поле. Первый электродвигатель такого рода был создан в 1839 г. Б.С. Якоби.

Для понимания основы процессов, которые происходят в электродвигателях можно рассмотреть двигатель постоянного тока (рис.1).

Рисунок 1.

Источник постоянной ЭДС — $U_0$ включен в цепь. Прямолинейный проводник ($DC$) может скользить вдоль проводников $FG$ и $AK$. Магнитное поле, в котором находится цепь, перпендикулярно плоскости чертежа на нас. Когда по проводнику течет ток, то на него действует сила Ампера равная:

Под действием этой силы проводник перемещается и совершает механическую работу. При перемещении проводника на расстояние $dx$, эта работа равна:

Следовательно, мощность можно представить как:

где $v=\frac{dx}{dt}$ — скорость проводника.

При движении проводника появляется ЭДС индукции, которая направлена против сторонней ЭДС, которая вызывает токи:

При этом мощность сторонних ЭДС равна:

Сравним (5) и (3), сделаем вывод о том, что вся развиваемая электродвигателем мощность обеспечивается источником сторонних ЭДС. Помимо полезной мощности (3) источник ЭДС развивает мощность, которая идет на выделение тепла на сопротивлении проводов, по которым идет ток и внутреннем сопротивлении источника. Из правил Кирхгофа можно составить баланс напряжений для замкнутого контура вида:

где $R$ — суммарное сопротивление. Умножим обе части уравнения (6) на $I$, получим:

Обычно формулу (7) записывают в виде:

Из формулы (8) очевидно, что мощность источника ($P_I$) расходуется на выделение тепла (Джоуля — Ленца) и работу электродвигателя с мощностью $P$.

Для переменного тока расчет баланса энергий сложнее, но суть такая же.

Замечание 2

Для обеспечения непрерывности работы двигателя создают периодический режим работы. Например, изменяют периодически индукцию.

Пример 1

Задание: Вычислите частоту переменного тока, который создает генератор, ротор которого имеет $12$ пар полюсов и вращается со скоростью $1500$ оборотов в минуту. Сколько раз в секунду изменяет свое направление при этом ток?

Решение:

Если частота вращения $1500$ $\frac{оборотов}{мин}$ переведем ее $СИ$, получим, что ротор вращается с частотой:

\[\frac{1500}{60}=25\left(\frac{оборотов}{с}\right).\]

Если ротор имеет $12$ пар полюсов, то частота тока составит:

\[u =12\cdot 25=300\ \left(Гц\right).\]

Ответ: $u =300\ Гц$. Ток изменяет свое направление $600$ раз, так как перемена направления происходит $2$ раза за период.

Пример 2

Задание: Объясните, почему статор генератора переменного тока собирают из отдельных стальных листков, а статор генератора постоянного тока изготавливают из массивной стальной или чугунной отливки?

Решение:

Статор генератора переменного тока содержит якорь, в котором индуцируется переменный ток, который вызывает существенные потери энергии в массивных проводниках из-за возникновения токов Фуко. Для уменьшения таких потерь статор собирают из пластин, которые разделяют изолятором.

В статоре генератора постоянного тока находится индуктор, на внутренней поверхности его находятся выступы с обмотками, которые создают в машине магнитное поле. Выпрямление тока происходит на коллекторе машины, в каждой секции индуцируется переменный ток, и из отдельных пластин для генератора постоянного тока делают сердечник якоря во избегания сильного нагрева токам Фуко.

Источник: https://spravochnick.ru/fizika/peremennyy_sinusoidalnyy_tok/tehnicheskoe_ispolzovanie_peremennyh_tokov_generatory_i_elektrodvigateli/

Электрические машины: виды, классификация, принципы работы

Техническое использование переменных токов. Генераторы и электродвигатели

Электрической машиной принято считать электромеханическое устройство, способное преобразовать механическую энергию в электрическую и обратно. В первом случае происходит выработка электроэнергии (машины являются генераторами), во втором – её потребление (электродвигатели).

Последние необходимы для того чтобы привести в движение транспортные средства, станки и другие механизмы.
Генераторы и электродвигатели – основная сфера использования электрических машин.

Но они могут быть также использованы и в качестве электромеханических преобразователей (умформеров) – агрегатов, которые способны преобразовывать электрическую энергию в различные её формы.

Преобразователь постоянного тока в переменный называется инвертором, увеличитель мощности электрических сигналов – электромашинным усилителем, а устройство способное отрегулировать напряжение переменного тока – индукционным регулятором.

Отдельной категорией можно назвать также сельсины – самосинхронизирующиеся индукционные машины, которые обеспечивают возможность вращения нескольких осей независимо друг от друга с точки зрения механики. Такие устройства используются в электронике, в составе сварочных аппаратов для регулировки их рабочей мощности.

Коллекторные и бесколлекторные электрические машины

Деление на коллекторные и бесколлекторные электрические машины существует благодаря принципиальным отличиям в принципе их действия.

Коллекторные машины

Коллекторные агрегаты работают только на постоянном токе, поэтому отличительной чертой их конструкции является наличие механического преобразователя, который позволяет получить постоянный ток из переменного или наоборот. Они могут использоваться в качестве двигателя или генератора без необходимости внесения изменений в схему.

Их существенными преимуществами являются отличные пусковые характеристики и возможность плавной регулировки частоты вращения вала.

Именно поэтому коллекторные электрические машины постоянного тока нашли очень широкое применение в качестве приводов для прокатных станов, электротранспорта, источников питания для сварочных аппаратов, электролитических ванн.

В самолётах, тракторах, автомобилях такие двигатели приводят в движение всё используемое вспомогательное оборудование.

Небольшая группа коллекторных машин небольшой мощности выполняется в виде универсальных двигателей, которые уникальны тем, что могут работать и от постоянного, и от переменного тока.

Бесколлекторные машины

Бесколлекторные агрегаты работают только с переменным током и делятся на синхронные и асинхронные машины. Синхронные машины широко применяются как в качестве генераторов, так и электродвигателей, в то время как асинхронные – в основном служат двигателями.

Рисунок 1. Синхронный генератор (упрощённая схема устройства)

1 – сердечник статора (неподвижная часть машины), 2 – обмотка статора, 3 – вал, 4 – ротор двигателя (постоянный магнит).

Принцип работы такого генератора заключается в том, чтобы при помощи привода (двигателя внутреннего сгорания или турбины) через ременную передачу привести в движение ротор генератор. Одновременно в обмотке статора наводится ЭДС (указано стрелками) и благодаря замыканию её на нагрузке в цепи появляется ток.

Когда речь идёт о синхронном электродвигателе, то его работа начинается с подачи тока на обмотку статора. Это приводит к вращению магнитного поля, которое при взаимодействии с полем ротора вырабатывает силу, которая, в конечном счёте, преобразует электрическую энергию в механическую и вращает вал.

Рисунок 2. Принцип действия асинхронного электродвигателя

В асинхронном электродвигателе при включении обмотки статора в сеть образуется вращающееся с частотой n1 магнитное поле. При этом в обмотке статора и ротора наводится ЭДС. Благодаря тому что обмотка ротора замкнута в ней возникает ток, который взаимодействуя с полем статора создаёт электромагнитные силы Fэм приводящие во вращение ротор двигателя.

Трансформаторы

Трансформатор – электрический аппарат, который представляет собой статическое устройство, преобразующее одну систему переменного тока в другую.

Параметры для преобразования могут быть самыми разными: ток, напряжение, частота, число фаз.

Но чаще всего в системах электроснабжения используются силовые трансформаторы, которые позволяют изменить величину тока и напряжения (при этом все остальные параметры сети остаются неизменными).

По назначению существует деление аппаратов на трансформаторы силового и специального назначения. Силовые являются одним из основных элементов систем энергоснабжения и используются при транспортировке электроэнергии для получения напряжения требуемого класса.

Специальные же очень разнообразны по своей конструкции и рабочим характеристикам (примером могут послужить сварочные, печные, испытательные трансформаторы). Отдельной их категорией являются автотрансформаторы – однообмоточные аппараты, которые способны изменять величину напряжения в минимальных пределах (когда коэффициент трансформации приближён к 1).

Принцип действия силового трансформатора

Рисунок 3. Простейший силовой однофазный трансформатор

Конструктивно аппарат состоит из сердечника, выполненного из листовой электротехнической стали и обмоток 1 и 2 (первичной и вторичной), которые размещены на стержнях и электрически не связаны между собой. К обмотке 1 подключается источник питания, к обмотке 2 – нагрузка (потребитель).

За счёт явления электромагнитной индукции переменный ток i1 создаёт магнитный поток, который замыкается в сердечнике и сцепляясь с обеими обмотками наводит в них ЭДС само- и взаимоиндукции соответственно.

При подключении потребителя во вторичной обмотке создаётся ток i2, а на выводах – вторичное напряжение. Разница в напряжениях на вводах и выводах образуется за счёт разного количества витков в 1 и 2 обмотках.

Отношение параметров может быть любым.

По количеству фаз существует разделение на одно- и трехфазный трансформатор, по виду охлаждения – на воздушный и масляный, по форме магнитопровода – на стержневой, бронестержневой, броневой, тороидальный. Особенностью трёхфазного от однофазного трансформатора в плане его электрической схемы состоит в том, что схемы трёх отдельных систем объединены в одну.

Трансформаторы и электрические машины в целом являются одними из важнейших элементов любой системы энергоснабжения. Огромное количество технических решений и отдельных видов устройств позволяет решать самые разные задачи во всех сферах деятельности.

Источник: https://zen.yandex.ru/media/id/5cfc9e6b388e2100af05f6fe/5d08b35ac1895700b17deedf

Генераторы тока: переменного и постоянного

Техническое использование переменных токов. Генераторы и электродвигатели

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия.

Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация.

Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков.

Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.

В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач. 

В чем конструктивная разница между генераторами

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

Полюсов может быть несколько (число минусов и плюсов всегда идентично).

Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла.

Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности.

По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.

Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • отсутствие электрической связи с ротором;
  • вращение якоря под воздействием остаточного механизма статора;
  • измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.

К преимуществам генераторов постоянного тока относят:

  • небольшой вес и компактность агрегата;
  • возможность использовать в экстремальных условиях;
  • отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • выработка электроэнергии на низких скоростях вращения ротора;
  • проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • конструкция токосъемного узла отличается большей надежностью;
  • больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии.

Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях.

Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока.

Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств.

С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.

Источник: https://mototech.ru/info/generatory-toka-peremennogo-i-postoyannogo/

Генератор постоянного тока: устройство, принцип работы, классификация

Техническое использование переменных токов. Генераторы и электродвигатели

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1).

По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита.

Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1.

Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где B – магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t – время, wt – угол, под которым рамка пересекает магнитный поток.  

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня.

Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3).

Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. задача решается путём регулировки параметров возбуждения. в альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

реостаты возбуждения могут замыкать обмотку «на себя». если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится эдс самоиндукции, которая может пробить изоляцию. в состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а эдс не выйдет на номинальные  показатели при оптимальных оборотах вращения якоря.

достоинство: на генераторы с параллельным возбуждением слабо влияют токи при кз.

с независимым возбуждением

в качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. в моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

на валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. изменение эдс осуществляется регулировочным реостатом.

преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. а это обеспечивает хорошие внешние характеристики альтернатора.

с последовательным возбуждением

последовательные обмотки вырабатывают ток, равен току генератора. поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

в генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах.

для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток.

такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

со смешанным возбуждением

полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. в цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. это позволяет регулировать напряжения на зажимах генератора.

смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. в этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. не терпят такие генераторы и коротких замыканий.

технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5).  Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6).  Это связано с падением тока возбуждения в обмотках.

Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля.

Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора.

Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек.

Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

ЭДС

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

КПД

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

по теме

Источник: https://www.asutpp.ru/generator-postoyannogo-toka.html

Booksm
Добавить комментарий