Статика

Содержание
  1. СТАТИКА
  2. Историческая справка
  3. Основные законы
  4. Сила как вектор
  5. Параллелограмм сил
  6. Равнодействующая сила
  7. Статика – раздел теоретической механики
  8. Применение статики в динамике
  9. Статика материальной точки
  10. Момент силы относительно точки
  11. Геометрическая интерпретация
  12. Компоненты момента в прямоугольной системе координат
  13. Свойства момента силы относительно центра
  14. Пара сил
  15. Момент силы относительно заданной оси
  16. Свойства момента силы относительно оси
  17. Вычисление момента силы относительно оси
  18. Условия равновесия твердого тела
  19. Центр тяжести тела
  20. Распределенная нагрузка
  21. Силы трения
  22. Статика – FIZI4KA
  23. Момент силы
  24. Знак момента силы
  25. Условия равновесия тел
  26. Простые механизмы
  27. «Золотое правило» механики
  28. Давление жидкости
  29. Сообщающиеся сосуды
  30. Закон Паскаля
  31. Закон Архимеда
  32. Условия плавания тел
  33. Основные формулы по теме «Статика»
  34. Статика и гидростатика. Теория и формулы для ЕГЭ + Шпаргалка
  35. Виды равновесия.
  36. Простые механизмы и блоки
  37. Гидростатика

СТАТИКА

Статика
статьи

СТАТИКА, раздел механики, предметом которого являются материальные тела, находящиеся в состоянии покоя при действии на них внешних сил. В широком смысле слова статика – это теория равновесия любых тел – твердых, жидких или газообразных.

В более узком понимании данный термин относится к изучению равновесия твердых тел, а также нерастягивающихся гибких тел – тросов, ремней и цепей. Равновесие деформирующихся твердых тел рассматривается в теории упругости, а равновесие жидкостей и газов – в гидроаэромеханике.
См.

ГИДРОАЭРОМЕХАНИКА.

Историческая справка

Статика – самый старый раздел механики; некоторые из ее принципов были известны уже древним египтянам и вавилонянам, о чем свидетельствуют построенные ими пирамиды и храмы. Среди первых создателей теоретической статики был Архимед (ок. 287–212 до н.э.

), который разработал теорию рычага и сформулировал основной закон гидростатики. Родоначальником современной статики стал голландец С.

Стевин (1548–1620), который в 1586 сформулировал закон сложения сил, или правило параллелограмма, и применил его в решении ряда задач.

Основные законы

Законы статики вытекают из общих законов динамики как частный случай, когда скорости твердых тел стремятся к нулю, но по историческим причинам и педагогическим соображениям статику часто излагают независимо от динамики, строя ее на следующих постулируемых законах и принципах: а) законе сложения сил, б) принципе равновесия и в) принципе действия и противодействия. В случае твердых тел (точнее, идеально твердых тел, которые не деформируются под действием сил) вводится еще один принцип, основанный на определении твердого тела. Это принцип переносимости силы: состояние твердого тела не изменяется при перемещении точки приложения силы вдоль линии ее действия.

Сила как вектор

В статике силу можно рассматривать как тянущее или толкающее усилие, имеющее определенные направление, величину и точку приложения.

С математической точки зрения, это вектор, а потому ее можно представить направленным отрезком прямой, длина которого пропорциональна величине силы.

(Векторные величины, в отличие от других величин, не имеющих направления, обозначаются полужирными буквами.)

Параллелограмм сил

Рассмотрим тело (рис. 1,а), на которое действуют силы F1 и F2, приложенные в точке O и представленные на рисунке направленными отрезками OA и OB.

Как показывает опыт, действие сил F1 и F2 эквивалентно одной силе R, представленной отрезком OC.

Величина силы R равна длине диагонали параллелограмма, построенного на векторах OA и OB как его сторонах; ее направление показано на рис. 1,а. Сила R называется равнодействующей сил F1 и F2.

Математически это записывается в виде R = F1 + F2, где сложение понимается в геометрическом смысле слова, указанном выше. Таков первый закон статики, называемый правилом параллелограмма сил.

Равнодействующая сила

Вместо того чтобы строить параллелограмм OACB, для определения направления и величины равнодействующей R можно построить треугольник OAC, перенеся вектор F2 параллельно самому себе до совмещения его начальной точки (бывшей точки O) c концом (точкой A) вектора OA.

Замыкающая сторона треугольника OAC будет, очевидно, иметь ту же величину и то же направление, что и вектор R (рис. 1,б). Такой способ отыскания равнодействующей можно обобщить на систему многих сил F1, F2,…, Fn, приложенных в одной и той же точке O рассматриваемого тела.

Так, если система состоит из четырех сил (рис. 1,в), то можно найти равнодействующую сил F1 и F2, сложить ее с силой F3, затем сложить новую равнодействующую с силой F4 и в результате получить полную равнодействующую R.

Равнодействующая R, найденная таким графическим построением, представляется замыкающей стороной многоугольника сил OABCD (рис. 1,г).

Данное выше определение равнодействующей можно обобщить на систему сил F1, F2,…, Fn, приложенных в точках O1, O2,…, On твердого тела. Выбирается точка O, называемая точкой приведения, и в ней строится система параллельно перенесенных сил, равных по величине и направлению силам F1, F2,…

, Fn. Равнодействующая R этих параллельно перенесенных векторов, т.е. вектор, представленный замыкающей стороной многоугольника сил, называется равнодействующей сил, действующих на тело (рис. 2). Ясно, что вектор R не зависит от выбранной точки приведения.

Если величина вектора R (отрезок ON) не равна нулю, то тело не может находиться в покое: в соответствии с законом Ньютона всякое тело, на которое действует сила, должно двигаться с ускорением. Таким образом, тело может находиться в состоянии равновесия только при условии, что равнодействующая всех сил, приложенных к нему, равна нулю.

Однако это необходимое условие нельзя считать достаточным – тело может двигаться, когда равнодействующая всех приложенных к нему сил равна нулю.

В качестве простого, но важного примера, поясняющего сказанное, рассмотрим тонкий жесткий стержень длиной l, вес которого пренебрежимо мал по сравнению с величиной приложенных к нему сил. Пусть на стержень действуют две силы F и -F, приложенные к его концам, равные по величине, но противоположно направленные, как показано на рис. 3,а.

В этом случае равнодействующая R равна FF = 0, но стержень не будет находиться в состоянии равновесия; очевидно, он будет вращаться вокруг своей средней точки O.

Система двух равных, но противоположно направленных сил, действующих не по одной прямой, представляет собой «пару сил», которую можно характеризовать произведением величины силы F на «плечо» l.

Значимость такого произведения можно показать путем следующих рассуждений, которые иллюстрируют правило рычага, выведенное Архимедом, и приводят к заключению об условии вращательного равновесия.

Рассмотрим легкий однородный жесткий стержень, способный поворачиваться вокруг оси в точке O, на который действует сила F1, приложенная на расстоянии l1 от оси, как показано на рис. 3,б. Под действием силы F1 стержень будет поворачиваться вокруг точки O. Как нетрудно убедиться на опыте, вращение такого стержня можно предотвратить, приложив некоторую силу F2 на таком расстоянии l2, чтобы выполнялось равенство F2l2 = F1l1.

Таким образом, вращение можно предотвратить бесчисленными способами. Важно лишь выбрать силу и точку ее приложения так, чтобы произведение силы на плечо было равно F1l1. Это и есть правило рычага.

Нетрудно вывести условия равновесия системы. Действие сил F1 и F2 на ось вызывает противодействие в виде силы реакции R, приложенной в точке O и направленной противоположно силам F1 и F2.

Согласно закону механики о действии и противодействии, величина реакции R равна сумме сил F1 + F2. Следовательно, равнодействующая всех сил, действующих на систему, равна F1 + F2 + R = 0, так что отмеченное выше необходимое условие равновесия выполняется.

Сила F1 создает крутящий момент, действующий по часовой стрелке, т.е. момент силы F1l1 относительно точки O, который уравновешивается действующим против часовой стрелки моментом F2l2 силы F2. Очевидно, что условием равновесия тела является равенство нулю алгебраической суммы моментов, исключающее возможность вращения.

Если сила F действует на стержень под углом q, как показано на рис. 4,а, то эту силу можно представить в виде суммы двух составляющих, одна из которых (Fp), величиной F cosq, действует параллельно стержню и уравновешивается реакцией опоры —Fp, а другая (Fn), величиной F sinq, направлена под прямым углом к рычагу.

В этом случае крутящий момент равен Fl sinq; он может быть уравновешен любой силой, которая создает равный ему момент, действующий против часовой стрелки.

Чтобы проще было учитывать знаки моментов в тех случаях, когда на тело действует много сил, момент силы F относительно любой точки O тела (рис.

4,б) можно рассматривать как вектор L, равный векторному произведению r ґ F вектора положения r на силу F. Таким образом, L = r ґ F.

Нетрудно показать, что если на твердое тело действует система сил, приложенных в точках O1, O2,…, On (рис. 5), то эту систему можно заменить равнодействующей R сил F1, F2,…

, Fn, приложенной в любой точке Oў тела, и парой сил L, момент которых равен сумме [r1 ґ F1] + [r2 ґ F2] +… + [rn ґ Fn].

Чтобы убедиться в этом, достаточно мысленно приложить в точке Oў систему пар равных, но противоположно направленных сил F1 и —F1; F2 и —F2;…; Fn и —Fn, что, очевидно, не изменит состояния твердого тела.

Но сила F1, приложенная в точке O1, и сила –F1, приложенная в точке Oў, образуют пару сил, момент которых относительно точки Oў равен r1 ґ F1.

Точно так же силы F2 и —F2, приложенные в точках O2 и Oў соответственно, образуют пару с моментом r2 ґ F2, и т.д.

Суммарный момент L всех таких пар относительно точки Oў дается векторным равенством L = [r1 ґ F1] + [r2 ґ F2] +… + [rn ґ Fn]. Остальные силы F1, F2,…

, Fn, приложенные в точке Oў, в сумме дают равнодействующую R. Но система не может находиться в равновесии, если величины R и L отличны от нуля.

Следовательно, условие равенства нулю одновременно величин R и L является необходимым условием равновесия. Можно показать, что оно же является и достаточным, если тело первоначально покоится. Итак, задача о равновесии сводится к двум аналитическим условиям: R = 0 и L = 0. Эти два уравнения представляют собой математическую запись принципа равновесия.

Теоретические положения статики широко применяются при анализе сил, действующих на конструкции и сооружения. В случае непрерывного распределения сил суммы, которые дают результирующий момент L и равнодействующую R, заменяются интегралами и в соответствии с обычными методами интегрального исчисления.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/STATIKA.html

Статика – раздел теоретической механики

Статика

Изложены основные понятия статики – раздела теоретической механики. Рассмотрены законы равновесия точки и тела. Представлены свойства моментов сил относительно точки и оси. Рассмотрена сила тяжести и сила распределенной нагрузки.

Статика – это раздел теоретической механики, в котором изучаются условия равновесия материальных тел, находящихся под действием сил, а также методы преобразования сил в эквивалентные системы.

Под состоянием равновесия, в статике, понимается состояние, при котором все части механической системы покоятся относительно некоторой инерциальной системы координат. Одним из базовых объектов статики являются силы и точки их приложения.

Сила , действующая на материальную точку с радиус-вектором со стороны других точек – это мера воздействия других точек на рассматриваемую точку, в результате которой она получает ускорение относительно инерциальной системы отсчета. Величина силы определяется по формуле:
,
где m – масса точки – величина, зависящая от свойств самой точки. Эта формула называется вторым законом Ньютона.

Применение статики в динамике

Важной особенностью уравнений движения абсолютно твердого тела является то, что силы можно преобразовывать в эквивалентные системы.

При таком преобразовании уравнения движения сохраняют свой вид, но систему сил, действующую на тело можно преобразовать в более простую систему.

Так, точку приложения силы можно перемещать вдоль линии ее действия; силы можно раскладывать по правилу параллелограмма; силы, приложенные в одной точке можно заменять их геометрической суммой.

Примером таких преобразований является сила тяжести. Она действует на все точки твердого тела. Но закон движения тела не изменится, если распределенную по всем точкам силу тяжести заменить одним вектором, приложенным в центре масс тела.

Оказывается, что если мы к основной системе сил, действующих на тело, добавим эквивалентную систему, в которой направления сил изменены на противоположные, то тело, под действием этих систем, будет находиться в равновесии. Таким образом, задача по определению эквивалентных систем сил сводится к задаче на равновесие, то есть к задаче статики.

Основной задачей статики является установление законов преобразования системы сил в эквивалентные системы. Таким образом, методы статики применяются не только при изучении тел, находящихся в равновесии, но и в динамике твердого тела, при преобразовании сил в более простые эквивалентные системы.

Статика материальной точки

Рассмотрим материальную точку, которая находится в равновесии. И пусть на нее действуют n сил  ,  k = 1, 2, …, n.

Если материальная точка находится в равновесии, то векторная сумма действующих на нее сил равна нулю:
(1)   .

В равновесии геометрическая сумма сил, действующих на точку, равна нулю.

Геометрическая интерпретация.

Если в конец первого вектора поместить начало второго вектора , а в конец второго вектора поместить начало третьего , и далее продолжать этот процесс, то конец последнего, n-го вектора окажется совмещенным с началом первого вектора. То есть мы получим замкнутую геометрическую фигуру, длины сторон которой равны модулям векторов . Если все векторы лежат в одной плоскости, то мы получим замкнутый многоугольник.

Часто бывает удобным выбрать прямоугольную систему координат Oxyz. Тогда суммы проекций всех векторов сил на оси координат равны нулю:

Если выбрать любое направление, задаваемое некоторым вектором , то сумма проекций векторов сил на это направление равна нулю:
.
Умножим уравнение (1) скалярно на вектор :
.
Здесь – скалярное произведение векторов  и  .
Заметим, что проекция вектора на направление вектора определяется по формуле:
.

Момент силы относительно точки

Определение момента силы

Моментом силы , приложенной к телу в точке A, относительно неподвижного центра O, называется вектор , равный векторному произведению векторов и :
(2)   .

Геометрическая интерпретация

Момент силы равен произведению силы F на плечо OH.

Пусть векторы  и  расположены в плоскости рисунка. Согласно свойству векторного произведения, вектор перпендикулярен векторам  и  , то есть перпендикулярен плоскости рисунка. Его направление определяется правилом правого винта. На рисунке вектор момента направлен на нас. Абсолютное значение момента:
.
Поскольку  , то
(3)   .

Используя геометрию, можно дать другую интерпретацию момента силы. Для этого проведем прямую AH через вектор силы  . Из цента O опустим перпендикуляр OH на эту прямую. Длину этого перпендикуляра называют плечом силы. Тогда
(4)   .
Поскольку , то формулы (3) и (4) эквивалентны.

Таким образом, абсолютное значение момента силы относительно центра O равно произведению силы на плечо этой силы относительно выбранного центра O.

При вычислении момента часто бывает удобным разложить силу на две составляющие:
,
где . Сила проходит через точку O. Поэтому ее момент равен нулю. Тогда
. Абсолютное значение момента:

.

Компоненты момента в прямоугольной системе координат

Если выбрать прямоугольную систему координат Oxyz с центром в точке O, то момент силы будет иметь следующие компоненты:
(5.1)   ;
(5.2)   ;
(5.3)   .
Здесь – координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Свойства момента силы относительно центра

Момент относительно центра O, от силы, проходящей через этот центр, равен нулю.

Если точку приложения силы переместить вдоль линии, проходящей через вектор силы, то момент, при таком перемещении, не изменится.

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке.

Если векторная сумма сил равна нулю:
, то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:

.

Пара сил

Пара сил – это две силы, равные по абсолютной величине и имеющие противоположные направления, приложенные к разным точкам тела.

Пара сил характеризуется моментом , который они создают.

Поскольку векторная сумма сил, входящих в пару равна нулю, то создаваемый парой момент не зависит от точки, относительно которой вычисляется момент.

С точки зрения статического равновесия, природа сил, входящих в пару, не имеет значения. Пару сил используют для того, чтобы указать, что на тело действует момент сил, имеющий определенное значение .

Момент силы относительно заданной оси

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Моментом силы относительно оси, проходящей через точку O – это проекция вектора момента силы, относительно точки O, на направление оси.

Свойства момента силы относительно оси

Момент относительно оси от силы, проходящей через эту ось равен нулю.

Момент относительно оси от силы, параллельной этой оси равен нулю.

Вычисление момента силы относительно оси

Момент силы относительно оси.

Пусть на тело, в точке A действует сила . Найдем момент этой силы относительно оси O′O′′.

Построим прямоугольную систему координат. Пусть ось Oz совпадает с O′O′′. Из точки A опустим перпендикуляр OH на O′O′′. Через точки O и A проводим ось Ox. Перпендикулярно Ox и Oz проводим ось Oy.

Разложим силу на составляющие вдоль осей системы координат:
.
Сила пересекает ось O′O′′. Поэтому ее момент равен нулю. Сила параллельна оси O′O′′. Поэтому ее момент также равен нулю. По формуле (5.

3) находим:
.

Заметим, что компонента направлена по касательной к окружности, центром которой является точка O. Направление вектора определяется правилом правого винта.

Условия равновесия твердого тела

В равновесии векторная сумма всех действующих на тело сил равна нулю и векторная сумма моментов этих сил относительно произвольного неподвижного центра равна нулю:
(6.1)   ;
(6.2)   .

Подчеркнем, что центр O, относительно которого вычисляются моменты сил можно выбирать произвольным образом. Точка O может, как принадлежать телу, так и находится за его пределами. Обычно центр O выбирают так, чтобы сделать вычисления более простыми.

Условия равновесия можно сформулировать и другим способом.

В равновесии сумма проекций сил на любое направление, задаваемое произвольным вектором , равна нулю:
.
Также равна нулю сумма моментов сил относительно произвольной оси O′O′′:
.

Иногда такие условия оказываются более удобными. Бывают случаи, когда за счет выбора осей, можно сделать вычисления более простыми.

Центр тяжести тела

Рассмотрим одну из важнейших сил – силу тяжести. Здесь силы не приложены в определенных точках тела, а непрерывно распределены по его объему. На каждый участок тела с бесконечно малым объемом ΔV, действует сила тяготения . Здесь ρ – плотность вещества тела, – ускорение свободного падения.

Пусть – масса бесконечно малого участка тела. И пусть точка Ak определяет положение этого участка. Найдем величины, относящиеся к силе тяжести, которые входят в уравнения равновесия (6).

Найдем сумму сил тяжести, образованную всеми участками тела:
,
где – масса тела. Таким образом, сумму сил тяжести отдельных бесконечно малых участков тела можно заменить одним вектором силы тяжести всего тела:
.

Найдем сумму моментов сил тяжести, относительно произвольным способом выбранного центра O:

.
Здесь мы ввели точку C, которая называется центром тяжести тела. Положение центра тяжести, в системе координат с центром в точке O, определяется по формуле:
(7)   .

Итак, при определении статического равновесия, сумму сил тяжести отдельных участков тела можно заменить равнодействующей
,
приложенной к центру масс тела C, положение которого определяется формулой (7).

Положение центра тяжести для различных геометрических фигур можно найти в соответствующих справочниках. Если тело имеет ось или плоскость симметрии, то центр тяжести расположен на этой оси или плоскости.

Так, центры тяжести сферы, окружности или круга находятся в центрах окружностей этих фигур.

Центры тяжести прямоугольного параллелепипеда, прямоугольника или квадрата также расположены в их центрах – в точках пересечения диагоналей.

Распределенная нагрузка

Равномерно (А) и линейно (Б) распределенная нагрузка.

Также встречаются подобные силе тяжести случаи, когда силы не приложены в определенных точках тела, а непрерывно распределены по его поверхности или объему. Такие силы называют распределенными силами или распределенными нагрузками.

Равномерно распределенная нагрузка q (рисунок А). Также, как и в случае с силой тяжести, ее можно заменить равнодействующей силой величины , приложенной в центре тяжести эпюры. Поскольку на рисунке А эпюра представляет собой прямоугольник, то центр тяжести эпюры находится в ее центре – точке C: |AC| = |CB|.

Линейно распределенная нагрузка q (рисунок В). Ее также можно заменить равнодействующей. Величина равнодействующей равна площади эпюры:
.
Точка приложения находится в центре тяжести эпюры. Центр тяжести треугольника, высотой h, находится на расстоянии от основания. Поэтому .

Силы трения

Трение скольжения. Пусть тело находится на плоской поверхности. И пусть – сила, перпендикулярная поверхности, с которой поверхность действует на тело (сила давления).

Тогда сила трения скольжения параллельна поверхности и направлена в сторону, препятствуя движению тела. Ее наибольшая величина равна:
,
где f – коэффициент трения.

Коэффициент трения является безразмерной величиной.

Трение качения. Пусть тело округлой формы катится или может катиться по поверхности. И пусть – сила давления, перпендикулярная поверхности, с которой поверхность действует на тело.

Тогда на тело, в точке соприкосновения с поверхностью, действует момент сил трения, препятствующий движению тела. Наибольшая величина момента трения равна:
,
где δ – коэффициент трения качения.

Он имеет размерность длины.

https://www.youtube.com/watch?v=9tFyPkeN-bE

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Источник: https://1cov-edu.ru/mehanika/statika/

Статика – FIZI4KA

Статика

ЕГЭ 2018 по физике ›

Статика – это раздел механики, изучающий условия равновесия тел.

Виды равновесия тел

  • Устойчивое равновесие – это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, возвращается в прежнее положение.
  • Неустойчивое равновесие – это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.
  • Безразличное равновесие – это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, не меняет своего положения.

Момент силы

Момент силы – это физическая величина, равная произведению модуля силы на ее плечо.

Обозначение – ​\( M \)​, единицы измерения – Н·м.

где ​\( d \)​ – плечо силы ​\( F \)​.

Плечо силы – это кратчайшее расстояние (перпендикуляр) от оси вращения до прямой, вдоль которой действует сила.
Обозначение – ​\( d \)​ или ​\( l \)​, единицы измерения – м.

Знак момента силы

Если сила, приложенная к телу, вращает его по часовой стрелке, то момент силы положителен (​\( M \)​ > 0):

Если сила, приложенная к телу, вращает его против часовой стрелки, то момент силы отрицателен (\( M \) < 0):

Момент силы равен нулю, если плечо силы, приложенной к телу, равно нулю.

Условия равновесия тел

Тело находится в равновесии, если

  1. векторная сумма всех сил, действующих на тело, равна нулю;
  2. алгебраическая сумма всех моментов сил, вращающих тело по часовой стрелке, равна алгебраической сумме моментов сил, вращающих его против часовой стрелки:

Центр тяжести – это точка внутри тела или вне его, относительно которой сумма моментов сил тяжести, действующих на отдельные его части, равна нулю.
Центр масс – геометрическая точка, положение которой характеризует распределение масс в теле:

Важно!
Для твердого тела центр тяжести совпадает с центром масс.

Простые механизмы

Простые механизмы – это приспособления, служащие для преобразования силы.

Рычаг – это простейшее механическое устройство, представляющее собой твердое тело (перекладину), вращающееся вокруг точки опоры.

Рычаг дает выигрыш в силе:

Блок — простое механическое устройство, представляющее собой колесо с желобом по окружности, вращающееся вокруг своей оси. Желоб предназначен для каната, цепи, ремня и т. п.
Блок бывает подвижный и неподвижный.

Неподвижный блок – это блок, ось которого закреплена.

Неподвижный блок не дает выигрыша в силе, он используется для изменения направления действия силы.

Подвижный блок – это блок, имеющий свободную ось.

Подвижный блок дает выигрыш в силе в 2 раза:

«Золотое правило» механики

При использовании простых механизмов во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, т. е. простые механизмы выигрыша в работе не дают.

Давление жидкости

Давление жидкости – это величина, равная произведению плотности жидкости на модуль ускорения свободного падения и на высоту столба жидкости.

где ​\( \rho \)​ – плотность жидкости,
​\( h \)​ – высота столба жидкости.

Сила давления жидкости – это сила, равная произведению давления жидкости на площадь поверхности:

Сообщающиеся сосуды

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости.

Закон сообщающихся сосудов:
в неподвижных и открытых сообщающихся сосудах любой формы давление жидкости на любом горизонтальном уровне одинаково.

Следствия из закона сообщающихся сосудов:

  • в неподвижных и открытых сообщающихся сосудах высоты столбов жидкостей, отсчитываемых от уровня, ниже которого жидкость однородна (уровня mn), обратно пропорциональны плотностям этих жидкостей:
  • в неподвижных и открытых сообщающихся сосудах однородная жидкость всегда устанавливается на одинаковом уровне независимо от формы сосудов.

Важно!
Давление, которое создает жидкость, находящаяся в равновесии при действии на нее силы тяжести, называют гидростатическим. Гидростатическое давление определяется формулой ​\( p=\rho gh \)​.
Давление внутри жидкости на любой глубине складывается из атмосферного давления, или внешнего давления на жидкость, и гидростатического давления:

где ​\( p_0 \)​ – атмосферное давление.

Закон Паскаля

Закон Паскаля
Давление, производимое на жидкость или газ, передается по всем направлениям одинаково.

Следствие из закона Паскаля — гидростатический парадокс: давление, производимое на дно сосуда, зависит только от высоты столба жидкости:

Сила давления жидкости на дно разная, т.к. она зависит от площади дна:

Гидравлический пресс – два сообщающихся сосуда, заполненные жидкостью и закрытые поршнями различной площади.
Гидравлический пресс дает выигрыш в силе, но проигрыш в длине пути поршня:

Силы, действующие на поршни гидравлического пресса, пропорциональны площадям этих поршней:

Атмосферное давление – это давление, которое оказывает атмосфера на все находящиеся в ней предметы.
Атмосферное давление уменьшается с увеличением высоты подъема над Землей.

Нормальное атмосферное давление: ​\( p_0 \)​ = 105 Па.

Приборы для измерения давления:

  • барометры – приборы, предназначенные для измерения атмосферного давления (ртутный барометр, барометр-анероид);
  • манометры – приборы, предназначенные для измерения давлений жидкостей и газов.

Закон Архимеда

Архимедова сила – это выталкивающая сила, действующая на тело, погруженное в жидкость или газ.

Причина возникновения выталкивающей силы – разница давлений жидкости или газа на верхнюю и нижнюю грани. Архимедова сила всегда направлена перпендикулярно поверхности жидкости.

Архимедова сила равна разности веса тела в воздухе и веса тела в жидкости или газе:

где ​\( P_1 \)​ – вес тела в воздухе,
​\( P_2 \)​ – вес тела в жидкости или газе.

Закон Архимеда
На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа, вытесненных телом:

Если тело полностью погружено в жидкость, то

где ​\( V_m \)​ – объем тела, погруженного в жидкость.

Если тело не полностью погружено в жидкость, то

где ​\( V_{чm} \)​ – объем части тела, погруженной в жидкость.

Условия плавания тел

На любое тело, погруженное в жидкость или газ, действуют две силы, направленные в противоположные стороны, – это сила тяжести и архимедова сила. Направление движения тела зависит от того, какая из этих сил больше по модулю.

Условия плавания тел

  • Тело плавает внутри жидкости:
  • Тело плавает на поверхности жидкости:

где ​\( V_1 \)​ – объем части тела, погруженной в жидкость.

Важно!
Выталкивающая сила действует на тела в жидкостях и газах, потому что сжаты силой притяжения к Земле. В состоянии невесомости эта сила не действует.

Основные формулы по теме «Статика»

Источник: https://fizi4ka.ru/egje-2018-po-fizike/statika.html

Статика и гидростатика. Теория и формулы для ЕГЭ + Шпаргалка

Статика

Условия рав­новесия  тела:

а) Поступательно движущееся тело на­ходится в состоянии равновесия (покоится или движется прямолинейно и равномерно),    если 

б) Вращающееся    тело,   имеющее   непо­движную ось вращения, находится в покое или равномерно вращается, если         М1 + М2 + М3 + … + MN = 0,  где М — момент силы —  произведение силы на её плечо.

Виды равновесия.

  1. Виды равновесия тела с закрепленной осью вращения:

а) если ось проходит через центр масс, то тело находится в безразличном равновесии при любом положении тела (а);

б) ось выше точки центра тяжести — ус­тойчивое равновесие (б);

в) ось ниже точки центра тяжести — неус­тойчивое равновесие( в).

  1. Виды равновесия тела, имеющего точ­ку опоры:

а) если равнодействующая всех сил направлена к положению равновесия, то тело нахо­дится в устойчивом положении (рис. а);

б)    если равнодействующая всех сил направлена от положения равновесия, то тело находится в неустойчивом  равновесии (рис. б);

в)    если Σ  = 0, — равновесие безразличное (рис. в).

  1. Виды равновесия тела, имеющего пло­щадь опоры.

Если вертикаль, проведенная через центр тяжести тела, пересекает площадь его опоры, то равновесие тела устойчивое. Если не пересекает, то тело падает, — равновесие не­устойчивое.

Простые механизмы и блоки

Простые механизмы — приспособления, которые служат для преобразования силы. К ним относятся:  рычаг (блок, ворот) и наклонная плоскость (клин, винт). Они применяются для получения выигрыша в силе.

F2/F1 – выигрыш в силе.      F1l1=F2l2 — условие равновесия рычага для двух сил.

Золотое правило механики: все простые механизмы, не дают выигрыша в работе — во сколько раз мы выигрываем в силе, во столько же раз мы проигрываем в расстоянии.

Гидростатика

Давление — скалярная физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности, к площади её поверхности.   

Гидростатическое давление — давление, обусловленное весом столба жидкости. Манометр — прибор для измерения давления в жидкости или газа. 

p = ρжgh   — давление на произвольной глубине несжимаемой жидкости            

F = pS = ρжghSдна  — сила давления на дно сосуда         

 На одном и том же уровне давление одинаково во всех направлениях.

Давление р на произвольной глубине h сжимаемой поршнем жидкости определяется давлением поршня и давлением столба жидкости           р = рпорш. + ρжgh

 Атмосферное давление – давление, которое производит воздушная оболочка Земли.

Опыт Торричелли (1634 г.) свидетельствует: атмосферное  давление  равно давлению столба ртути в трубке.

Нормальное атмосферное давление:  1 атм = 760 мм.рт.ст. = 1 01325 Па ≈ 105 Па (при 0ºС);     1 мм.рт.ст.=133,3 Па

Оно может изменяться от места к месту и во времени (циклоны и антициклоны) и убывает с увеличением высоты над уровнем моря (на каждые 12 м подъёма  оно уменьшается на 1 мм. рт. ст.).

Барометры — приборы для измерения атмосферного давления. Существуют 1) жидкостный;  2) барометр — анероид (металлический).

Закон Паскаля (1653 г.) —  жидкости и газы передают производимое на них давление во все стороны одинаково. 

Сообщающимися называются сосуды, соединённые между собой каналом с жидкостью.

Закон Архимеда: на тело, погруженное в покоящуюся жидкость (или газ), действует выталкивающая сила, направленная  вертикально верх и равная весу жидкости, вытесненной телом.

FA =ρжgVпчт                        FA = Рж,выт.= mж,выт g,

FA = Рвоз — Ржид.    Vпчт – объём погруженной части тела.    ρж — плотность жидкости или газа.

Условие плавания тел:

а) FA > mg, ρт > ρж — тело всплывает;  

б) FA < mg, ρт < ρж — тело тонет;      

в) FA = mg, ρт = ρж — тело находится в равновесии на любой глубине.  

Условие плавания тела на поверхности  FA = mg

Если тело будет плавать частично погрузившись в жидкость, то ρж/ρт=Vт/Vпчт

На этом основано применение ареометра- прибора для определения плотности жидкости.

Конспект урока «Статика и гидростатика. Теория и формулы для ЕГЭ» + шпаргалка.

Еще конспекты для 10-11 классов:

  • Молекулярно-кинетическая теория
  • Кинематика. Теория и формулы + Шпаргалка
  • Динамика. Теория и формулы + Шпаргалка
  • Законы сохранения. Работа и мощность. Теория, Формулы, Шпаргалка
  • Статика и гидростатика. Теория и формулы + Шпаргалка
  • Термодинамика. Теория, формулы, схемы
  • Электростатика. Теория и формулы + Шпаргалка
  • Постоянный ток. Теория, формулы, схемы
  • Магнитное поле. Теория, формулы, схемы
  • Электромагнитная индукция
  • Закон сохранения импульса. Задачи ЕГЭ с решениями
  • Колебания и волны. Задачи ЕГЭ с решениями
  • Физика 10 класс. Все формулы и темы
  • Физика 11 класс. Все формулы и определения
  • Световые кванты
  • ЕГЭ Квантовая физика. Задачи с решениями
  • Излучения и спектры
  • Атомная физика (физика атома)

Источник: https://uchitel.pro/%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-%D0%B8-%D0%B3%D0%B8%D0%B4%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/

Booksm
Добавить комментарий