Скорость света

Как измеряли скорость света и каково ее реальное значение

Скорость света

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.

Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца.

Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты.

В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем.

На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало.

Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения.

К началу 70-х погрешность в измерениях снизилась до 1 км/сек.

В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

Источник: https://www.techcult.ru/science/5102-kakova-realnaya-skorost-sveta-i-mozhno-li-ee-preodolet

Скорость света — Класс!ная физика

Скорость света

«Физика — 11 класс»

Когда мы поворачиваем выключатель, то вся комната сразу же озаряется светом. Кажется, что свету совсем не надо времени, чтобы достигнуть стен. Предпринимались многочисленные попытки определить скорость света.

Для этого пытались измерить по точным часам время распространения светового сигнала на большие расстояния (несколько километров). Но эти попытки не дали результата. Начали думать, что распространение света совсем не требует времени, что свет любые расстояния преодолевает мгновенно.

Однако оказалось, что скорость света не бесконечно велика, и эта скорость была в конце концов измерена.

Астрономический метод измерения скорости света

Скорость света впервые удалось измерить датскому ученому О. Рёмеру в 1676 г. Рёмер был астрономом, и его успех объясняется именно тем, что он использовал для измерений очень большие, проходимые светом расстояния.

Это расстояния между планетами Солнечной системы.

Рёмер наблюдал затмения спутников Юпитера — самой большой планеты Солнечной системы. Юпитер имеет четырнадцать спутников. Ближайший его спутник — Ио — стал предметом наблюдений Рёмера.

Он видел, как спутник проходил перед планетой, погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся, как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками оказался равным 42 ч 28 мин.

Таким образом, эта «луна» представляла собой громадные небесные часы, через равные промежутки времени посылавшие свои сигналы на Землю.

Вначале измерения проводились в то время, когда Земля при своем движении вокруг Солнца ближе всего подошла к Юпитеру.
Такие же измерения, проведенные несколько месяцев спустя, когда Земля удалилась от Юпитера, неожиданно показали, что спутник опоздал появиться из тени на целых 22 мин по сравнению с моментом времени, который можно было рассчитать, зная период обращения Ио.

Рёмер объяснял это так: «Если бы я мог остаться на другой стороне земной орбиты, то спутник всякий раз появлялся бы из тени в назначенное время; наблюдатель, находящийся там, увидел бы Ио на 22 мин раньше. Запаздывание в этом случае происходит оттого, что свет употребляет 22 мин на прохождение от места моего первого наблюдения до моего теперешнего положения».

Зная время запаздывания появления Ио и расстояние, которым оно вызвано, можно определить скорость света, разделив это расстояние на время запаздывания. Скорость оказалась чрезвычайно большой, примерно 300 000 км/с. Потому-то крайне трудно определить время распространения света между двумя удаленными точками на Земле.

Ведь за одну секунду свет проходит расстояние, большее длины земного экватора в 7,5 раза.

Лабораторные методы измерения скорости света

Впервые скорость света лабораторным методом удалось измерить французскому физику И. Физо в 1849 г.

В опыте Физо свет от источника, пройдя через линзу, падал на полупрозрачную пластинку 1. После отражения от пластинки сфокусированный узкий пучок направлялся на периферию быстровращающегося зубчатого колеса. Пройдя между зубцами, свет достигал зеркала 2, находящегося на расстоянии нескольких километров от колеса.

Отразившись от зеркала, свет, прежде чем попасть в глаз наблюдателя, должен был пройти опять между зубцами. Когда колесо вращалось медленно, свет, отраженный от зеркала, был виден. При увеличении скорости вращения он постепенно исчезал.

В чем же здесь дело?

Пока свет, прошедший между двумя зубцами, шел до зеркала и обратно, колесо успевало повернуться так, что на место прорези вставал зубец, и свет переставал быть видимым.

При дальнейшем увеличении скорости вращения свет опять становился видимым.
Очевидно, что за время распространения света до зеркала и обратно колесо успевало в этом случае повернуться настолько, что на место прежней прорези вставала уже новая прорезь.

Зная это время и расстояние между колесом и зеркалом, можно определить скорость света.
В опыте Физо при расстоянии, равном 8,6 км, для скорости света было получено значение 313 000 км/с.

Было разработано еще много других, более точных лабораторных методов измерения скорости света.
В частности, американский физик А. Майкельсон разработал весьма совершенный метод определения скорости света с применением вращающихся зеркал.

Была измерена скорость в различных прозрачных средах. Скорость света в воде была определена в 1856 г. Она оказалась в 4/3 раза меньше, чем в вакууме.

Во всех других веществах она также меньше, чем в вакууме.

По современным данным, скорость света в вакууме равна 299 792 458 м/с (с точностью до ±1,2 м/с).
Приближенно скорость света можно считать равной 3 • 108 м/с.
Это значение скорости света нужно обязательно запомнить.

Определение скорости света сыграло в науке очень важную роль. Была не только выяснена природа света, но и установлено, что никакое тело не может двигаться со скоростью, превышающей скорость света в вакууме.

Это стало ясно после создания теории относительности, о которой пойдет речь в следующей главе.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Принцип Гюйгенса. Закон отражения света»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Световые волны. Физика, учебник для 11 класса — Класс!ная физика

Оптика — Скорость света — Принцип Гюйгенса. Закон отражения света — Закон преломления света — Полное отражение — Линза — Построение изображения в линзе — Формула тонкой линзы. Увеличение линзы — Примеры решения задач.

Геометрическая оптика — Дисперсия света — Интерференция механических волн — Интерференция света — Некоторые применения интерференции — Дифракция механических волн — Дифракция света — Дифракционная решетка — Поперечность световых волн.

Поляризация света — Поперечность световых волн и электромагнитная теория света — Примеры решения задач. Волновая оптика — Краткие итоги главы

Источник: http://class-fizika.ru/11_90.html

О скорости света для гуманитариев

Скорость света

Есть у меня несколько годных статей по популяризации занимтельных научных штуковин. Многие помнят, возможно, мой бложек  и репосты на одном унылом ресурсе. И тут я, значит, вспомнил про них и думаю, добро пропадает. Попробую закинуть сюда, ну, вдруг кто не в курсе и вообще…

Назло всем специалистам и кандидатам, нарушая все до единой методологии и правила хорошего научного текста, мы пишем доступным языком об открытиях современной (и не очень) науки и прилагаем к этому случайные картинки из интернета.

Сегодня мы поговорим о скорости света, почему она постоянная, почему все «бегают» с этой скоростью и удивляются оной, и что вообще, черт побери, происходит.

Собственно говоря, скорость света начали пытаться измерить еще очень давно. Всякие там Кеплеры и прочие считали, что скорость света бесконечна, а Галилей, например, полагал, что скорость определить можно, но трудно, так как она очень большая. Умный был этот Галилей, короче.

И оказался прав. В 17 веке некто Рёмер неточно рассчитал скорость света, когда наблюдал затмения спутников Юпитера. Ну а в дальнейшем научно-технический прогресс окончательно все расставил по местам, и выяснилось, что скорость света равна приблизительно 300 000 километров в секунду.

Но что же такого в этом значении? Почему эта скорость так важна? Скорость моего лисапеда тоже можно подсчитать, но никто ж над ней не размышляет о вечности и структуре мироздания.

А подвох в том, что скорость света ВСЕГДА равна 300 000 километров в секунду. ВСЕГДА!!!

Исходя из собственного опыта путешествия на лисапедах, представим ситуацию: вы с другом едете на велосипедах: ваш друг чуть быстрее, а вы чуть медленнее. Допустим, со скоростями 20 и 15 км/час соответственно. И если вы, двигаясь со своей скоростью, решите измерить (как-нибудь) скорость друга, то вы выясните, что ваш друг двигается относительно вас со скоростью 5 км/час.

Это простые дошкольные правила сложения скоростей. Каждый интуитивно об этом знает. Если вы увеличите скорость до 20 км/час и нагоните друга, то относительно вас ваш друг будет иметь скорость равную нулю.

Это логично и следует из жизненного опыта. Скорость моторной лодки которая, движется по течению также складывается из собственной скорости лодки и скорости течения реки.

А теперь попробуем проделать тот же фокус со светом. Ваш друг внезапно аннигилировал и превратился в луч света. Вас это не удивило. Вы решили погнаться за ним и сильно для этого постарались.

Вы разогнались до скорости довольно близкой к скорости света. И чисто ради прикола, из научного, так сказать, любопытства, решили тоже замерить скорость вашего бывшего друга.

Разумеется, вы уверены, что получите решение равное скорости света за минусом вашей собственной скорости.

И вот тут вас ждет сюрприз. Расчетно-опытном путем вы выясните, что относительная скорость вашего лучевого приятеля по-прежнему 300 000 км/сек. С какой бы скоростью не двигались лично вы, независимо от направления: параллельно движению света, навстречу свету, перпендикулярно и т.д. – скорость света всегда будет равна 300 000 м/сек.

Впервые вот эту нестыковочку заметили в начале XX века пара ученых Майкельсон и Морли.

Множество опытов впоследствии подтвердили: как не измеряй скорость света, она при любых условиях относительного движения равна своему постоянному значению. Многие люди до сих пор отказываются в это верить, и шарлатаны от науки задвигают теории опровержения постоянства скорости света, обязательно вворачивая про мировой эфир и прочие удивительные нефальсифицируемые гипотезы.

И вот до 1905 года никто не мог объяснить, почему скорость света не хочет быть относительной, пока не пришел Эйнштейн и не догадался, что происходит.

Скорость света, как оказалась, порадовала нас еще несколькими внезапными чудесами. Эйнштейн, ничтоже сумняшеся, поведал миру о других странностях высокоскоростных режимов.

Дело в том, что чем больше наша скорость, тем медленнее идут наши часы. Время замедляется при увеличении скорости. Если вы думаете, что это теоретические и математические шутки, не имеющие реального подтверждения, то вы застряли в Средневековье.

Увы, но реальные опыты были проведены еще в прошлом веке. Брали очень точную пару часов, показывающих одинаковое время. Один экземпляр часов брали на борт реактивного самолета, а вторые часы оставались на земле. Первые часы на огромной скорости пару раз прокатили вокруг планеты. А затем сверили время. Часы из самолета отставали.

И чем ближе кто-то двигается к скорости света, тем медленнее идут его часы (сам-то он этого не замечает и считает, что его часы идут правильно, но это уже парадоксы теории относительности, мы сейчас не о них рассказываем).

Таким образом, если бы кто-нибудь с часами разогнался до скорости света, то время для него бы остановилось. Как говорят физики: часы на фотоне не идут.

И если бы нам была возможность превысить скорость света, то математика убедительно протестует, что в таком случае время пойдет в обратную сторону. Это одна из причин невозможности сверхсветовых скоростей – нарушится причинно-следственная связь, знаете ли. Вы разогнались до скорости 400 000 км/с и оказались в прошлом….

Но разогнаться до скорости света нам мешают более серьезные причины, чем замедление времени. Все, что имеет массу, не может лететь со скоростью света, увы. Как только мы начинаем ускоряться, наша масса увеличивается и, чем мы ближе к скорости света, тем наша масса больше.

И тем больше требуется энергии, чтобы нас разгонять. При значениях очень близких к скорости света наша масса становится практически бесконечной и соответственно для нашего дальнейшего разгона нам требуется бесконечная энергия. В математике это выглядит как деление на ноль.

А почему же фотон летит со скоростью света? – спросит любознательный и смекалистый читатель. Потому что у него нет собственной массы (знатоки, молчите о разнице между массой покоя, инертной массе и прочих нюансах – мы упрощаем, а не загружаем).

Да-да, когда в этих ваших коллайдерах разгоняют электрон, то даже его малюсенькую массу нельзя пульнуть со скоростью света.

Не можем не процитировать какой-то учебник: «Если скорость частицы всего лишь на 90 км/с меньше скорости света, то ее масса увеличивается в 40 раз. Мощные ускорители для электронов способны разгонять эти частицы до скоростей, которые меньше скорости света лишь на 35—50 м/с.

При этом масса электрона возрастает примерно в 2000 раз. Чтобы такой электрон удерживался на круговой орбите, на него со стороны магнитного поля должна действовать сила, в 2000 раз большая, чем можно было бы предполагать, не учитывая зависимости массы от скорости.

« Поразмыслите об этом, прежде чем строить планы по созданию машины времени.

Поэтому когда вы в очередной раз читаете, что кто-то открыл что-то, превышающее скорость света, и теперь продает на основе этой технологии торсионные препараты от несварения желудка, вспомните нашу статью.

Скорость света это удивительная физическая величина. Если, например, время умножить на скорость света (получив «метрические» значения), то получится та самая четвертая ось четырехмерного пространства, которым оперирует вся теория относительности: длина, ширина, высота, время. Это крайне зубодробительная теория, но выводы из нее шикарны и до сих пор поражают неокрепшие умы юных физиков.

Отметим, что современная физика не отрицает возможность преодоления скорости света. Но все эти предположения касаются не преодоления скорости «в лоб». Речь идет о перемещении в пространстве за время меньшее, чем его преодолеет свет. А это может быть в результате всякого рода неоткрытых или неразгаданных взаимодействий (типа квантовой телепортации), или за счет искривления пространства (типа гипотетических кротовых нор), или существования частиц, у которых время идет в обратном направлении (типа теоретических тахионов). Но пока только попадается плохое оптоволокно. На этом у нас все.

NB: Все изображения взяты из гугла (поиск по картинкам) — авторство определяется там же.

Незаконное копирование текста преследуется, пресекается, ну, и сами знаете…

Если пост понравился, то притащу еще пару тройку про кванты и прочие няшненькие вещи, дорогие любители науки..Привет всем, кто меня узнал.

Источник: https://pikabu.ru/story/skorost_sveta_dlya_gumanitariev_5743682

Спросите Итана: почему скорость света такая, какая есть?

Скорость света

Вне зависимости от цвета, длины волны или энергии, скорость, с которой свет перемещается в вакууме, остаётся постоянной. Она не зависит от местоположения или направлений в пространстве и времени Ничто во Вселенной не способно двигаться быстрее света в вакууме. 299 792 458 метров в секунду.

Если это массивная частица, она может лишь приблизиться к этой скорости, но не достичь её; если это безмассовая частица, она всегда должна двигаться именно с этой скоростью, если дело происходит в пустом пространстве.

Но откуда нам это известно и что тому причиной? На этой неделе наш читатель задаёт нам три связанных со скоростью света вопроса:Почему скорость света конечна? Почему она именно такая, какая есть? Почему не быстрее и не медленнее? Вплоть до XIX века у нас даже не было подтверждений этим данным.

Иллюстрация света, проходящего через призму и разделяющегося на чёткие цвета.

Если свет проходит через воду, призму или любую другую среду, он разделяется на разные цвета. Красный цвет преломляется не под тем углом, под которым это делает синий, из-за чего и возникает что-то типа радуги. Это можно наблюдать и вне видимого спектра; инфракрасный и ультрафиолетовый свет ведут себя так же.

Это было бы возможно, только если скорость света в среде отличается для света разных длин волн/энергий. Но в вакууме, вне всякой среды, всякий свет перемещается с одной и той же конечной скоростью.

Разделение света на цвета происходит из-за разных скоростей движения света, зависящих от длины волны, через среду

До этого додумались только в середине XIX века, когда физик Джеймс Клерк Максвелл показал, что на самом деле представляет собой свет: электромагнитную волну.

Максвелл впервые поставил независимые явления электростатики (статичные заряды), электродинамики (движущиеся заряды и токи), магнитостатики (постоянные магнитные поля) и магнитодинамики (наведённые токи и переменные магнитные поля) на единую, объединённую платформу. Управляющие ею уравнения – уравнения Максвелла – позволяют вычислять ответ на простой вроде бы вопрос: какие типы электрических и магнитных полей могут существовать в пустом пространстве вне электрических или магнитных источников? Без зарядов и без токов можно было бы решить, что никакие – но уравнения Максвелла удивительным образом доказывают обратное.

Табличка с уравнениями Максвелла с обратной стороны его памятника

Ничто – одно из возможных решений; но возможно и другое – колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля. У них есть определённые амплитуды. Их энергия определяется частотой колебаний полей.

Они передвигаются с определённой скоростью, определяемой двумя константами: ε0 и µ0. Эти константы определяют величину электрического и магнитного взаимодействий в нашей Вселенной. Получаемое уравнение описывает волну.

И, как у всякой волны, у неё есть скорость, 1/√ε0 µ0, которая оказывается равной c, скорости света в вакууме.

Колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля, распространяющиеся со скоростью света, определяют электромагнитное излучение

С теоретической точки зрения, свет – безмассовое электромагнитное излучение. По законам электромагнетизма он обязан двигаться со скоростью 1/√ε0 µ0, равной c – вне зависимости от остальных его свойств (энергии, импульса, длины волны).

ε0 можно измерить, сделав и измерив конденсатор; µ0 точно определяется из ампера, единицы электрического тока, что и даёт нам c.

Та же фундаментальная константа, впервые выведенная Максвеллом в 1865 году, с тех пор появлялась во многих других местах:

• Это скорость любой безмассовой частицы или волны, включая гравитационные. • Это фундаментальная константа, соотносящая ваше движение в пространстве с вашим движением во времени в теории относительности.

• И это фундаментальная константа, связывающая энергию с массой покоя, E = mc2

Наблюдения Рёмера снабдили нас первыми измерениями скорости света, полученными при помощи геометрии и измерения времени, необходимого на то, чтобы свет прошёл расстояние, равное диаметру орбиты Земли.

Первые измерения этой величины были сделаны во время астрономических наблюдений. Когда луны Юпитера входят и выходят в положение затмения, они кажутся видимыми или невидимыми с Земли в определённой последовательности, зависящей от скорости света.

Это привело к первому количественному измерению с в XVII веке, которое определили в 2,2 × 108 м/с. Отклонение звёздного света – из-за движения звезды и Земли, на которой установлен телескоп – тоже можно оценить численно.

В 1729 году этот метод измерения с показал значение, отличающееся от современного всего на 1,4%. К 1970-м с определили равным 299 792 458 м/с с погрешностью всего в 0,0000002%, большая часть которой проистекала из невозможности точного определения метра или секунды.

К 1983 году секунду и метр переопределили через с и универсальные свойства излучения атома. Теперь скорость света равна точно 299 792 458 м/с.

Атомный переход с орбитали 6S, δf1, определяет метр, секунду и скорость света

Так почему же скорость света не больше и не меньше? Объяснение такое же простое, как указанный на рис. Выше атом. Атомные переходы происходят так, как происходят, из-за фундаментальных квантовых свойств строительных блоков природы.

Взаимодействия атомного ядра с электрическим и магнитными полями, создаваемыми электронами и другими частями атома приводят к тому, что разные энергетические уровни оказываются чрезвычайно близко друг к другу, но всё же немного отличаются: это называется сверхтонким расщеплением.

В частности, частота перехода сверхтонкой структуры цезия-133 испускает свет совершенно определённой частоты.

Время, за которое проходит 9 192 631 770 таких циклов, определяет секунду; расстояние, которое свет проходит за это время, равняется 299 792 458 метрам; скорость, с которой распространяется этот свет, определяет с.

Пурпурный фотон переносит в миллион раз больше энергии, чем жёлтый. Космический гамма-телескоп Ферми не показывает никаких задержек какого-либо из фотонов, пришедших к нам от гамма-всплеска, что подтверждает постоянство скорости света для всяких энергий Чтобы поменять это определение, нужно, чтобы с этим атомным переходом или с идущим от него светом произошло что-то фундаментально отличное от его текущей природы. Этот пример также даёт нам ценный урок: если бы атомная физика и атомные переходы работали бы в прошлом или на дальних расстояниях по-другому, это было бы свидетельством изменения скорости света со временем. Пока что все проводимые нами измерения лишь накладывают дополнительные ограничения на постоянство скорости света, и эти ограничения весьма строги: изменение не превосходит 7% от текущего значения за последние 13,7 млрд лет. Если бы по какой-то из этих метрик скорость света оказалась не постоянной, или же она отличалась бы у разных типов света, это привело бы к крупнейшей научной революции со времён Эйнштейна. Вместо этого все свидетельства говорят в пользу Вселенной, в которой все законы физики всегда, везде, во всех направлениях, во все времена остаются одинаковыми, включая и физику самого света. В каком-то смысле это тоже достаточно революционные сведения.

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

  • Спросите Итана
  • свет
  • Скорость света

Источник: https://habr.com/post/406643/

Скорость света

Скорость света

Скорость света в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме, постоянная и конечная. В физике традиционно обозначается латинской буквой «c».

Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом.

По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

04.03.2020, Дарья Елецкая

Межзвездные путешествия — непростая задача для будущих исследователей Вселенной. Из-за огромных расстояний, разделяющих звездные системы друг от друга, транспорту будущего придется научиться использовать неподвластные современному человеку физические силы.

Но что, если все может оказаться гораздо проще, чем это считалось ранее? Как сообщает портал Universe Today, наши потомки смогут путешествовать между звездами на кораблях, движущихся сквозь время и пространство со скоростью света.

Для того, чтобы претворить мечту человечества в реальность, транспортные средства будущего будут использовать гиперскоростные звезды и метеоры, ускоренные взрывами сверхновых. Так неужели мечта человечества о покорении Вселенной может однажды осуществиться?

Читать далее

10.12.2019, Дарья Елецкая

Феномен замедления времени в космосе долгое время волновал умы писателей-фантастов со всего мира.

Вместе с тем, вопрос о том, как сильно воздействует перемещение астронавта со скоростью света на его биологические часы, впервые был описан в так называемом “парадоксе близнецов”, в котором астронавт совершает путешествие в космос на скоростной ракете, а его брат-близнец остается на Земле.

Считается, что по возвращению на голубую планету, астронавт обнаружит своего близнеца постаревшим, в то время как внешний вид самого космического путешественника останется едва ли не прежним.

Читать далее

19.01.2019, Николай Хижняк

Скорость света – это предел, с которым может двигаться материальный объект в пространстве, если, конечно, не брать в расчет гипотетические кротовые норы, с помощью которых, согласно предположениям, объекты могут перемещаться в пространстве еще быстрее.

В идеальном вакууме частица света, фотон, может двигаться со скоростью 299 792 километра в секунду или примерно 1,079 миллиарда километров в час. На первый взгляд может показаться, что это удивительно быстро. Нет, это на самом деле быстро.

Но в масштабах космоса такая скорость может быть мучительно медленной, особенно, если речь идет о радиосообщениях и полетах на другие планеты, в частности, находящиеся за пределами нашей Солнечной системы.

Читать далее

26.01.2017, Николай Хижняк

Скорость света является одной из важнейших констант в физике. Впервые оценку скорости света дал датский астроном Олаф Рёмер в 1676 году.

Однако ученым, который установил, что именно свет задает верхний предел достижимой скорости в нашей Вселенной, равняющийся почти 300 000 километрам в секунду, был именно Альберт Эйнштейн.

И все же, согласно той же теории Эйнштейна, все в этой Вселенной относительно, включая движение. Это, в свою очередь, заставляет задать вполне логичный вопрос: какова же скорость полной противоположности света – тьмы?

Читать далее

03.10.2016, Илья Хель

Когда варп-двигатель впервые был представлен людям — вместе с дебютом «Звездного пути» пятьдесят лет назад — наше понимание Вселенной принципиально отличалось от нынешнего.

С одной стороны, варп-двигатель был просто сюжетным устройством, которое позволяло добираться до далеких звезд весьма быстро; казалось, он нарушает принцип относительности Эйнштейна и физически невозможен.

С другой стороны, казалось, что гравитация стягивает далекие галактики между собой, и если двигаться достаточно близко к скорости света, можно достичь чего угодно. Тогда мы не знали о темной энергии.

Читать далее

17.09.2016, Владимир Кузнецов

Группа ученых из МГУ имени М. В. Ломоносова и Технологического университета Тойохаши (что в Японии) разработала метод управления поворотом поляризации света.

Как утверждают физики, это сможет открыть новые горизонты для развития систем оптической обработки информации, а также поможет в создании нового типа сверхбыстрых компьютеров, в которых вместо электронов работают фотоны.

Читать далее

Источник: https://Hi-News.ru/tag/skorost-sveta

Что такое скорость света, чему она равна и как её измеряют? Фото, видео

Скорость света

Что такое скорость света и как её измеряют?

О существовании такого понятия как «скорость света» многие знают еще с раннего детства. Большому количество людей известно, что свет движется очень быстро. Но не все знают подробно о явлении.

Многие обращали внимание на то, что во время грозы существует задержка между вспышкой молнии и звуком грома. Вспышка, как правило, доходит до нас быстрее. Это значит, что она имеет большую быстроту, чем звук. С чем это связано? Что такое скорость света и как её измеряют?

Что такое скорость света?

Давайте для начала разберемся, что такое скорость света. По-научному, это такая величина, которая показывает, насколько быстро перемещаются лучи в вакууме или в воздухе. Также нужно знать, что такое свет. Это излучение, которое воспринимается человеческим глазом. От условий окружения зависит быстрота, а также другие свойства, например, преломление.

Интересный факт: свету требуется 1,25 секунды, чтобы добраться от Земли до спутника — Луны.

Свет от Луны до Земли

Если объяснять простыми словами, скорость света — это временной промежуток, за который световой луч проходит какое-нибудь расстояние. Время принято измерять в секундах.

Однако некоторые ученые используют другие единицы измерения. Расстояние тоже измеряется по-разному. В основном — это метр. То есть, эту величину считают в м/с.

Физика объясняет это следующим образом: явление, которое движется с определенной скоростью (константой).

Интересно:

Как совершить путешествие во времени? Фото и видео

Чтобы легче понять, давайте рассмотрим следующий пример. Велосипедист движется с быстротой 20 км/ч. Хочет догнать водителя автомобиля, скорость которого равна 25 км/ч. Если посчитать, то авто едет на 5 км/час быстрее велосипедиста. С лучами света дела обстоят по-другому. Как быстро бы ни двигался первый и второй человек, свет, относительно них, движется с постоянной быстротой.

Чему равна скорость света?

При нахождении не в вакууме, на свет влияют различные условия. Вещество, через которое проходят лучи, в том числе. Если без доступа кислорода количество метров в секунду не меняется, то в среде с доступом воздуха значение изменяется.

Свет проходит медленнее через различные материалы, такие как стекло, вода и воздух. Этому явлению дан показатель преломления, чтобы описать, насколько они замедляют движение света.

Стекло имеет показатель преломления 1,5, это означает, что свет проходит через него со скоростью около 200 тысяч километров в секунду.

Показатель преломления воды равен 1,3, а показатель преломления воздуха — немного больше 1, это означает, что воздух лишь слегка замедляет свет.

Следовательно, после прохождения через воздух или жидкость, скорость замедляется, становится меньшей, чем в вакууме. Например, в различных водоемах скорость передвижения лучей равна 0.75 от быстроты в космосе. Также при стандартном давлении в 1.01 бар, показатель замедляется на 1.5-2%. То есть при земных условиях скорость света варьируется в зависимости от условий окружающей среды.

Интересно:

Почему растворяется сахар?

Для такого явление придумали специальное понятие — рефракция. То есть преломление света. Это широко используется в различных изобретениях. К примеру, рефрактор — телескоп с оптической системой. Также с помощью этого также создают бинокли и другую технику, суть работы которой заключается в использовании оптики.

Телескоп рефрактор – схема

В общем, меньше всего луч поддается рефракции, проходя через обычный воздух. При прохождении через специально созданное оптическое стекло, скорость равняется примерно 195 тысячам километров в секунду. Это практически на 105 тыс км/сек меньше константы.

Самое точное значение скорости света

Ученые-физики за многие года накопили опыт исследований скорости световых лучей. На текущий момент самое точное значение скорости света — 299 792 километра в секунду. Константу установили в 1933 году. Число актуально до сих пор.

Однако в дальнейшем появились сложности с определением показателя. Это произошло из-за погрешностей в измерении метра. Сейчас само значение метра напрямую зависит от скорости света. Оно равняется расстоянию, которое лучи проходят за определенное количество секунд — 1/скорость света.

Чему равна скорость света в вакууме?

Поскольку в вакууме на свет не влияют различные условия, то его скорость не меняется так, как на Земле. Скорость света в вакууме равна 299 792 километрам в секунду. Такой показатель является предельным. Считается, что ничто в мире не может двигаться быстрее, даже космические тела, которые движутся довольно быстро.

К примеру, истребитель, Боинг Х-43, который превышает скорость звука практически в 10 раз (более 11 тысяч км/ч), летит медленнее, чем луч. Последний движется более, чем на 96 тысяч километров в час быстрее.

Как измеряли скорость света?

Самые первые ученые пытались измерить эту величину. Использовались разные методы. В период античности, люди науки считали, что она бесконечная, поэтому невозможно ее измерить. Это мнение осталось надолго, вплоть до 16-17 века. В те времена появились другие ученые, которые предположили, что луч имеет конец, а скорость можно измерить.

Измерение скорости света

Известный астроном из Дании Олаф Рёмер вывел знания о скорости света на новый уровень. Он заметил, что затмение спутника Юпитера опаздывает. Ранее на это никто не обращал внимание. Следовательно, он решил посчитать скорость.

Он выдвинул приблизительную скорость, которая была равна около 220 тысячам километров в секунду. Позже за исследования взялся ученый из Англии Джеймс Брэдли. Он хоть и не был прав полностью, но слегка приблизился к текущим результатам исследований.

Через некоторое время большинство ученых заинтересовались этой величиной. В исследованиях принимали участие люди науки из разных стран.

Однако до 70-х годов 20 века каких либо грандиозных открытий не было. С 1970-х, когда придумали лазеры и мазеры (квантовые генераторы), ученые провели исследования и получили точную скорость.

Текущее значение актуально с 1983 года. Исправляли лишь небольшие погрешности.

Интересно:

Как изучают Солнце? Описание, фото и видео

Опыт Галилея

Ученый из Италии удивил всех исследователей тех годов простотой и гениальностью своего опыта. Ему удалось провести измерение скорости света с помощью обычных инструментов, которые находились у него под рукой.

Он и его помощник взобрались на соседние холмы, предварительно рассчитав расстояние между ними. Они взяли зажженные фонари, оборудовали их заслонками, которые открывают и закрывают огни. Поочередно, открывая и закрывая свет, они пытались рассчитать скорость света. Галилео и помощник заранее знали, с какой задержкой будут открывать и закрывать свет. Когда один открыл, то же делает и другой.

Однако эксперимент был провальным. Чтобы все получилось, ученым пришлось бы стоять на расстоянии в миллионы километров друг от друга.

Как измеряли скорость света?

Опыт Рёмера и Брэдли

Об этом исследовании уже было кратко написано выше. Это один из самых прогрессивных опытов того времени. Рёмер использовал знания в астрономии для измерения скорости передвижения лучей. Происходило это в 76 году 17 века.

Исследователь наблюдал за Ио (спутником Юпитера) через телескоп. Он обнаружил следующую закономерность: чем больше наша планета удаляется от Юпитера, тем большая задержка в затмении Ио. Самая большая задержка составляла 21-22 минуты.

Предположив, что спутник отдаляется на расстояние равное длине диаметра орбиты, ученый разделил расстояние на время. В результате он получил 214 тысячи километров в секунду. Хоть это исследование считается очень примерным, потому что расстояние было примерным, он приблизился к текущему показателю.

В 18-м веке Джеймс Брэдли дополнил исследование. Для этого он использовал аберрацию — изменение положение космического тела из-за движения Земли вокруг солнца. Джеймс измерил угол аберрации, и, зная скорость движения нашей планеты, он получил значение в 301 тысячу километров в секунду.

Опыт Физо

Исследователи и обычные люди отнеслись скептически к опыту Рёмера и Джеймса Брэдли. Несмотря на это, результаты были самыми близкими к истине и актуальными на протяжении более века.

В 19 столетии Арман Физо — ученый из столицы Франции, Парижа, внес вклад в измерение этой величины. Он использовал способ вращающегося затвора.

Также, как и Галилео Галилей со своим помошником, Физо не наблюдал за небесными телами, а исследовал в лабораторных условиях.

Опыт Физо

Принцип опыта прост. Луч света был направлен на зеркало. Отражаясь от него, свет проходил через зубцы колеса. Затем попадал на еще одну отражающую поверхность, которая была расположена на расстоянии в 8.6 км. Колесо вращали, увеличивая скорость, пока луч не будет видно в следующем зазоре. После подсчетов, ученый получил результат 313 тыс. км/сек.

Позже исследование повторил французский физик и астроном Леон Фуко, получив результат 298 тыс. км/сек. Самый точный результат на то время. Позже измерения проводились при помощи лазеров и мазеров.

Возможна ли сверхсветовая скорость?

Существуют объекты быстрее скорости света. Например, солнечные зайчики, тень, колебания волн. Хотя теоретически они могут развить сверхсветовую скорость, энергия, которую они выделяют не будет совпадать с вектором их движения.

Интересно:

Венера — поверхность, метеориты, инфографика и видео

Если световой луч проходит, к примеру, через стекло или воду, то его могут обогнать электроны. Они не ограничены в скорости передвижения. Следовательно, в таких условиях свет не движется быстрее всех.

Этот феномен назван эффектом Вавилова — Черенкова. Чаще всего встречается в глубоких водоемах и реакторах.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: https://kipmu.ru/skorost-sveta/

Booksm
Добавить комментарий