Состав атомного ядра

Состав атомного ядра. Массовое число.Зарядовое число. Ядерные силы. урок. Физика 9 Класс

Состав атомного ядра

Физика 9 класс

Тема: Строение атома и атомного ядра. Использование энергии атомных ядер

Урок 56. Состав атомного ядра. Массовое число. Зарядовое

число. Ядерные силы

Ерюткин Евгений Сергеевич

учитель физики высшей категории ГОУ СОШ №1360

Москва

2011

Здравствуйте! Сегодняшний урок будет посвящен вопросу, связанному с обсуждением строения ядра атома, зарядовому числу, массовому числу, поговорим также о том, что такое ядерные силы. Наш урок – это подведение некоторого промежуточного итога по всем ранее изученным вопросам.

Мне бы хотелось сказать то, что мы изучали вопросы, связанные со строением атома и строением ядра. Поэтому сегодня мы поговорим именно об этом. Некоторый итог предыдущим темам, предыдущим вопросам. Прежде чем мы перейдем к тому вопросу, который обозначен первым, мы поговорим вот о чем.

На предыдущем уроке мы говорили, что Резерфорд в своих экспериментах установил, что существует такая частица, как протон. Через некоторое время в 1932 году Чедвик установил, что существует еще одна частица, которая называется нейтрон.

После этого открытия независимо друг от друга два человека, русский ученый Иваненко и немецкий ученый Гейзенберг, предложили протонно-нейтронную модель строения ядра атома. По этой теории Иваненко – Гейзенберга, ядро любого атома содержит протоны и нейтроны.

Эти протоны и нейтроны вместе, те, которые находятся в ядре атома, было решено называть нуклонами. Таким образом, «нуклон» (от лат. «ядро») – общее название для протонов и нейтронов. Те частицы, которые имеют заряд, и те частицы, которые заряд не имеют, нейтроны, эти все частицы вместе называются нуклонами.

Давайте еще вот о чем поговорим. Идея о заряде ядра была впервые выдвинута в 1913 году английским ученым Генри Мозли. Он предложил, что, раз атом электронейтрален, порядковый номер элемента, умноженный на элементарный электрический заряд, это и есть заряд ядра.

Каким образом Мозли пришел к такому заключению? Дело в том, что количество электронов в атоме соответствует порядковому номеру. Значит, заряд всех электронов – это произведение порядкового номера на заряд одного электрона. Поскольку в ядре сосредоточен положительный заряд, значит, то же самое можно говорить и о ядре. Давайте посмотрим на то, как пришел Мозли именно к тому, что мы называем зарядовым числом. Посмотрите:

qЯ = Z. |e|

qЯ – заряд ядра

е – заряд электрона

Z – число протонов в ядре, зарядовое число

Заряд числа, по такому утверждению, определяется как произведение порядкового номера на элементарный электрический заряд. В данном случае е – это заряд электрона, элементарный электрический заряд его называют, и взят он по модулю, потому что понятно, что заряд ядра у нас положительный.

В этом случае порядковый номер стали называть зарядовым числом, порядковый номер – это число, соответствующее числу протонов в ядре. Таким образом, мы, говоря о порядковом номере, можем говорить о количестве протонов в ядре. Следующее число, о котором необходимо сказать, – это число массы.

Оно, это число, обозначено буквой А, и это самое число берут то же из таблицы Менделеева и округляют его до целых. Дальше мы можем говорить о том уравнении, которое называется во всем мире уравнением Иваненко – Гейзенберга. Это уравнение состоит из трех чисел: массового числа, зарядового числа и числа нейтронов.

Давайте посмотрим, как оно записывается и как обозначаются данные величины.

Уравнение Иваненко — Гейзенберга

А = Z + N

А – массовое число,

Z – порядковый номер элемента,

N – число нейтронов в ядре

Посмотрите: массовое число А говорит о том, какое количество нуклонов входит в ядро. Оказалось, что, по таблице Менделеева определяя массовое число химического элемента, мы определяем число нуклонов в ядре атома.

Z, как мы говорили, будет порядковый номер и число протонов в ядре. N в данном случае – это число нейтронов. Таким образом, мы можем из этого уравнения определить число нейтронов, число протонов, зная массовое число и порядковый номер. Здесь необходимо отметить важный момент.

Дело в том, что в 1913 году еще один ученый Содди (вы помните, что этот человек работал вместе с Резерфордом) установил интересную вещь. Выяснено было, что существуют химические элементы с абсолютно одинаковыми химическими свойствами, но разным массовым числом. Такие элементы, у которых одинаковые химические свойства, но разное массовое число, стали называть изотопами.

Изотопы – это химические элементы с одинаковыми химическими свойствами, но с различной массой атомных ядер.

Еще надо добавить, что у изотопов разная радиоактивность. Все это вместе привело к изучению этого вопроса. Здесь показаны изотопы легких и тяжелых элементов химических. Давайте посмотрим. Мы выбрали специально разные области таблицы Менделеева, чтобы показать, что практически все элементы химические имеют изотопы.

Изотопы:

Н – протий U

H – дейтерий U

Н – тритий

У водорода этих изотопов три. Первый изотоп Н называется протий. Обратите внимание, что порядковый номер ставится внизу, вот это число Z, а сверху пишется массовое число – это число А. Сверху А, внизу Z, и если мы понимаем, что это обозначает, что в ядре атома протия самый простой химический элемент, самый распространенный во вселенной.

Там всего лишь 1 протон, а нейтронов в этом ядре совсем нет. Есть второй вид водорода – это дейтерий. Наверное, многие слышали такое слово. Обратите внимание: порядковый номер 1, а массовое число равно 2. Так что ядро дейтерия состоит уже из 1 протона и из одного нейтрона. И есть еще один изотоп водорода. Называется тритий.

Тритий как раз (порядковый номер первый), а массовое число говорит о том, что в ядре этого изотопа находятся 2 нейтрона. И еще один элемент – это уран. Совсем другая сторона таблицы Менделеева. Это уже тяжелые элементы. У урана 2 изотопа распространенных. Это уран 235. Порядковый номер 92, а массовое число 235.

Сразу можно говорить о том, чем отличается ядро одного элемента от другого. Второй изотоп: тоже порядковый номер 92, а массовое число 238. Очень часто, когда идет речь об изотопах, в частности урана, никогда не говорят порядкового номера. Просто говорят «уран», называют химический элемент и говорят его массовое число – 238. Или уран 235.

Мы обсуждаем этот вопрос по той простой причине, что знаем, как сегодня этот химический элемент важен для энергетики нашей страны и вообще мировой энергетики в целом.

Следующий вопрос, который мы должны затронуть, вытекает из сказанного. Как эти частицы, эти нуклоны удерживаются внутри ядра? Мы назвали различные химические элементы, изотопы различные, особенно у тяжелых элементов, там, где нуклонов, т.е. протонов и нейтронов, много.

Как, каким образом они удерживаются внутри ядра? Мы знаем, что в маленьком ядре расстояния, размеры ядра очень и очень малы, бывает собрано большое количество частиц нуклонов. Как эти нуклоны там так плотно, тесно удерживаются, какими силами? Ведь за счет электростатического отталкивания эти частицы должны очень быстро распадаться, разлетаться.

Мы знаем, что разноименные только заряды притягиваются, частицы, заряженные разноименными зарядами. Если частицы заряжены одноименно, понятно, что они должны отталкиваться. Внутри ядра находятся протоны. Они положительно заряжены. Размер ядра очень мал. В этом же ядре находятся еще и нейтроны, значит, должны быть силы, которые удерживают вместе те и другие частицы.

Эти самые силы называют ядерными силами. Ядерные силы – это силы притяжения, действующие между нуклонами. Можно сказать, что у этих сил существуют свои особые свойства.

Первое свойство, о котором мы должны сказать, – это то, что ядерные силы должны превосходить силы электростатического отталкивания. И это так, когда удалось их определить, то выяснилось, что они в 100 раз превосходят силы электростатического отталкивания.

Еще одно очень важное замечание, что действуют ядерные силы на малом расстоянии. Например, 10-15м – это и есть диаметр ядра, эти силы действуют. Но стоит только увеличиться размеру ядра до 10-14, казалось, совсем немного, то это приводит к тому, что ядро обязательно распадется. На этом расстоянии уже ядерные силы не действуют.

А силы электростатического отталкивания продолжают действовать и именно они отвечают за то, что ядро распадается.

Еще можно сказать о ядерных силах то, что они не центральны, т.е. они не действуют вдоль прямой, соединяющей эти частицы. И то, что ядерные силы не зависят от того, обладает частица зарядом или не обладает, потому что в ядро входят и протоны, и нейтроны. Вместе эти частицы находятся.

Таким образом, вывод: эти частицы, нуклоны, удерживаются в ядре за счет ядерных сил, и эти силы действуют только в ядре. Еще можно отметить, что ядерные силы имеют важное значение в плане стабильности ядра. Отвечают за долговременность существования этого элемента.

В заключение мы можем отметить еще одно: когда мы будем говорить об энергетике, вот здесь именно ядерные силы будут играть основную роль. Об этом мы поговорим на следующих уроках. До свидания.

Задание к уроку.

1. Определите нуклонный состав ядер железа  (количество нуклонов, протонов, нейтронов).

2. В ядре атома химического элемента 22 протона и 26 нейтронов. Назовите этот химический элемент.

3. Оцените силу гравитационного взаимодействия между двумя нейтронами в ядре. Масса нейтрона примерно равна 1,7*10-27 кг, расстояние между нейтронами  примите равным  10-15 м, значение гравитационной постоянной 6,67*10-11 (Н*м2)/кг2.

Источник: https://interneturok.ru/lesson/physics/9-klass/stroenie-atoma-i-atomnogo-yadra-ispolzovanie-energii-atomnyh-yader/sostav-atomnogo-yadra-massovoe-chislo-zaryadovoe-chislo-yadernye-sily

Состав атомного ядра

Состав атомного ядра

К началу $1932$ г. Было известно только три элементарные частицы: электрон, протон и нейтрон. По этой причине было сделано предположение, что ядро атома состоит с протонов и электронов (протонно-электронная гипотеза). Считалось, что в состав ядра с номером $Z$ в периодической системе элементов Д. И.

Менделеева и массовым числом $A$ входит $A$ протонов и $Z-A$ нейтронов. В соответствии с этой гипотезой электроны, которые входили в состав ядра, выполняли роль «цементирующего» средства, с помощью которого положительно заряженные протоны удерживались в ядре.

Сторонники протонно-электронной гипотезы состава атомного ядра считали, что $\beta -$ — радиоактивность — это подтверждение правильности гипотезы. Но эта гипотеза оказалась на в состоянии объяснить результаты эксперимента и была отброшена. Одним с таких затруднений была невозможность объяснить то, что спин ядра азота ${14}_7N$ равен единице $(\hbar )$.

В соответствии с протонно-электронной гипотезой, ядро азота ${14}_7N$ должно состоять с $14$ протонов и $7$ электронов. Спин протонов и электронов равен $1/2$. По этой причине ядро атома азота, которое состоит в соответствии с этой гипотезой с $21$ частицы, должно иметь спин $1/2,\ 3/2,\ 5/2,\dots 21/2$.

Это несоответствие протонно-электронной теории названо «азотной катастрофой». Так же непонятным было то, что при наличии электронов в ядре его магнитный момент имеет малый магнитный момент по сравнению с магнитным моментом электрона.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В $1932$ году Дж. Чедвик открыл нейтрон. После этого открытия Д. Д. Иваненко и Е. Г. Гапон выдвинули гипотезу о протонно-нейтронном строении атомного ядра, какую подробно разработал В. Гейзенберг.

Замечание 1

Протонно-нейтронный состав ядра подтвержден не только теоретическими выводами, но и непосредственно опытами по расщеплению ядра на протоны и нейтроны. Сейчас общепринято, что атомное ядро состоит с протонов и нейтронов, которые так же называются нуклонами (от латинского nucleus — ядро, зерно).

Строение атомного ядра

Ядро являет собой центральную часть атома, в которой сосредоточено положительный электрический заряд и основная часть массы атома. Размеры ядра, в сравнении с орбитами электронов чрезвычайно малы: $10{-15}-10{-14}\ м$.

ядра состоят с протонов и нейтронов, которые почти одинаковы по массе, но электрический заряд несет только протон. Полное число протонов называется атомным номером $Z$ атома, который совпадает с числом электронов у нейтральном атоме.

Нуклоны удерживаются в ядре большими силами, по своей природе эти силы не относятся ни к электрическим ни к гравитационным, а по величине они на много превышают силы, которые связывают электроны с ядром.

Согласно протонно-нейтронной модели строения ядра:

  • ядра всех химических элементов состоят из нуклонов;
  • заряд ядра обусловлен только протонами;
  • число протонов в ядре равно порядковому номеру элемента;
  • число нейтронов равно разности между массовым числом и числом протонов ($N=A-Z$)

Протон ($2_1H\ или\ p$) — положительно заряженная частица: её заряд равен заряду электрона $e=1.6\cdot 10{-19}\ Кл$, а масса покоя $m_p=1.627\cdot 10{-27}\ кг$. Протон является ядром налёгшего нуклона атома гидрогена.

Для упрощения записей и расчётов массу ядра зачастую определяют в атомных единицах массы (а.е.м) или в единицах энергии (записывая вместо массы соответствующую энергию $E=mc2$ в электрон-вольтах). За атомною единицу массы берут $1/12$ массы нуклида углерода ${12}_6С$. В этих единицах получаем:

Протон подобно электрону имеет собственный момент импульса — спин, который равен $1/2$ (в единицах $\hbar $). Последний, во внешнем магнитном поле может ориентироваться только так, что его проекция и направления поля равны $+1/2$ или $-1/2$. Протон, как и электрон, подлежит квантовой статистике Ферми-Дирака, т.е. принадлежит к фермионам.

Протон характеризируется собственным магнитным моментом, который для частицы со спином $1/2$ зарядом $e$ и массой $m$ равен

Для электрона собственный магнитный момент равен

Для описания магнетизма нуклонов и ядер используют ядерный магнетон (в $1836$ раз меньше магнетона Бора):

Поначалу считали, что магнитный момент протона равен ядерному магнетону, т.к. его масса в $1836$ раз больше массы электрона. Но измерения показали, что на самом деле собственный магнитный момент протона в $2,79$ раз больше от ядерного магнетрона, имеет положительный знак, т.е. направление совпадает со спином.

Современная физика объясняет эти разногласия тем, что протоны и нейтроны взаимопреобразуются и на протяжении некоторого времени пребывают в состоянии диссоциации на $\pi \pm $ — мезон и соответственного знака другой нуклон:

Масса покоя $\pi \pm $ — мезона равна $193,63$ МэВ, по этому его собственный магнитный момент в $6,6$ раз больше от ядерного магнетона. В измерениях появляется некоторое эффективное значение магнитного момента протона и $\pi +$ — мезонного окружения.

Нейтрон ($n$) — электрически нейтральная частица; ее масса покоя

Хоть нейтрон и лишен заряда, он имеет магнитный момент $\mu _n=-1.91\mu _Я$. Знак «$-$» показывает, что за направлением магнитный момент противоположный спину протона. Магнетизм нейтрона определяется эффективным значением магнитного момента частиц, на которые он способен диссоцыировать.

В свободном состоянии нейтрон неустойчивая частица и произвольно распадается (период полураспада $12$ мин): излучая $\beta $ — частицу и антинейтрино он превращается в протон. Схема распада нейтрона записывается в таком виде:

В отличии от внутриядерного распада нейтрона $\beta $ — распад принадлежит и до внутреннего распада и до физики элементарных частиц.

Взаимное преобразование нейтрона и протона, равенство спинов, приближённость масс и свойств дают основания предполагать, что речь идет о двух разновидностях одной и той же ядерной частицы — нуклона. Протонно-нейтронная теория хорошо согласуется с экспериментальными данными.

Как составляющие ядра протоны и нейтроны обнаруживают в многочисленных реакциях деления и синтеза.

В произвольных и штучных делениях ядер наблюдаются так же потоки электронов, позитронов, мезонов, нейтрино и антинейтрино. Масса $\beta $ — частицы (электрон или позитрон) в $1836$ раз меньше массы нуклона.

Мезоны — положительные, отрицательные и нулевые частицы — по массе занимают промежуточное место между $\beta $ — частицами и нуклонами; время жизни таких частиц очень мало и составляет миллионные доли секунды. Нейтрино и антинейтрино — элементарные частицы, масса покоя которых равна нулю.

Однако электроны, позитроны и мезоны не могут быть составляющими ядра. Эти легкие частицы не могут быть локализованы в малом объеме, которым является ядро радиусом $\sim 10{-15}\ м$.

Для доказательства этого определим энергию электрического взаимодействия (например, электрона с позитроном или протоном в ядре)

и сравним ее с собственной энергией электрона

Посколькy энергия внешнего взаимодействия превышает собственную энергию электрона, он не может существовать и сохранять собственную индивидуальность, в условиях ядра он будет уничтожен. Другая ситуация с нуклонами, их собственная энергия более $900$ МэВ, поэтому в ядре они могут сохранять свои особенности.

Легкие частицы излучаются с ядер в процессе перехода их с одного состояния в другое.

Источник: https://spravochnick.ru/fizika/yadernaya_fizika/sostav_atomnogo_yadra/

Физика атомного ядра. Состав ядра

Состав атомного ядра

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α-частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10-13-10-12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода, выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче­ного к представлению о протоне. Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p) — стабильная элементарная частица, ядро ато­ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e= 1,6 · 10-19 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона mр= 1,6726231 · 10-27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон.

Нейтрон (от лат. neuter — ни тот, ви другой, символ n) — это эле­ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона mn = 1,6749286 · 10-27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря­ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α-частицами.

Возникающее при этом излучение с большой проникающей способностью (преодолевало пре­граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок).

Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ-кванты.

Большая проникающая способность новых частиц, названных ней­тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α-частиц в ядра бериллия происходит следующая реакция:

Здесь  — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли­зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра. Согласно этой моде­ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева.

Заряд ядра Q определяется числом протонов Z, входящих в состав ядра, и кратен абсолютной величине заряда электрона e:

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером.

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер­жащихся в нем. Число нейтронов в ядре обозначается буквой N. Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов.

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото­нов (Z) и различное число нейтронов (N).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле­мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N. Общее обозначение нуклидов имеет вид ……. где X — символ химического эле­мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про­изошло их название.

По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы.

Это объясняется тем, что химические свойства элемен­та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1Н — протий, 2Н— дейтерий, 3Н — тритий столь сильно отличаются по массе, что и их физические и хими­ческие свойства различны. Дейтерий стабилен (т.е.

не радиоактивен) и входит в качестве неболь­шой примеси (1 : 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода. Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС.

Тритий β-радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив­ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп  составляет всего 1/140 часть от более распространенного .

Источник: https://www.calc.ru/Fizika-Atomnogo-Yadra-Sostav-Yadra.html

Характеристики ядра

Состав атомного ядра

Основными характеристиками атомных ядер являются электрический заряд, масса, спин, энергия связи и так далее.

Заряд ядра

Ядро каждого из атомов обладает положительным зарядом. В качестве носителя положительного заряда выступает протон.

По той причине, что заряд протона численно эквивалентен заряду электрона e, можно записать, что заряд ядра элемента равен +Ze (Z выражает собой целое число, которое указывает на порядковый номер химического элемента в периодической системе химических элементов Д. И. Менделеева).

Значение Z также характеризует число протонов, входящих в состав ядра и количество электронов в атоме. Именно из-за этого его определяют как атомный номер ядра. Электрический заряд представляет собой одну из основных характеристик атомного ядра, от которой зависят оптические, химические и иные свойства атомов.

Масса ядра

Существует также другая значимая характеристика ядра, а именно масса. Массу атомов и ядер принято выражать в атомных единицах массы (а.е.м.), в качестве атомной единицы массы выступает 112 массы нуклида углерода C612:

где NA=6,022·1023 моль-1 обозначает число Авогадро.

Кроме того, есть другой способ выражения атомной массы: исходя из соотношения Эйнштейна E=mc2, ее выражают в единицах энергии. По той причине, что масса протона mp=1.00728 а.е.м.=938,28 МэВ, масса нейтрона mn=1.00866а.е.м.=939,57МэВ, а масса электрона me=5,49⋅10-4 а.е.м.=0,511МэВ,

Из приведенных выше значений видно, что масса электрона несущественно мала, если сравнивать ее с массой ядра, поэтому масса ядра практически эквивалентна массе всего атома и отлична от целых чисел.

Определение 1

Масса ядра, которая выражается в а.е.м. и округляется до целого числа носит название массового числа и обозначается с помощью буквы A. Она характеризует количество нуклонов, находящихся в составе ядра.

Количество нейтронов в ядре эквивалентно N=A−Z. В качестве обозначения ядер используют символ XZA, в котором X определяется как химический символ этого элемента.

Определение 2

Атомные ядра, обладающие одинаковым числом протонов, однако при этом отличающимися друг от друга массовыми числами, носят название изотопов.

В некоторых элементах количество стабильных и нестабильных изотопов достигает десятков, в качестве примера, уран обладает 14 изотопами: от U92227 до U92240. Большая часть химических элементов, которые существуют в природе, являются смесью нескольких изотопов.

Как раз наличие изотопов объясняет следующее явление: некоторые природные элементы обладают массой, которая является отличной от целых чисел. В качестве примера рассмотрим природный хлор, который состоит из 75% C1735l и 24% C1737l, а его атомная масса эквивалентна 35,5 а.е.м.

В большей части атомов, исключая водород, изотопы обладают практически равными физическими и химическими свойствами. Однако, за своими, исключительно ядерными свойствами, изотопы значительно отличаются друг от друга.

Какие-то из них могут представлять собой стабильные изотопы, а другие – радиоактивные.

Определение 3

Ядра с эквивалентными массовыми числами, но отличающимися значениями Z носят название изобар, в качестве примера, A1840r, C2040a.

Определение 4

Ядра с одинаковым числом нейтронов определяют как изотоны.

Определение 5

Среди легких ядер встречаются и так называемые «зеркальные» пары ядер. Это такие пары ядер, в которых числа Z и A−Z меняются местами. В качестве примера подобных ядер можно привести C613 и N713 или H13 и H23e.

Размер атомного ядра

Принимая форму атомного ядра приблизительно сферической, мы имеем возможность ввести понятие его радиуса R. Обратим внимание на то, что в некоторых ядрах есть небольшое отклонение от симметрии в распределении электрического заряда. Более того, атомные ядра представляют собой не статические, а динамические системы, и понятие радиуса ядра нельзя представлять как радиус шара.

Именно из-за этого факта, в качестве размеров атомного ядра нужно принимать ту область, в которой проявляются ядерные силы. В процессе создания количественной теории рассеивания α-частиц Э. Резерфорд исходил из тех предположений, что атомное ядро и α — частица взаимодействуют по закону Кулона, Другими словами из того, что электрическое поле вокруг ядра обладает сферической симметрией.

Это работает в отношении α — частиц, обладающих достаточно малым значением энергии E.

При этом частица не имеет возможности преодолеть кулоновский потенциальный барьер и в последствии не достигает области, в которой наблюдается действие ядерных сил.

Одновременно с повышением энергии частицы до некоторого граничного значения Eгр, α-частица достигает данной границы. В таком случае в рассеянии α-частиц возникает некоторое отклонение от формулы Резерфорда.

Опытным путем было определено, что радиус R ядра является зависимым от числа нуклонов, которые входят в состав ядра.

Размеры ядер определяют экспериментальным путем по рассеянию протонов, быстрых нейтронов или же электронов высоких энергий. Существует также целый список иных косвенных способов получения значений размеров ядер. Они основываются:

  • на связи времени жизни α — радиоактивных ядер с энергией выпущенных ими α — частиц;
  • на оптических свойствах, носящих название мезоатомов, в которых один из электронов временно захвачен мюоном;
  • на сравнении энергий связи парных зеркальных атомов.

Данные способы подтверждают эмпирическую зависимость R=R0A1/3, а также благодаря таким измерениям определено значение постоянной R0=1,2-1,5·10-15 м.

Обратим свое внимание также на тот факт, что за единицу расстояний в атомной физике и физике элементарных частиц принимают единицу измерения «ферми», которая равняется 10-15 м 1 ф=10-15 м.

Радиусы атомных ядер определяются их массовым числом и находятся в промежутке от 2·10-15 до 10-14 м. Если из формулы R=R0A1/3 выразить R0 и записать его в следующем виде 4πR33A=const, то можно заметить, что на каждый нуклон приходится примерно одинаковый объем.

Из данного факта можно сделать вывод о том, что плотность ядерного вещества для всех ядер так же приблизительно одинакова. Как можно заметить, плотность ядерного вещества довольно велика. Этот факт основывается на действие ядерных сил.

Энергия связи. Дефект масс ядер

Определение 6

Величину ∆m, что определяет разницу масс между массой нуклонов, которые формируют ядро, и массой ядра, называют дефектом массы ядра.

Важные сведения о свойствах ядра могут быть получены даже при отсутствии знаний о подробностях взаимодействия между нуклонами ядра, на основании закона сохранения энергии и закона пропорциональности массы и энергии.

Поскольку в результате каждого изменения массы ∆m происходит соответствующее изменение энергии ∆E(∆E=∆mc2), то при образовании ядра выделяется некоторое количество энергии.

Исходя из закона сохранения энергии можно сделать вывод о том, что ровно такое же количество энергии необходимо для того, чтобы разделить ядро на составляющие его элементы, другими словами отдалить нуклоны друг от друга на такие расстояния, при которых взаимодействия между ними не происходит. Данную энергию определяют как энергию связи ядра.

Замечание 1

Заметим, что данная формула довольно неудобная в применении, так как в таблицах приводиться не массы ядер, а массы, которые относятся к массам нейтральных атомов.

По этой причине ради удобства вычислений формулу преобразуют таким образом, чтобы в нее входили не массы атомов, а массы ядер. Для достижения этой цели в правой части формулы добавим и отнимем массу Z электронов (me).

В таком случае Eсв=Zmp+me+A-Zmn-mя+Zmec2=ZmH11+A-Zmn-mac2 — масса атома водорода, ma — масса атома.

В ядерной физике энергию зачастую выражают в мегаэлектрон-вольтах (МэВ). Если речь идет о практическом применении ядерной энергии, то ее измеряют в джоулях. В случае сравнения энергии двух ядер используют массовую единицу энергии — соотношение между массой и энергией (E=mc2). Массовая единица энергии (le) равняется энергии, что соответствует массе в одну а.е.м. Она равняется 931,502 МэВ.

Рисунок 1

Определение 7

Кроме энергии, важное значение имеет удельная энергия связи ядра — энергия связи, которая припадает на один нуклон: ω=Ecв/A. Эта величина меняется сравнительно медленно по сравнению со сменой массового числа A, имея почти постоянную величину 8.6 МэВ в средней части периодической системы и уменьшается до ее краев.

Дефект массы

Энергия связи в МэВ: Eсв=∆m·931,502=0,030359·931,502=28,3 МэВ;

Удельная энергия связи: ω=EсвA=28,3 МэВ4≈7.1 МэВ.

Источник: https://Zaochnik.com/spravochnik/fizika/atomy-jadra/harakteristiki-jadra/

Атомное ядро

Состав атомного ядра

    Атомное ядро – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд.

Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Большинство ядер имеют форму близкую к сферической и диаметр ≈ 10-12 см, что на четыре порядка меньше диаметра атома (10-8 см). Плотность вещества в ядре – около 230 млн.тонн/см3.

    Атомное ядро было открыто в 1911 г. в результате серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембридже (Англия) под руководством Э. Резерфорда. В 1932 г. после открытия там же Дж.

Чедвиком нейтрона стало ясно, что ядро состоит из протонов и нейтронов
(В. Гейзенберг, Д.Д. Иваненко, Э. Майорана).

    Для обозначения атомного ядра используется символ химического элемента атома, в состав которого входит ядро, причём левый верхний индекс этого символа показывает число нуклонов (массовое число) в данном ядре, а левый нижний индекс – число протонов в нём. Например, ядро никеля, содержащее 58 нуклонов, из которых 28 протонов, обозначается . Это же ядро можно также обозначать 58Ni, либо никель-58.

Рис.1. Зависимость плотности вещества в ядре никеля-58 от расстояния до центра ядра.

    Ядро – система плотно упакованных протонов и нейтронов, двигающихся со скоростью 109-1010 см/сек и удерживаемых мощными и короткодействующими ядерными силами взаимного притяжения (область их действия ограничена расстояниями ≈ 10-13 см). Протоны и нейтроны имеют размер около 10-13 см и рассматриваются как два разных состояния одной частицы, называемой нуклоном.

Радиус ядра можно приближённо оценить по формуле R ≈ (1.0-1.1)·10-13А1/3 см, где А – число нуклонов (суммарное число протонов и нейтронов) в ядре. На рис. 1 показано как меняется плотность вещества (в единицах 1014  г/см3) внутри ядра никеля, состоящего из 28 протонов и 30 нейтронов, в зависимости от расстояния r (в единицах 10-13 см) до центра ядра.

    Ядерное взаимодействие (взаимодействие между нуклонами в ядре) возникает за счёт того, что нуклоны обмениваются мезонами. Это взаимодействие – проявление более фундаментального сильного взаимодействиямежду кварками, из которых состоят нуклоны и мезоны (подобным образом силы химической связи в молекулах – проявление более фундаментальных электромагнитных сил).

    Мир ядер очень разнообразен. Известно около 3000 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём.    Лишь 264 ядра стабильны, т.е. не испытывают со временем никаких самопроизвольных превращений, именуемых распадами.

Остальные испытывают различные формы распада – альфа-распад (испускание альфа-частицы, т.е. ядра атома гелия); бета-распад (одновременное испускание – электрона и антинейтрино или позитрона и нейтрино, а также поглощение атомарного электрона с испусканием нейтрино); гамма-распад (испускание фотона) и другие.

    Различные типы ядер часто называют нуклидами.

Нуклиды с одинаковым числом протонов и разным числом нейтронов называют изотопами. Нуклиды с одинаковым числом нуклонов, но разным соотношением протонов и нейтронов называются изобарами. Лёгкие ядра содержат примерно равные количества протонов и нейтронов. У тяжёлых ядер число нейтронов примерно в 1,5 раза превышает число протонов.

Самое лёгкое ядро – ядро атома водорода, состоящее из одного протона. У наиболее тяжелых известных ядер (они получены искусственно) число нуклонов ≈ 290. Из них 116-118 протонов.

    Различные комбинации количества протонов Z и нейтронов соответствуют различным атомным ядрам. Атомные ядра существуют (т.е. их время жизни t  > 10-23 c) в довольно узком диапазоне изменений чисел Z и N. При этом все атомные ядра делятся на две большие группы — стабильные и радиоактивные (нестабильные). Стабильные ядра группируются вблизи линии стабильности, которая определяется уравнением

Рис. 2. NZ- диаграмма атомных ядер.

    На рис. 2 показана NZ-диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтронноизбыточные ядра).

Цветом выделены атомные ядра, обнаруженные в настоящее время. Их около 3.5 тысяч. Считается, что всего их должно быть 7 – 7.5 тысяч. Протоноизбыточные ядра (малиновый цвет) являются радиоактивными и превращаются в стабильные в основном в результате β+-распадов, протон, входящий в состав ядра при этом превращается в нейтрон.

Нейтроноизбыточные ядра (голубой цвет) также являются радиоактивными и превращаются в стабильные в результате —распадов, с превращением нейтрона ядра в протон.
    Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83).

Тяжелые ядра наряду с процессами β+ и β—распада подвержены также α-распаду (желтый цвет) и спонтанному делению, которые становятся их основными каналами распада. Пунктирная линия на рис. 2 очерчивает область возможного существования атомных ядер. Линия Bp =  0 (Bp –  энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line).

Линия Bn = 0 (Bn – энергия отделения нейтрона) – справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~10-23 – 10-22 c) с испусканием нуклонов.     При соединении (синтезе) двух лёгких ядер и делении тяжёлого ядра на два более лёгких осколка выделяется большая энергия.

Эти два способа получения энергии – самые эффективные из всех известных. Так 1 грамм ядерного топлива эквивалентен 10 тоннам химического топлива. Синтез ядер (термоядерные реакции) является источником энергии звёзд. Неуправляемый (взрывной) синтез осуществляется при подрыве термоядерной (или, так называемой, “водородной”) бомбы.

Управляемый (медленный) синтез лежит в основе перспективного разрабатываемого источника энергии – термоядерного реактора.     Неуправляемое (взрывное) деление происходит при взрыве атомной бомбы. Управляемое деление осуществляется в ядерных реакторах, являющихся источниками энергии в атомных электростанциях.

    Для теоретического описания атомных ядер используется квантовая механика и различные модели.

    Ядро может вести себя и как газ (квантовый газ) и как жидкость (квантовая жидкость). Холодная ядерная жидкость обладает свойствами сверхтекучести. В сильно нагретом ядре происходит распад нуклонов на составляющие их кварки. Эти кварки взаимодействуют обменом глюонами. В результате такого распада совокупность нуклонов внутри ядра превращается в новое состояние материи – кварк-глюонную плазму

Источник: http://nuclphys.sinp.msu.ru/enc/e201.htm

Состав и характеристика атомного ядра

Состав атомного ядра

Ядро простейшего атома — атома водорода — состоит из одной элементарной частицы, называемой протоном. Ядра всех остальных атомов состоят из двух видов элементарных частиц — протонов и нейтронов. Эти частицы носят название нуклонов.

Протон. Протоно ( p ) обладает зарядом +e и массой

Mp= 938,28 МэВ

Для сравнения укажем, что масса электрона равна

me= 0,511 МэВ

Из сопоставления и следует, что mp= 1836 me

Протон имеет спин, равный половине (s = ), и собственный магнитный момент

Где

— единица магнитного момента, называемая ядерным магнетоном. Из сравнения масс протона и электрона вытекает, что μя в 1836 раз меньше магнетона Бора μб. Следовательно, собственный магнитный момент протона примерно в 660 раз меньше, чем магнитный момент электрона.

Нейтрон. Нейтрон (n) был открыт в 1932 г. английским физи­ком

Д. Чедвиком. Электрический заряд этой частицы равен нулю, а масса

Mn = 939,57 МэВ

Очень близка к массе протона. Разность масс нейтрона и протона (mn – mp)

Составляет 1,3 МэВ, т. е. 2,5 me.

Нейтрон обладает спином, равным половине (s = ) и (не­смотря на отсутствие электрического заряда) собственным магнитным моментом

μn = — 1,91 μя

(знак минус указывает на то, что направления собственных механи­ческого и магнитного моментов противоположны). Объяснение этого удивительного факта будет дано позже.

Отметим, что отношение экспериментальных значений μp и μn с большой степенью точности равно — 3/2 . Это было замечено лишь после того, как такое значение было получено теоретически.

В свободном состоянии нейтрон нестабилен (радиоактивен) – он самопроизвольно распадается, превращаясь в протон и испуская электрон (e-) и еще одну частицу, называемую антинейтрино . Период полураспада (т. е. время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. Схе­му распада можно написать следующим образом:

Масса покоя антинейтрино равна нулю. Масса нейтрона больше массы прото­на на 2,5me. Следовательно, масса нейтрона превышает суммарную массу частиц, фигурирующих в правой части уравнения на 1,5me, т. е. на 0,77 МэВ. Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.

Характеристики атомного ядра. Одной из важнейших характерис­тик атомного ядра является зарядовое число Z. Оно равно коли­честву протонов, входящих в состав ядра, и определяет его заряд, который равен +Ze. Число Z определяет порядковый номер химичес­кого элемента в периодической таблице Менделеева. Поэтому его так­же называют атомным номером ядра.

Число нуклонов (т. е. суммарное число протонов и нейтронов) в ядре обозначается буквой А и называется массовым числом ядра. Число нейтронов в ядре равно N = A – Z.

Для обозначения ядер применяется символ

Где под X подразумевается химический символ данного элемента. Слева вверху ставится массовое число, слева внизу – атомный номер (последний значок часто опускают). Иногда массовое число пишут не слева, а справа от символа химического элемента

Ядра с одинаковым Z, но разными А называются Изотопами. Большинство химических элементов имеет по несколько стабильных

изотопов. Так, например, у кислорода имеется три стабильных изотопа:

, у олова — десять, и т. д.

Водород имеет три изотопа:

– обычный водород, или протий (Z=1, N=0),

– тяжелый водород, или дейтерий (Z=1, N=1),

– тритий (Z=1, N=2).

Протий и дейтерий стабильны, тритий радиоактивен.

Ядра с одинаковым массовым числом А называются Изобарами.
В качестве примера можно привести и . Ядра с одинако-­
вым числом нейтронов N = A – Z носят название Изотонов (,). Наконец, существуют радиоактивные ядра с одинаковыми Z и A,

отличающиеся периодом полураспада. Они называются Изомерами. Напри-­

мер, имеются два изомера ядра , у одного из них период полу­-
распада равен 18 мин, у другого – 4,4 часа.

Известно около 1500 ядер, различающихся либо Z, либо А, либо и тем и другим. Примерно 1/5 часть этих ядер устойчивы, осталь­ные радиоактивны. Многие ядра были получены искусственным путем с помощью ядерных реакций.

В природе встречаются элементы с атомным номером Z от 1 до 92, исключая технеций (Tc, Z = 43) и прометий (Pm, Z = 61).

Плутоний (Pu, Z = 94) после получения его искусственным путем был обнаружен в ничтожных количествах в природном минерале – смоляной обманке. Остальные трансурановые (т. е.

заурановые) элементы (с Z от 93 до 107) были получены искусственным путем посредством различ­ных ядерных реакций.

Трансурановые элементы кюрий (96 Cm), эйнштейний (99 Es), фермий (100 Fm) и менделевий (101 Md) получили название в честь выдающихся ученых II. и М. Кюри, А. Эйнштейна, З. Ферми и Д. И. Менделеева. Лоуренсий (103 Lw) назван в честь изобретателя циклотрона Э. Лоуренса. Курчатовий (104 Ku) получил свое название в честь выдающегося физика И. В. Курчатова.

Некоторые трансурановые элементы, в том числе курчатовий и элементы с номерами 106 и 107, были получены в Лаборатории ядерных реак­ций Объединенного института ядерных исследований в Дубне ученым

Н. Н. Флеровым и его сотрудниками.

Размеры ядер. В первом приближении ядро можно считать шаром, радиус которого довольно точно определяется формулой

(ферми – название применяемой в ядерной физике единицы длины, рав­ной

10-13 см). Из формулы следует, что объем ядра пропорцио­нален числу нуклонов в ядре. Таким образом, плотность вещества во всех ядрах примерно одинакова.

Спин ядра. Спины нуклонов складываются в результирующий спин ядра. Спин нуклона равен 1/2. Поэтому квантовое число спина ядра будет полуцелым при нечетном числе нуклонов А и целым или нулем при четном А.

Спины ядер J не превышают нескольких единиц. Это указывает на то, что спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. У всех четно-четных ядер (т. е.

ядро с четным числом протонов и четным чис­лом нейтронов) спин равен нулю.

Механический момент ядра MJ складывается с моментом электрон­ной оболочки в полный момент импульса атома MF, который определяется квантовым числом F.

Взаимодействие магнитных моментов электронов и ядра приводит к тому, что состояния атома, соответствующие различным взаимным ориентациям MJ и (т. е. различным F), имеют немного отли­чающуюся энергию. Взаимодействием моментов μL и μS обусловлива­ется тонкая структура спектров.

Взаимодействием μJ и определяется сверхтонкая структура атомных спектров. Расщеп­ление спектральных линий, соответствующее сверхтонкой структуре, настолько мало (порядка нескольких сотых ангстрема), что может на­блюдаться лишь с помощью приборов самой высокой разрешающей силы.

Источник: https://www.webpoliteh.ru/sostav-i-xarakteristika-atomnogo-yadra/

Booksm
Добавить комментарий