Сумма углов треугольника. Теорема о сумме углов треугольника

Сумма углов треугольника. Теорема о сумме углов треугольника

Сумма углов треугольника. Теорема о сумме углов треугольника

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками(рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180\circ$.

Получим

$∠XFY=∠XFE+∠F+∠YFG=180\circ$

Следовательно

$∠E+∠F+∠G=180\circ$

Теорема доказана.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180\circ$, следовательно,

$∠G=180\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180\circ-∠G=180\circ-180\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Решение.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180\circ$

$3α=180\circ$

$α=60\circ$

Ответ: все углы равняются по $60\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100\circ$.

Решение.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100\circ$, то возможны два случая:

  1. Угол, равный $100\circ$ — угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100\circ$

    Но тогда только их сумма будет больше, чем $180\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

  2. Угол, равный $100\circ$ — угол между равными сторонами, то есть

    $∠1=100\circ$

Так как треугольник равнобедренный, то $∠2=∠3$,

По теореме 1, получим

$∠1+∠2+∠3=180\circ$

$2∠2+100\circ=180\circ$

$2∠2=80\circ$

$∠2=40\circ$

Ответ: $40\circ$, $40\circ$, $100\circ$.

Пример 3

Найти угол $XZO$ на рисунке 4, если $∠XOZ=45\circ$, а $∠Y=25\circ$

Решение.

Так как у равнобедренного треугольника углы при основании равны, то получим, что $∠X=∠Y=25\circ$

Из треугольника $XOZ$, по теореме 1, получим

$∠X+∠XOZ+∠XZO=180\circ$

Тогда

$∠XZO=180\circ-∠X-∠XOZ=180\circ-25\circ-45\circ=110\circ$

Ответ: $110\circ$.

Пример 4

Найти угол $XOZ$ на рисунке 4, если $∠XZO=45\circ$, а $∠Y=25\circ$

Решение.

Так как у равнобедренного треугольника углы при основании равны, то получим, что $∠X=∠Y=25\circ$

Из треугольника $XYZ$, по теореме 1, получим

$∠X+∠Y+∠Z=180\circ$

$∠Z=180\circ-∠X-∠Y=180\circ-25\circ-25\circ=130\circ$

$∠OZY=∠Z-∠XZO=130\circ-45\circ=85\circ$

По теореме 2, получим

$∠XOZ=∠OZY+∠Y=85\circ+25\circ=110\circ$

Ответ: $110\circ$.

Источник: https://spravochnick.ru/geometriya/sootnoshenie_mezhdu_storonami_i_uglami_treugolnika/summa_uglov_treugolnika_teorema_o_summe_uglov_treugolnika/

Сумма углов треугольника (опорный конспект) — УчительPRO

Сумма углов треугольника. Теорема о сумме углов треугольника

Наглядная геометрия 7 класс. Опорный конспект № 4 Сумма углов треугольника.

Великий французский ученый XVII века Блез Паскаль в детстве любил возиться с геометрическими фигурами. Он был знаком с транспортиром и умел измерять углы. Юный исследователь заметил, что у всех треугольников сумма трех углов получается одна и та же — 180°. «Как же это доказать? — подумал Паскаль.

— Ведь нельзя же проверить сумму углов у всех треугольников — их бесконечное множество». Тогда он отрезал ножницами два уголка треугольника и приложил их к третьему углу. Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие.

Дальнейшая судьба мальчика была уже предопределена.

В этой теме вы познакомитесь с пятью признаками равенства прямоугольных треугольников и, пожалуй, с самым популярным свойством прямоугольного треугольника с углом 30°. Оно звучит так: катет, лежащий против угла 30°, равен половине гипотенузы. Разделив равносторонний треугольник высотой, мы сразу получим доказательство этого свойства.

Сумма углов треугольника

ТЕОРЕМА. Сумма углов треугольника равна 180°. Для доказательства проведем через вершину прямую, параллельную основанию.

Темные углы равны и серые углы равны как накрест лежащие при параллельных прямых. Темный угол, серый угол и угол при вершине образуют развернутый угол, их сумма 180°.

 Из теоремы следует, что углы равностороннего треугольника равны по 60° и что сумма острых углов прямоугольного треугольника равна 90°.

Внешним углом треугольника называется угол, смежный с углом треугольника. Поэтому иногда углы самого треугольника называют внутренними углами.

ТЕОРЕМА о внешнем угле треугольника. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Действительно, внешний угол и два внутренних, не смежных с ним, дополняют закрашенный угол до 180°. Из теоремы следует, что внешний угол больше любого внутреннего, не смежного с ним.

ТЕОРЕМА о соотношениях между сторонами и углами треугольника. В треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона. Отсюда следует: 1) Катет меньше гипотенузы. 2) Перпендикуляр меньше наклонной.

Расстояние от точки до прямой. Так как перпендикуляр меньше любой наклонной, проведенной из той же точки, то его длина принимается за расстояние от точки до прямой.

Неравенство треугольника. Длина любой стороны треугольника меньше суммы двух других его сторон, т. е.  а < b + с,   b < а + с,   с < а + b. Следствие. Длина ломаной больше отрезка, соединяющего ее концы.

Признаки равенства
прямоугольных треугольников

По двум катетам. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны.

По катету и прилежащему острому углу. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого треугольника, то такие треугольники равны.

По катету и противолежащему острому углу. Если катет и противолежащий ему острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему острому углу другого треугольника, то такие треугольники равны.

По гипотенузе и острому углу. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны.

Доказательство этих признаков сразу сводится к одному из признаков равенства треугольников.

По катету и гипотенузе. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.

Доказательство. Приложим треугольники равными катетами. Получим равнобедренный треугольник. Его высота, проведенная из вершины, будет и медианой. Тогда у треугольников равны и вторые катеты, и треугольники равны по трем сторонам.

ТЕОРЕМАо свойстве катета, лежащего против угла 30°. Катет, лежащий против угла 30°, равен половине гипотенузы. Доказывается достроением треугольника до равностороннего.

ТЕОРЕМА о свойстве точек биссектрисы угла. Любая точка биссектрисы угла равноудалена от его сторон. Если точка равноудалена от сторон угла, то она лежит на биссектрисе угла. Доказывается проведением двух перпендикуляров к сторонам угла и рассмотрением прямоугольных треугольников.

Вторая замечательная точка. Биссектрисы треугольника пересекаются в одной точке.

Расстояние между параллельными прямыми. ТЕОРЕМА. Все точки каждой из двух параллельных прямых находятся на равном расстоянии от другой прямой. Из теоремы следует определение расстояния между параллельными прямыми.

Определение. Расстоянием между двумя параллельными прямыми называется расстояние от любой точки одной из параллельных прямых до другой прямой.

Подробные доказательства теорем

Это опорный конспект № 4 по геометрии в 7 классе «Сумма углов треугольника». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D1%81%D1%83%D0%BC%D0%BC%D0%B0-%D1%83%D0%B3%D0%BB%D0%BE%D0%B2-%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0-%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B%D0%B9/

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при этом стороны, его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один угол тупой;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья – основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН. Через вершину М проведем прямую параллельно прямой КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН.

Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН.

Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана.

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым.

В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° — не больше и не меньше.

Вот это и нужно было доказать.

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов.

Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов – при каждой вершине по два.

Каждая пара имеет равные между собой углы, поскольку они являются вертикальными:

∟1 = ∟4, ∟2 = ∟5, ∟3 = ∟6.

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов.

А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость. Пускай нам дан треугольник КМН, у которого ∟Н = 90°.

Необходимо доказать, что ∟К + ∟М = 90°.

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° — 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН – его основание. От нас требуется доказать, что ∟К = ∟Н. Итак, допустим, что МА – это биссектриса нашего треугольника КМН.

Треугольник МКА с учетом первого признака равенства равен треугольнику МНА. А именно по условию дано, что КМ = НМ, МА является общей стороной, ∟1 = ∟2, поскольку МА – это биссектриса.

Используя факт равенства этих двух треугольников, можно утверждать, что ∟К = ∟Н. Значит, теорема доказана.

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в равнобедренном треугольнике высота, которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также осью симметрии его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н.

Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Как видно из выше приведенного доказательства на основании теоремы, сумма углов равностороннего треугольника, как и сумма углов любого другого треугольника, составляет 180 градусов. Снова доказывать эту теорему нет необходимости.

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Тупоугольный треугольник

Согласно определению тупоугольного треугольника, один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов.

Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам.

Опять-таки, данная теорема не нуждается в повторном доказательстве.

Источник: https://FB.ru/article/150393/summa-uglov-treugolnika-teorema-o-summe-uglov-treugolnika

Booksm
Добавить комментарий