Средняя скорость молекул

Идеальный газ. Средняя квадратичная скорость. урок. Физика 10 Класс

Средняя скорость молекул

Мы начинаем изучение молекулярно-кинетической теории (свойства тел с точки зрения их атомно-молекулярного строения). Тела находятся в жидком, твёрдом и газообразном состоянии.

На этом уроке мы рассмотрим наиболее простую модель, то есть описание свойств газов, так как в газах потенциальная энергия взаимодействия между молекулами настолько мала, что ею часто пренебрегают, превращая реальный газ в идеальный.

Идеальный газ – математическая модель газа, в которой предполагается, что:

а) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией;

б) суммарный объём молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель идеального газа вполне эффективно описывает окружающие нас газы (в частности, воздух).

Кинетической энергией (в отличие от потенциальной) молекул газа не пренебрегают. Кинетическая энергия – это энергия движения, то есть она зависит от скорости, поэтому рассмотрим скорости теплового движения молекул.

Несмотря на то что молекулы одного и того же газа являются одинаковыми, скорости у них разные. Этот факт экспериментально доказал французский физик Жан-Батист Перрен.

На рисунке 1 изображено распределение молекул по скоростям, так называемое распределение Максвелла. На нём видно, что существуют очень быстрые молекулы и очень медленные, но большинство молекул двигаются со средним значением скорости (выделено жёлтым).

Рис. 1. Распределение молекул воздуха по скоростям

Принято считать, что все молекулы идеального газа двигаются с одинаковой скоростью, которую назвали средней квадратичной.

Средняя квадратичная скорость – это скорость, равная корню квадратному из средней арифметической величины квадратов скоростей отдельных молекул; она несколько отличается от средней арифметической скорости молекул.

 ,

где , ,  – скорости отдельных молекул, N – количество молекул.

К чему приводит наличие скорости у молекул газа, можно увидеть из эксперимента, для которого понадобится песок (моделирует молекулы газа) и пластинка из бумаги (моделирует сосуд, в котором находится газ). При высыпании песка пластинка под давлением песчинок отклоняется (см. Рис. 2). Точно так же и молекулы газа оказывают давление на стенки сосуда, в котором они находятся.

Рис. 2. Отклонение пластинки под действием давления песка

Рассмотрим график зависимости давления газа на стенки сосуда от времени (см. Рис. 3). На нём видно, что если молекул было бы мало, то наблюдались бы отклонения, так как в какой-то момент в стенку могло бы ударить разное количество молекул, и это ощутимо поменяло бы давление. Но так как в реальности молекул огромное количество, то давление всё время остаётся постоянным.

Рис. 3. График зависимости давления газа на стенки сосуда от времени

Можно сделать вывод, что скорость – это величина, которая характеризует отдельную молекулу, а давление имеет смысл только для большого числа молекул (понятие «давление одной молекулы» совершенно бессмысленно).

Параметры, которые характеризуют каждую молекулу по отдельности, принято называть микропараметрами. К ним относятся:

а)  – скорость отдельной молекулы;

б)  – масса молекулы;

в)  – размеры молекулы;

г)  – импульс.

Параметры, которые характеризуют газ в целом, без детализации на отдельные молекулы, называют макропараметрами. К ним относятся:

а) p – давление;

б) n – концентрация (число частиц в единице объёма);

в) V – объём газа;

г)  – средняя квадратичная скорость;

д) T – температура.

Именно макропараметры измеряются измерительными приборами.

Модель идеального газа оказалась настолько универсальной, что физики применяют её не только для газов, подобных воздуху, но и для электронного газа в металле, для излучения электромагнитных волн и даже для звуковых колебаний в кристаллах. Теория идеального газа позволяет оценить давление и температуру внутри звёзд, результаты таких оценок близки к полученным строгими расчётами.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. – М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

Домашнее задание

  1. Идеальным газом называется…
  2. Объясните своими словами содержания понятия «идеальный газ».
  3. Какие макропараметры, характеризующие газ, Вы знаете?
  4. Что такое средняя квадратичная скорость?
  5. Каким ещё способом можно продемонстрировать наличие скорости у молекул газа?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-molekulyarno-kineticheskoy-teorii/idealnyy-gaz-srednyaya-kvadratichnaya-skorost

3.3. Характерные скорости молекул

Средняя скорость молекул

В этом разделе приводятся некоторые следствия, вытекающие из формул (3.29) и (3.30). В качестве примера на рис. 3.3 изображены две кривые, соответствующие распределениям f(v) молекул кислорода O2 по абсолютным величинам скоростей при температурах Т1 = 300 К и Т2 = 1 300 К.

Рис. 3.3. Распределение молекул кислорода по скоростям при разных температурах T1 = 300 К и T2 = 1 300 К

Наиболее вероятная скорость. При бесконечно малых и неограниченно больших значениях скоростей функция распределения стремится к нулю

то есть такие предельные значения скоростей маловероятны в системе. Следовательно, при каком-то значении скорости функция f(v) достигает своего максимума.

Наиболее вероятная скорость vВЕР — это скорость, отвечающая максимальному значению функции распределения.

Ее можно найти, решая уравнение

откуда следует, что

(3.31)

Иными словами, наиболее вероятной называется скорость, вблизи которой на единичный интервал приходится наибольшее число молекул. В этой точке f(v) принимает максимальное значение:

(3.32)

Соотношения (3.31), (3.32) могут быть полезны для анализа изменения функции распределения при изменении температуры газа или при изменении рода газа, то есть массы молекул. Отметим, что как следует из (3.26) – (3.

29), распределение Максвелла зависит не отдельно от массы молекул и отдельно от температуры газа, а от их отношения .

Поэтому распределение не только «буквенно» но и численно одно и тоже, например, для  молекулярного водорода    при температуре  и для гелия    при температуре .

С ростом температуры наиболее вероятная скорость vВЕР (3.31) увеличивается, то есть максимум функции f(v) сдвигается вправо (см. рис. 3.3), Т2 > Т1. При этом f(vВЕР) уменьшается, то есть кривая становится более пологой.

Так же деформируется кривая, если температура постоянна, но масса молекул уменьшается. Напомним, что при любых деформациях функции распределения f(v) площадь под кривыми постоянна и равна единице в соответствии с формулой (3.

30).

Относительное количество молекул, скорость которых превышает некоторое значение v0, определяется выражением

(3.33)

На графике (см. рис. 3.3) этому интегралу соответствует лежащая справа от v0 часть площади (отмечена штриховкой), ограниченная кривой f(v) и осью скоростей. Как видно из рис. 3.3, относительное количество молекул, имеющих скорости, превышающие v0, растет с повышением температуры.

В заключение этого раздела заметим, что во всех формулах для функции распределения и характерных скоростей входит отношение массы молекулы к постоянной Больцмана

Умножая числитель и знаменатель на число Авогадро NA и учитывая, что

— молярная масса газа, a

— универсальная газовая постоянная, мы всюду можем использовать это отношение в наиболее удобной для конкретной задачи форме

Распределение молекул по величинам безразмерной скорости. Если при графическом изображении функции распределения Максвелла (3.

29) по оси абсцисс откладывать скорости молекул v, то форма кривой и положение максимума будут зависеть от массы молекул и от температуры газа.

Но если по горизонтальной оси откладывать отношение скорости к наиболее вероятной скорости, то есть безразмерную скорость

то для всех температур и любых масс молекул (любых газов) получится одна и та же кривая (рис. 3.4).

Рис. 3.4.Распределение Максвелла по величинам безразмерной скорости

Сделав замену переменной

в (3.29) и учитывая, что

получим распределение Максвелла в форме

(3.34)

Эта формула и соответствующий ей график (см. рис. 3.4) удобны для решения многих задач.

Пример. Найдем, какая часть общего числа молекул кислорода имеет при температуре 27 °С скорости, отличающиеся от наиболее вероятной не более, чем на 1 %; а также скорости в интервале 562–572 м/с.

Произведем необходимые вычисления. Чтобы ответить на первый вопрос задачи, учтем, что u = 1 при v = vВЕР. Величина интервала du = 0,02. Следовательно,

Вычислим наиболее вероятную скорость:

Найдем отношение v = 562 м/с к vВЕР = 395 м/с

Определим по кривой (см. рис. 3.4) значение функции f(u) при u = 1,42. Получаем f(u) = 0,62. Ширина интервала Dv = 10 м/с (Du = 10/395 = 0,0253). Следовательно, доля молекул в этом интервале

Интересно отметить, что молекула кислорода проходит за секунду путь, равный в среднем 0,4 км. Но не нужно забывать о соударениях молекул.

Из-за них молекула по прямой движется очень недолго, и ее путь представляет собой ломаную линию.

Поэтому молекула, двигаясь с огромной скоростью по отдельным звеньям ломаной траектории, передвигается от слоя к слою газа со сравнительно небольшой скоростью.

Средняя арифметическая скорость. Знание функции распределения молекул по скоростям f(v) дает возможность найти среднее значение скорости, а также любой величины, являющейся функцией скорости, например квадрата скорости v2 или кинетической энергии молекулы mv2/2.

Средняя арифметическая скорость — это отношение суммы абсолютных величин скоростей всех молекул в системе к числу этих молекул.

Разобьем интервал всех возможных значений скорости от 0 до бесконечности на малые интервалы Dvi. Каждому интервалу соответствует количество молекул

(3.35)

Так как интервалы Dvi, малы, то можно приближенно считать скорости молекул данного интервала одинаковыми и равными vi. Сумма значений скоростей молекул интервала

(3.36)

Сумма значений скоростей всех молекул

(3.37)

Разделив эту сумму на число молекул, получим выражение для средней арифметической скорости

(3.38)

Переходя от суммы к интегралу, получаем

(3.39)

Вычисляя интеграл, получаем среднюю арифметическую скорость молекул

(3.40)

Среднеквадратичная скорость. Чтобы найти среднее значение произвольной функции L(v) скорости, нужно эту функцию умножить на функцию распределения и проинтегрировать по всем возможным значениям скорости:

(3.41)

В частности, при L(v) = v отсюда находится .

Среднее значение квадрата скорости равно отношению суммы квадратов скоростей всех молекул системы к общему числу молекул. Таким образом,

(3.41)

Среднеквадратичная скорость это корень квадратный из среднего значения квадрата скорости молекул

Следует отметить, что характерные скорости отличаются друг от друга лишь численными множителями, причем

(3.43)

а зависимость от Т и m0 (или m) у них одинаковая.

Через среднеквадратичную скорость выражается средняя кинетическая энергия поступательного движения молекул

(3.44)

Этот результат находится в согласии с формулой (1.14) кинетической теории идеальных газов и с законом о равнораспределении энергии, который гласит, что на каждую степень свободы молекулы приходится энергия kBТ/2.

Три степени свободы поступательного движения молекулы как раз соответствуют полученному здесь результату (3.44). В сущности, именно для того, чтобы получить такое соответствие, мы выбрали должным образом коэффициент α в (3.

26).

Эксперимент по проверке распределения Максвелла. Необходимо еще раз подчеркнуть, что установленный Максвеллом закон распределения молекул по скоростям и все вытекающие из него следствия справедливы только для газа, находящегося в равновесии.

Закон справедлив для любого числа молекул N, если только это число достаточно велико. Закон Максвелла — статистический, а законы статистики выполняются тем точнее, чем к большему числу одинаковых объектов они применяются. При малом числе объектов могут наблюдаться значительные отклонения от предсказанной статистики — флуктуации.

Экспериментальное определение распределения скоростей молекул было осуществлено впервые О. Штерном в 1920 г. Исследовалось распределение по скоростям одноатомных молекул паров металлов (Ag или Pt), из которых была изготовлена нить, расположенная на оси двух цилиндров. Нить нагревалась электрическим током, и металл испарялся (см. рис 3.5).

Рис. 3.5 Схема опыта Штерна: 1 — вид установки сбоку; 2 — вид установки сверху

Молекулы, прошедшие через щель во внутреннем цилиндре, летели по прямой и оседали на стенке холодного внешнего цилиндра.

Если привести всю установку во вращение (щель все время против точки В0), то молекулы, обладающие большой скоростью v, попадут в некоторую точку вблизи В0, а более медленные затратят на путь больше времени и попадут в точки, отстоящие дальше от В0.

Следует обратить внимание, что вылетающие молекулы движутся по прямой, они не участвуют во вращательном движении. Поскольку молекулы в зависимости от скорости попадают в разные точки внешнего цилиндра, то исследуя толщину слоя металла, осевшего на его стенку, можно составить представление о распределении молекул по скоростям.

Найдем распределение молекул по расстояниям S от точки В0 до места их попадания на стенку цилиндра. Если R и r — радиусы большого и малого цилиндров, соответственно (см. рис.), то время полета от щели до стенки цилиндра

За это время цилиндр повернется на угол

где ω — угловая скорость вращения установки. Соответственно, точка попадания будет смещена относительно В0 на расстояние

Подставляя сюда время полета, получаем связь скорости молекулы с расстоянием S:

Подставляя, в свою очередь, полученное выражение в распределение Максвелла и учитывая, что

находим распределение молекул по расстояниям S:

(мы опускаем выражение для нормировочной постоянной С).

Опыты Штерна подтвердили справедливость закона, установленного Максвеллом.

Источник: https://online.mephi.ru/courses/physics/molecular_physics/data/course/3/3.3.1.html

Booksm
Добавить комментарий