Спин электрона

Спин электрона. Часть 1 — Эксперимент Штерна-Герлаха

Спин электрона

Спин (spin – вращение) это наиболее простая вещь на которой можно продемонстрировать отличия квантовой механики от классической. Из определения кажется, что связан он с вращением, но не надо представлять себе электрон или протон вращающимися шариками.

Как и в случае многих других устоявшихся научных терминов было доказано что это не так, но терминология уже устоялась. Электрон – точечная частица (нулевого радиуса). А спин отвечает за магнитные свойства. Если электрически заряженная частица движется по кривой траектории (в том числе вращается), то образуется магнитное поле.

Электромагниты так работают – электроны движутся по проводам катушки. Но спин отличается от классического магнита. Вот неплохая анимация:

Если магнитики пропускать через неоднородное магнитное поле (обратите внимание на различную форму северного и южного полюсов магнита, задающего поле), то в зависимости от ориентации магнитика (его вектора магнитного момента) они будут притягиваться (отталкиваться) от полюса с большей концентрацией силовых линий магнитного поля (заостренный полюс магнита). В случае перпендикулярной ориентации магнитик вообще никуда не отклонится и попадет в центр экрана.

Пропуская электроны мы будем наблюдать только отклонение вверх или вниз на одно и то же расстояние. Это пример квантования (дискретности).

Спин электрона может принимать только одно из двух значений относительно заданной оси ориентации магнита – «вверх» или «вниз».

Поскольку электрон мысленно представить себе нельзя (у него нет ни цвета, ни формы, ни даже траектории движения), как и во всех подобных анимациях цветные шарики не отражают реальность, но суть думаю понятна.

Если электрон отклонился вверх, то говорят, что его спин направлен «вверх» (+1/2 условно обозначают) относительно оси магнита. Если вниз, то -1/2. И казалось бы спин можно описать обычным вектором, указывающим направление. У тех электронов, где он был направлен вверх, они и отклонятся вверх в магнитном поле, а у которых вниз – те соответственно вниз.

Но не все так просто! Электрон отклоняется вверх (вниз) на одно и тоже расстояние относительно любой ориентации магнита. На видео выше можно было бы менять не ориентацию пропускаемых магнитиков, а поворачивать сам магнит, создающий магнитное поле. Эффект в случае обычных магнитиков был бы тот же.

Что будет в случае электронов – в отличие от магнитиков они всегда будут отклонятся на одно и тоже расстояние вверх или вниз.

Если, например, пропустить вертикально расположенный классический магнитик через два перпендикулярно ориентированных друг относительно друга магнита, то отклоняясь вверх в первом, он не отклонится во втором вообще никак – его вектор магнитного момента будет перпендикулярен линиям магнитного поля. На видео выше это тот случай когда магнитик попадает в центр экрана. Электрон же обязан куда-нибудь отклонится.

Если мы будем пропускать через второй магнит только электроны со спином вверх, как на рисунке, то окажется что часть из них оказались еще и со спином вверх (вниз) относительно другой перпендикулярной оси. Вправо и влево фактически, но спин измеряют относительно выбранной оси, поэтому «вверх» и «вниз» общепринятая терминология вместе с указанием оси.

Вектор не может быть направлен сразу вверх и вправо. Делаем вывод, что спин – это не классический вектор, прикрепленный к электрону наподобие вектора магнитного момента магнитика.

Более того, зная, что спин электрона направлен вверх после прохождения первого магнита (отклоняющиеся вниз блокируем), невозможно предсказать куда он отклонится во втором случае: вправо или влево.

Ну и можно еще чуть-чуть усложнить эксперимент – блокировать электроны, отклонившиеся влево и пропустить через третий магнит, ориентированный как и первый.

И мы увидим, что электроны будут отклонятся как вверх, так и вниз. То есть электроны, попадающие во второй магнит все имели спин вверх относительно ориентации первого магнита, а потом часть из них стала вдруг со спином вниз относительно той же самой оси.

Странно! Если через такую конструкцию пропускать классические магнитики, повернутые под одним и тем же произвольно выбранным углом, то они всегда будут попадать в конце в одну и ту же точку экрана. Это называется детерминизмом.

Повторив эксперимент при полном соответствии начальных условий мы должны получить тот же результат. В этом заключается основа предсказательной силы науки. Даже наша интуиция основана на повторяемости результатов в схожих ситуациях.

В квантовой механике предсказать куда отклонится конкретно взятый электрон в общем случае невозможно. Хотя в некоторых ситуациях есть исключения: если поставить два магнита с одинаковой ориентацией, то если электрон отклонится вверх в первом, то он точно отклонится вверх и во втором.

А если магниты повернуты на 180 градусов друг относительно друга и в первом электрон отклонился, например, вниз, то во втором он точно отклонится вверх. И наоборот. Сам по себе спин не меняется. Это уже хорошо)

Какие из всего этого можно сделать общие выводы.

  1. Многие величины, которые могли принимать любые значения в классической механике, могут иметь только некоторые дискретные (квантованные) значения в квантовой теории. Помимо спина энергия электронов в атомах является ярким примером.
  2. Объектам микромира нельзя приписать никакие классические характеристики до момента измерения. Нельзя полагать, что спин имел какое-то определенное направление до того как мы посмотрели куда отклонился электрон. Это общее положение и оно касается всех измеряемых величин: координат, скорости и т.п. Квантовая механика субъективна. Она утверждает, что объективный, не зависимый ни от кого классический мир, просто не существует.  Теорема Белла наиболее наглядно демонстрирует данный факт. Роль субъекта (наблюдателя) в квантовой механике чрезвычайно важна.
  3. Процесс измерения затирает (делает неактуальной) информацию о предыдущем измерении. Если спин оказался направлен вверх относительно оси y, то неважно, что раньше он был направлен вверх относительно оси x, он может оказаться и спином вниз относительно той же самой оси x впоследствии. Опять же данное обстоятельство касается не только спина. Например, если электрон обнаружен в точке с координатами (x, y, z) это в общем случае не значит, что он был в этой точке до этого. Данный факт известен под названием «коллапс волновой функции».
  4. Есть такие физические величины значения которых невозможно знать одновременно. Например, нельзя измерить спин относительно оси x и одновременно относительно перпендикулярной ей оси y. Если мы попытаемся сделать это одновременно, то магнитные поля двух повернутых магнитов наложатся и мы вместо двух разных осей получим одну новую и измерим спин относительно нее. Последовательно измерять тоже не удастся вследствие предыдуще изложенного вывода №3. Это тоже общий принцип. Например, координату и импульс (скорость) тоже нельзя измерить одновременно с большой точностью — знаменитый принцип неопределенности Гейзенберга.
  5. Предсказать результат единичного измерения невозможно в принципе. Квантовая механика позволяет лишь вычислять вероятности того или иного события. Например, можно посчитать, что в опыте на первой картинке при ориентации магнитов 90° друг к другу 50% отклонится влево и 50% вправо. Предсказать куда отклонится конкретно взятый электрон нельзя. Данное общее обстоятельство известно как «правило Борна» и является центральным в Копенгагенской интерпретации.
  6. Детерминированные классические законы выводятся из вероятностных квантовомеханических за счет того, что в макроскопическом объекте очень много частиц и вероятностные флуктуации усредняются. Например, если в опыте на первой картинке пропускать вертикально ориентированный классический магнитик, то 50% составляющих его частиц будут «тянуть» его вправо, а 50% влево. В итоге он никуда не отклонится. При других ориентациях углов магнита меняется процентное соотношение, что в итоге и влияет на отклоняемое расстояние. Квантовая механика позволяет рассчитать конкретные вероятности и как следствие из нее можно вывести формулу для отклоняемого расстояния в зависимости от угла ориентации магнитика, получаемую обычно из классической электродинамики. Так классическая физика выводится и является следствием квантовой.

Да, описанные действия с магнитиками называются эксперимент Штерна-Герлаха.

Существует видеоверсия данного поста в части 2  и части 3 элементарного введения в квантовую механику.

Вторая статья цикла про спин электрона: Электроны в магнитном поле.

Источник: http://LightCone.ru/spin-1/

Спин электрона

Спин электрона

Определение 1

Спин электрона (и других микрочастиц) — это квантовая величина, у которой нет классического аналога. Это внутреннее свойство электрона, которое можно уподобить заряду или массе. Понятие спина было предложено американскими физиками Д.

Уленбеком и С. Гаудсмитом для того, чтобы объяснить существование тонкой структуры спектральных линий.

Ученые предположили, что электрон имеет собственный механический момент импульса, который не связан с движением электронам в пространстве который был назван спином.

Если считать, что электрон имеет спин (собственный механический момент импульса (${\overrightarrow{L}}_s$)), то значит должен иметь собственный магнитный момент (${\overrightarrow{p}}_{ms}$). В соответствии с общими выводами квантовой физики спин квантуется как:

где $s$ — спиновое квантовое число. Проводя аналогию с механическим моментом импульса, проекция спина ($L_{sz}$) квантуется таким образом, что число ориентаций вектора ${\overrightarrow{L}}_s$ равно $2s+1.$ В опытах Штерна и Герлаха ученые наблюдали две ориентации, то $2s+1=2$, следовательно, $s=\frac{1}{2}$.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

При этом проекция спина на направление внешнего магнитного поля определена формулой:

где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число.

Получилось, что экспериментальные данные привели к необходимости введения дополнительной внутренней степени свободы. Для полного описания состояния электрона в атоме необходимы: главное, орбитальное, магнитное и спиновое квантовые числа.

Позднее Дирак показал, что наличие спина следует из полученного им релятивистского волнового уравнения.

Атомы первой валентной группы периодической системы имеют валентный электрон, находящийся в состоянии с $l=0$. При этом момент импульса всего атома равен спину валентного электрона. Поэтому когда обнаружили для подобных атомов, пространственное квантование момента импульса атома в магнитном поле это стало доказательством существования спина только двух ориентаций во внешнем поле.

Спиновое квантовое число, отличаясь от других квантовых чисел, является дробным. Количественную величину спина электрона можно найти в соответствии с формулой (1):

Для электрона имеем:

Иногда говорят, что спин электрона ориентирован по направлению или против направления напряженности магнитного поля. Такое высказывание является неточным. Так как при этом на самом деле имеется в виду направление его составляющей $L_{sz}.$

Из опытов Штерна и Герлаха получено, что $p_{ms_z}$ (проекция собственного магнитного момента электрона) равна:

где ${\mu }_B$ — магнетон Бора.

Найдем отношение проекций $L_{sz}$ и $p_{ms_z}$, применяя формулы (4) и (5), имеем:

Выражение (6) называют спиновым гиромагнитным отношением. Оно в два раза превышает орбитальное гиромагнитное отношение. В векторной записи гиромагнитное отношение записывают как:

Опыты Эйнштейна и де Гааза определили спиновое гиромагнитное отношение для ферромагнетиков. Это дало возможность определить спиновую природу магнитных свойств ферромагнетиков и получить теорию ферромагнетизма.

Пример 1

Задание: Найдите численные значения: 1) собственного механического момента импульса (спина) электрона, 2) проекции спина электрона на направление внешнего магнитного поля.

Решение:

  1. В качестве основания для решения задачи используем выражение:

    \[L_s=\hbar \sqrt{s\left(s+1\right)}\left(1.1\right),\]

    где $s=\frac{1}{2}$. Зная величину $\hbar =1,05\cdot {10}{-34}Дж\cdot с$, проведем вычисления:

    \[L_s=\hbar \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)}=1,05\cdot {10}{-34}\frac{\sqrt{3}}{2}=9,09\cdot {10}{-35}\left(Дж\cdot с\right).\]

  2. В качестве основы для решения задачи используем формулу:

    \[L_{sz}=\hbar m_s\left(2\right),\]

    где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число. Следовательно, можно провести вычисления:

    \[L_{sz}=\pm \frac{1}{2}\cdot 1,05\cdot {10}{-34}=\pm 5,25\cdot {10}{-35}\left(Дж\cdot с\right).\]

Ответ: $L_s=9,09\cdot {10}{-35}{\rm Дж}\cdot {\rm с},\ L_{sz}=\pm 5,25\cdot {10}{-35}Дж\cdot с.$

Пример 2

Задание: Каков спиновый магнитный момент электрона ($p_{ms}$) и его проекция ($p_{ms_z}$) на направление внешнего поля?

Решение:

Спиновый магнитный момент электрона может быть определен из гиромагнитного соотношения как:

\[p_{ms}=\frac{q_e}{m_e}L_s\left(2.1\right).\]

Собственный механический момента импульса (спина) электрона можно найти как:

\[L_s=\hbar \sqrt{s\left(s+1\right)}\left(2.2\right),\]

где $s=\frac{1}{2}$.

Подставим выражение для спина электрона в формулу (2.1), имеем:

\[p_{ms}=\frac{q_e}{m_e}\hbar \sqrt{s\left(s+1\right)}\left(2.3\right).\]

Используем известные для электрона величины:

\[m_e=9,1\cdot {10}{-31}кг,\ q_e=1,6\cdot {10}{-19}Кл.\]

поведем вычисление магнитного момента:

\[p_{ms}=\frac{1,6\cdot {10}{-19}}{9,1\cdot {10}{-31}}9,09\cdot {10}{-35}=1,6\cdot {10}{-23}\left(A\cdot м2\right).\]

Из опытов Штерна и Герлаха получено, что $p_{ms_z}$ (проекция собственного магнитного момента электрона) равна:

\[p_{ms_z}=\frac{q_e\hbar }{2m_e}\left(2.4\right).\]

Вычислим $p_{ms_z}$ для электрона:

\[p_{ms_z}=\frac{1,6\cdot {10}{-19}\cdot 1,05\cdot {10}{-34}}{2\cdot 9,1\cdot {10}{-31}}=9,27\cdot {10}{-24}\left(A\cdot м2\right).\]

Ответ: $p_{ms}=1,6\cdot {10}{-23}A\cdot м2,\ p_{ms_z}=9,27\cdot {10}{-24}A\cdot м2.$

Источник: https://spravochnick.ru/fizika/predmet_i_zadachi_atomnoy_fiziki/spin_elektrona/

Спин электрона. Опыт Штерна и Герлаха

Спин электрона

       В 1922 году немецкие физики О. Штерн и В. Герлах поставили опыты, целью которых было измерение магнитных моментов Pm атомов различных химических элементов. Для химических элементов, образующих первую группу таблицы Менделеева и имеющих один валентный электрон, магнитный момент атома равен магнитному моменту валентного электрона, т.е. одного электрона.

       Идея опыта заключалась в измерении силы, действующей на атом в сильно неоднородном магнитном поле. Неоднородность магнитного поля должна быть такова, чтобы она сказывалась на расстояниях порядка размера атома. Только при этом можно было получить силу, действующую на каждый атом в отдельности.

       Схема опыта изображена на рис. 7.9. В колбе с вакуумом, 10–5 мм рт. ст., нагревался серебряный шарик К, до температуры испарения.

Рис. 7.9 Рис. 7.10

       Атомы серебра летели с тепловой скоростью около 100 м/с через щелевые диафрагмы В и, проходя резко неоднородное магнитное поле, попадали на фотопластинку А.

       Если бы момент импульса атома (и его магнитный момент ) мог принимать произвольные ориентации в пространстве (т.е.

в магнитном поле), то можно было ожидать непрерывного распределения попаданий атомов серебра на фотопластинку с большой плотностью попаданий в середине.

Но на опыте были получены совершенно неожиданные результаты: на фотопластинке получились две резкие полосы – все атомы отклонялись в магнитном поле двояким образом, соответствующим лишь двум возможным ориентациям магнитного момента (рис. 7.10).

       Этим доказывался квантовый характер магнитных моментов электронов. Количественный анализ показал, что проекция магнитного момента электрона равна магнетону Бора:

.

       Таким образом, для атомов серебра Штерн и Герлах получили, что проекция магнитного момента атома (электрона) на направление магнитного поля численно равна магнетону Бора.

       Напомним, что

.

       Опыты Штерна и Герлаха не только подтвердили пространственное квантование моментов импульсов в магнитном поле, но и дали экспериментальное подтверждение тому, что магнитные моменты электронов тоже состоят из некоторого числа «элементарных моментов», т.е. имеют дискретную природу. Единицей измерения магнитных моментов электронов и атомов является магнетон Бора (ħ – единица измерения механического момента импульса).

       Кроме того, в этих опытах было обнаружено новое явление. Валентный электрон в основном состоянии атома серебра имеет орбитальное квантовое число l = 0 (sсостояние).

Но при l = 0 (проекция момента импульса на направление внешнего поля равна нулю).

Возник вопрос, пространственное квантование какого момента импульса обнаружилось в этих опытах и проекция какого магнитного момента равна магнетону Бора.

       В 1925 г. студенты Геттингенского университета Гаудсмит и Уленбек предположили существование собственного механического момента импульса у электрона (спина) и, соответственно, собственного магнитного момента электронаPms.

       Введение понятия спина сразу объяснило ряд затруднений, имевшихся к тому времени в квантовой механике. И в первую очередь – результатов опытов Штерна и Герлаха.

       Авторы дали такое толкование спина: электрон – вращающийся волчок. Но тогда следует, что «поверхность» волчка (электрона) должна вращаться с линейной скоростью, равной 300 с, где с – скорость света. От такого толкования спина пришлось отказаться.

       В современном представлении – спин, как заряд и масса, есть свойство электрона.

       П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.

       Из общих выводов квантовой механики следует, что спин должен быть квантован: , где sспиновое квантовое число.

       Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.

       Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: , а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.

       Для атомов первой группы, валентный электрон которых находится в sсостоянии (l = 0), момент импульса атома равен спину валентного электрона.

Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двухориентаций во внешнем поле.

(Опыты с электронами в pсостоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).

       Численное значение спинаэлектрона:

.

       По аналогии с пространственным квантованием орбитального момента проекция спина квантуется (аналогично, как , то и ). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:

,

       где – магнитное спиновое квантовое число, , т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.

       Итак, проекцияспинового механического момента импульса на направление внешнего магнитного поля может принимать два значения:

.(7.4.1)

       Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две ориентации, имеем в виду две проекции.

       Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:

.

       Отношение – спиновое гиромагнитное отношение.

       Для просмотра демонстраций щелкните по соответствующей гиперссылке:
       Возбужденное состояние атома.      Вынужденное излучение атома.      Спонтанное излучение атома.
       Тормозное рентгеновское излучение.

Источник: http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F%20%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0.%20%D0%90%D1%82%D0%BE%D0%BC%D0%BD%D0%B0%D1%8F%20%D0%B8%20%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D0%B0%D1%8F%20%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0.%20%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0%20%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D1%8B%D1%85%20%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86/07-4.htm

#чтиво | Что такое спин?

Спин электрона

После того, как мы выяснили, что такое абсолютный ноль и можно ли восстановить информацию о том, что ела черная дыра, на повестке дня появился еще один интересный вопрос. Вопрос сложный, поскольку лежит в области квантовой физики. Звучит он примерно так:

«Что, черт возьми, такое спин?»

Что еще за спин?

Если вы думаете, что экспрессия была лишней, вы ошибаетесь. Спин — одна из тех странных вещей в квантовой механике, пытаясь понять которые, вы думаете, что интуиция и личный жизненный опыт вам помогут. Но это не так. Напротив, ваша интуиция более вероятно упадет на колени перед вами. Попробуйте не доверять ей.

Начнем с того, что у всех частиц есть фундаментальный спин. Спин — «ось» от английского spin. Так же, как электрический заряд или масса, спин помогает определить тип частицы.

Некоторые частицы, вроде электронов, позитронов и кварков (протоны и нейтроны состоят из кварков, также фундаментальных частиц Стандартной модели), обладают спином ½. Они известны как «фермионы». Другие, фотоны, глюоны, а также W- и Z-частицы, обладают спином 1. Они известны как «бозоны». Очевидно, фермионы и бозоны ведут себя по-разному.

Если все это время вы согласно кивали, тонкий голосок у вас в голове, наверное, говорил что-то типа «полспина чего?». Стоит отметить, к внутреннему голосу по-хорошему нужно прислушиваться, поэтому давайте поговорим о том, как работает спин электрона.

Это как маленький гироскоп, но не совсем.

Почему электроны? Потому что если вы поймете, что такое спин электрона, все остальное будет простым. Попробуйте представить, что электрон — это маленький гироскоп. Он вращается и вертится без остановки. Вне зависимости от того, что вы делаете с ним, вы не можете замедлить или ускорить вращение электрона; вы просто можете изменить его положение.

Что бы вы ни делали, у электрона всегда будет спин ½. Но ½ чего? Числа, известного как «приведенная постоянная Планка». Это очень маленькое число. Очень.

Вот вам первый странный факт. Обычно вы можете замедлить вращающееся тело. Супермен смог остановить вращение Земли, например.

С другой стороны, мы имеем дело с маленьким вращающимся гироскопом. Угловой момент — это одна из тех постоянных величин, которые сводят с ума физиков. При изменении направления спина электрона, угловой момент передается куда угодно — от орбиты до другого электрона.

Поскольку у электрона есть заряд, и поскольку он «вращается по оси», он создает небольшое магнитное поле. Так работает любой электромагнит. Мы можем обнаружить магнитное поле электрона или отклонить отдельные электроны, используя другие магниты, чтобы выяснить, в каком направлении вращается электрон. Но…

Магнитное поле работает совсем не так.

Возьмите маленький заряженный шарик и закрутите его вокруг оси. Вы создадите магнит. Вне зависимости от того, насколько велик или мал шар, оказывается, что магнитное поле будет точно предсказано кратным угловым моментом. Есть куча констант, связанных с зарядом и массой шарика, но не с размером.

Проблема в том, что если представить электрон таким же образом, описанная выше процедура не прокатит вообще. Магнитное поле будет в два раза больше. Точнее, в 2,0023193044 раза. Это число измерено с безумным уровнем точности и вычислено теоретически. В игру вступает эта чертова «квантовая теория поля», потому что мы можем сделать несколько точных предсказаний.

Странный факт номер два: вы не можете, не имеете права думать об электроне, как о маленькой микроскопической заряженной сфере. Просто получатся неправильные цифры.

Спин электрона предопределяет случайность.

Хотя у электронов есть фиксированный спин, вы можете предположить, что компоненты спина в определенном направлении могут принимать любое старое значение, которое нам нравится. Подумайте об этом в следующем примере.

Допустим, у меня была метровая палка (длиной в 1 метр), одним концом воткнутая в землю под углом. Вы можете измерить высоту от верхнего конца до земли, и в зависимости от угла, получите значение между 0 и 1 метром.

Вы знаете, что Земля вращается, но если вы когда-нибудь видели глобус, вы в курсе, что он наклонен где-то под углом 23 с половиной градуса по отношению к плоскости орбиты. Другими словами, если вы измерите «ось» (или спин) Земли сверху донизу, вы получите меньше, чем полную длину оси. Ось представляется немного расшатанной из стороны в сторону.

С электронами такое не работает.

Если вы создали небольшое магнитное поле, чтобы различить их, вы выясните, что отдельный электрон в 100 % случаев вертится вверх и в 100 % случаев вертится вниз, в зависимости от случая, и никогда — между.

Что более странно, не имеет значения, как вы будете настраивать свою измерительную аппаратуру, вы всегда придете к одному и тому же начальному результату: либо одна сторона, либо другая, третьего не дано.

И здесь у нас рождается третий странный факт. Предположим, вы измеряете электрон и выясняете, что он обладает верхним спином. После вы пытаетесь измерить спин слева-направо. Здравый смысл подскажет вам, что число будет равно нулю, так как вы знаете, что электрон вертится снизу вверх, а не слева направо.

Но как мы отмечали выше, здравый смысл вам не поможет. Выясняется, что: а) в половине случаев, когда вы измеряете электрон, он будет «слева», в половине — «справа», и б) право и лево определяется абсолютной случайностью. Правда. Ничто во вселенной не сможет сказать вам, какую сторону выберет электрон.

Такого рода случайность сильно огорчала Эйнштейна (вспомните его высказывание о том, что Бог не играет в кости).

Вам нужно дважды повернуть электрон, чтобы он выглядел, «как прежде»

В прошлом мы часто говорили о волновой функции частиц.

Квадрат волновой функции подскажет вам вероятность нахождения частицы в определенном месте в определенное время.

Что примечательно в электроне (и во всех частицах со спином ½), так это то, что если вы повернете всю вселенную на 360 градусов, у волновой функции появится знак минуса в начале.

Это четвертый странный факт. Вам нужно дважды повернуть электрон вокруг оси, и он будет выглядеть так же, как и в начале.

Казалось бы, ничего странного. В конце концов, чего переживать о волновой функции, если знак минуса ничего не делает. -2 в квадрате = 2 в квадрате.

Тот же эффект возникнет, если вы представите, будто подменяете один электрон другим. Ничего не меняется, только появляется знак минус перед всей волновой функцией. Кажется незначительным, пока вы не поймете, что…

Знак минус — это то, что делает вас возможным.

Представьте два электрона со спинами в одном направлении, один и другой — наверх (эксперты также должны понять, что у двух электронов один и тот же импульс).

Теперь поменяем их местами. Для нас ничего не изменилось, но в квантовой механике вся вселенная погрузилась в хаос.

Волновая функция вроде бы не изменилась, поскольку никаких существенных отличий одного электрона от другого нет, но так или иначе, мы ставим знак минус в начале.

Еще раз: ничего не меняется, но умножается на -1. Единственное число, с которым это работает, это 0. Другими словами, нулевая волновая функция равна нулевой вероятности, или отсутствию шансов вообще.

Другой способ сказать это: электроны (и все фермионы: кварки, позитроны, нейтрино и т.д.) не могут находиться в одном и том же месте с одним и тем же спином. Это знаменитый «запрет Паули».

Он предсказывает, что электроны в атомах не могут быть в одном и том же состоянии, но вместе этого занимают разные орбитали.

Если бы все было не так, электроны занимали бы самые низкие уровни, и элементы вели бы себя скучновато, как водород. Скучно и не способствует зарождению жизни.

Бозоны, другой тип частиц, не работают по этому принципу. Поменяйте местами два бозона, и ничего не изменится. Поверните бозон единожды, и все вернется в нормальное русло. У них спин равен одному, что означает только то, что они ведут себя точно так, как вы ожидаете.

Но таковы лишь бозоны, обнаруженные на сегодняшний день. У бозона Хиггса (если он существует) спин 0, у гравитона (если он существует) спин 2, но мы пока можем о них не говорить. Бозоны могут находиться в одном месте и обладать одним и тем же спином.

Вот почему мы можем получить конденсат Бозе-Эйнштейна, который представляет собой кучу бозонов в одном состоянии.

«Фишка» не в том, что спин — странная штука, хотя с этим никто не спорит. «Фишка» в том, что спин лежит в центре куда более серьезных и фундаментальных вещей, в основе их работы, чем вы можете подозревать.

Источник: https://Hi-News.ru/research-development/chtivo-chto-takoe-spin.html

5.4. Спин электрона и тонкая структура спектров

Спин электрона

Дальнейшее исследование атомных спектров показало, что многие спектральные линии имеют два близких компонента. Так, еще в 1887 г. А. Майкельсон обнаружил расщепление — линии серии Бальмера в водороде, порождаемой переходом

Она оказалась состоящей из двух линий со средней длиной волны 6 563 Å.

Ангстрем (Å) — используемая в атомной физике внесистемная единица длины

1 Å=10-10мм. 

Рис. 5.9. Альберт Абрахам Майкельсон 1852–1931

Разность длин волн равна 0.14 Å (то есть относительная величина расщепления порядка 10–5 ). Были обнаружены и линии, расщепленные на 3, 4 и более компонентов. Расщепление линий, как мы теперь понимаем, означает расщепление энергетических уровней атома: у них появляется, как говорят, тонкая структура.

Значит, существует неучтенное взаимодействие. Мы говорили, что расщепление линий возникает, например, когда наложенное внешнее поле нарушает симметрию системы. А здесь неучтенное взаимодействие проявляется в отсутствие внешних полей, то есть оно должно быть связано с какими-то внутренними свойствами атома.

Оказалось, что это действительно проявление внутренних свойств, но не атома в целом, а электрона. В 1925 г. С. Гаудсмит и Дж.

 Уленбек выдвинули гипотезу спина электрона: они предположили существование у электрона собственного момента импульса, не связанного с орбитальным движением. Сначала спин представляли себе как верчение (англ.

spin) электрона вокруг собственной оси (аналог суточного вращения Земли). Потом осознали, что «верчение» нельзя понимать буквально: численные оценки давали линейную скорость верчения, превышающую скорость света в вакууме.

Рис. 5.10. Сэмюэл Абрахам Гаудсмит 1902–1978

Рис. 5.11. Джо́рдж Ю́джин Уленбе́к 1900–1988

Под спином понимается собственный момент количества движения электрона как его врожденное квантовое свойство

Его существование остается загадкой, если находиться только в рамках квантовой механики Гейзенберга — Шредингера. Естественное объяснение спин получил только в релятивистской квантовой теории П. Дирака, соединившей теорию относительности с квантовой механикой.

Рис. 5.12. Поль Адриен Морис Дира́к, 1902–1984

Из опытов следовало, что электрону надо приписать спиновое квантовое число s = 1/2, имеющее те же свойства (см. формулу (5.5)), что и квантовое число l. Принято для краткости спиновое квантовое число называть спином. В дальнейшем мы тоже будем использовать эту, общепринятую терминологию.

Соответственно, существует единственное собственное значение оператора квадрата спина

а проекция спина на какую-то ось (пробегая через единицу ħ все значения от максимального до минимального) записывается в виде

где  принимает лишь два значения

Число  называют магнитным спиновым квантовым числом.

Откуда же взялось расщепление спектральных линий? Попытаемся понять это с помощью полуклассических рассуждений. В классической физике любое вращение электрического заряда создает магнитное поле. Вращающийся по орбите радиусом R классический электрон можно представить как виток с током силой l, охватывающий площадь , то есть как магнитный диполь с магнитным моментом

(Эту формулу знал еще Ш. Кулон).

Рис. 5.13. Модель спина и магнитного момента электрона в рамках классической физики

Классическая оценка: электрон на орбите радиусом R и скоростью v имеет период обращения

Возьмем какую-нибудь точку на орбите. За время T через нее проходит заряд е, то есть сила тока по определению равна

Кроме того, электрон имеет орбитальный момент

так что ток можно выразить через орбитальный момент, исключив скорость электрона:

Тогда орбитальный магнитный момент, создаваемый электроном, равен

Рис. 5.14. Классическая модель электрона на круговой орбите

Заменим теперь в соответствии с правилами квантования

и получим выражение для орбитального магнитного момента, которое может быть выведено и более строго:

(5.11)

Отсюда следуют выводы:

· Естественная единица для магнитных моментов в микромире — так называемый магнетон Бора

(5.12)

· Проекция магнитного момента на любую ось всегда должна быть целым кратным магнетона Бора:

(Теперь понятно, почему квантовое число n названо магнитным.)

· Отношение орбитального магнитного момента электрона к его орбитальному моменту импульса, называемое гиромагнитным отношением, равно

Эксперименты показали, что спин электрона обладает двойным магнетизмом: собственный магнитный момент электрона, связанный со спином, равен

то есть гиромагнитное отношение для него оказалось в два раза большим . Это — лишнее доказательство того, что электрон нельзя представлять себе как заряженный шарик, вращающийся вокруг собственной оси: в таком случае должно было бы получиться обычное гиромагнитное отношение. Для проекции собственного магнитного момента имеем

и поскольку

то

В итоге для проекции спинового магнитного момента снова получились целые кратные магнетона Бора, как и для орбитального движения. По какой-то причине природа предпочитает иметь дело с целым магнетоном Бора, а не с его частями. Поэтому полуцелое значение собственного момента количества движения она компенсирует двойным гиромагнитным отношением.

Рис. 5.15. Иллюстрация орбитального и спинового моментов электрона

Теперь можно понять, почему наличие у электрона собственного магнитного момента приводит к появлению какого-то неучтенного до сих пор взаимодействия. Для этого опять перейдем на полуклассический язык.

Орбитальное движение электрона создает магнитное поле, которое действует на собственный магнитный момент электрона. Подобным образом магнитное поле Земли воздействует на стрелку компаса.

Энергия этого взаимодействия сдвигает энергетические уровни атома, причем величина сдвига зависит, вообще говоря, от спинового и орбитального моментов количества движения.

Важный вывод:

Взаимодействие спинового и орбитального магнитных моментов приводит к снятию вырождения и к расщеплению спектральных линий. 

Пример 1. Оценим расщепление уровней энергии вследствие взаимодействия спинового и орбитального магнитного моментов электрона в атоме водорода.

Круговой виток радиусом R с током силой I порождает в центре магнитное поле

В этой главе было показано, что вращающийся по орбите электрон можно представить как виток с током

Здесь для оценки мы положили

Тогда получаем для магнитного поля, создаваемого орбитальным движением электрона в атоме, величину порядка

Энергия взаимодействия собственного магнитного момента электрона с этим магнитным полем равна по порядку величины

Для оценки положим R равным боровскому радиусу первой орбиты . Подставляя сюда выражения для  и  и учитывая, что

получаем оценку сдвига энергетических уровней

(5.13)

где  — введенная выше (см. (3.3)) постоянная тонкой структуры. Энергия первого уровня атома водорода, как известно, равна

так что (3.13) можно переписать как

Поскольку

a E = 13 6эВ, то

а относительный сдвиг уровней

что соответствует экспериментальным данным.

Это и есть оценка (не расчет) искомого расщепления уровней. В сущности, расщепление уровней — это релятивистский эффект: по Бору скорость электрона на первой орбите

и

Поэтому не удивительно, что до конца свойства спина могут быть поняты только в релятивистской квантовой теории. Мы не ставим себе такую задачу, но просто будем учитывать наличие у электрона этого удивительного свойства.

Экспериментальное доказательство существования спина электрона было дано в опыте Штерна — Герлаха в 1922 г. Идея опыта состоит в том, что в магнитном поле, неоднородном по оси z, на электроны действует смещающая сила, направленная вдоль поля.

Происхождение этой силы проще уяснить сначала на примере электрического диполя, помещенного в электрическое поле. Электрический диполь представляет собой пару противоположных зарядов , расположенных на малом расстоянии l друг от друга.

Величина электрического дипольного момента определяется как

причем вектор l считается направленным от отрицательного заряда к положительному.

Пусть положительный заряд находится в точке r, а отрицательный — в точке , так что

Пусть диполь помещен в электрическое поле с напряженностью . Найдем силу, действующую на диполь. На положительный заряд действует сила

на отрицательный —

Результирующая сила будет

Так как расстояние между зарядами мало, то поле в точке расположения отрицательного заряда можно приближенно записать как

Подставляя это разложение в выражение для силы F, находим

(5.14)

Если поле однородно (Е не зависит от ), то на заряды диполя действуют равные и противоположно направленные силы и результирующая сила равна нулю, как и следует из уравнения (5.14).

Как известно, такая пара сил не смещает диполь (который в целом электрически нейтрален), но лишь поворачивает его вдоль поля (магнитный аналог — стрелка компаса). В неоднородном же поле результирующая сила отлична от нуля.

В частном случае, когда поле зависит только от координаты z, в уравнении (5.14) отлична от нуля лишь производная по z

(5.15)

где  — проекция электрического момента на ось z. Неоднородное поле стремится втянуть диполь в область, где оно сильнее.

Магнитных зарядов не существует, но магнитный диполь реализуется витком с током, и его свойства аналогичны свойствам электрического диполя. Поэтому в формуле (5.15) надо заменить электрическое поле на магнитное, электрический момент — на магнитный и написать для силы, действующей на электрон в опыте Штерна — Герлаха, аналогичное выражение

Схема опыта: пучок атомов пролетает сквозь неоднородное магнитное поле, направленное поперечно к скорости атомов. Сила, действующая на магнитные моменты атомов, отклоняет их.

Соответственно возможным значениям проекции магнитного момента на направление поля первоначальный пучок расщепляется на несколько пучков. Если полный магнитный момент атома определяется только спином электрона, то первоначальный пучок расщепится на два.

Для многоэлектронных атомов расщепленных пучков может быть больше. Для своего эксперимента Штерн и Герлах использовали серебро, которое испарялось в электрической печке. Численные значения расщепления составляли доли миллиметра.

Авторы подчеркнули в своих выводах, что неотклоненных атомов не было зарегистрировано. Ниже мы увидим, что это — специфика опытов с элементами первой группы.

Рис. 5.16. Схема опыта Штерна и Герлаха

Главный результат опытов Штерна и Герлаха — прямое экспериментальное доказательство квантования направления магнитного момента атомов.

Согласно классической физике, первоначальный пучок должен не расщепиться, а размазаться в соответствии с произвольностью проекции магнитного момента на направление магнитного поля.

Соответственно, на экране за прибором вместо двух раздельных линий, оставленных атомами серебра, должна была бы наблюдаться размытая полоска.

Рис. 5.17. Отто Штерн, 1888–1969

Рис. 5.18. Ва́льтер Ге́рлах, 1889–1979

Пример 2. Узкий пучок атомов со скоростью  и массой n пропускается через поперечное неоднородное магнитное поле, в котором на них действует сила  (рис. 5.19). Протяженность области поля , расстояние от магнита до экрана . Определим угол отклонения  следа пучка атомов на экране от его положения при выключенном магнитном поле.

Рис. 5.19. Отклонение атомов магнитным полем

Здесь мы имеем дело с задачей классической механики, которая позволяет подготовиться к количественному рассмотрению опыта Штерна — Герлаха. Время пролета атома через магнит равно

Все это время на атом действует поперечная сила , придающая ему поперечное ускорение

За время пролета атом отклонится на расстояние

и приобретет поперечную скорость

Это значит, что из магнита атом вылетает под углом  к первоначальному направлению движения, причем

Следовательно, при пролете расстояния l2 до экрана атом отклонится еще и на расстояние

Складывая отклонения  и , получаем искомое отклонение следа атома на экране

(5.16)

Часто в задаче стоит вопрос об отклонении пучка атомов при выходе из магнита. В таком случае надо положить  в полученной формуле (5.16).

Пример 3. Узкий пучок атомов серебра при прохождении магнитного поля с неоднородностью

протяженностью см расщепился на два пучка. Экран для наблюдения установлен на расстоянии  см, скорость атомов  км/с. Определим расстояние b между компонентами расщепленного пучка на экране.

Заполненные оболочки дают нулевой вклад в магнитный момент атома. Атом серебра имеет один валентный электрон (в основном состоянии l = 0) и потому его магнитный момент равен собственному магнитному моменту электрона. В неоднородном поле на атом действует сила

где  — магнетон Бора. Знаки  соответствуют двум возможным направлениям магнитного момента электрона, и потому пучок расщепляется на два. На экране наблюдаются две полоски, находящиеся на расстоянии b друг от друга. Если в формулу (5.16) подставить выражение для силы , то получим два отклонения s, отличающиеся знаком. Поэтому искомое расщепление b = 2s. В результате приходим к выражению

(5.17)

Массу атома серебра легко найти по таблице Менделеева: молярная (атомная) масса М = 107,868 г/моль. Чтобы найти массу атома, надо молярную массу М разделить на число Авогадро:

Подставим теперь в (5.17) численные значения:

Такое расщепление вполне наблюдаемо в опытах.

Рис. 5.20. Мемориальная доска во Франкфуртском университете, посвящённая опыту Штерна и Герлаха

Источник: https://online.mephi.ru/courses/physics/atomic_physics/data/course/5/5.4.html

Booksm
Добавить комментарий