Системы в термодинамике

Системы в термодинамике

Системы в термодинамике

Определение 1

Термодинамическая система — совокупность и постоянство макроскопических физических тел, которые всегда взаимодействуют между собой и с другими элементами, обмениваясь с ними энергией.

Под системой в термодинамике ими принято понимать макроскопические физические формы, которые состоят из огромного количества частиц, не предполагающие применение макроскопических показателей для описания каждой отдельного элемента. Нет определенных ограничений в природе материальных тел, являющиеся составными компонентами таких концепций. Они могут быть представлены в виде атомов, молекул, электронов, ионов и фотонов

Термодинамические системы бывают трех основных видов:

  • изолированные – обмен с веществом или энергией с окружающей средой не выполняется;
  • закрытые — тело не взаимосвязано с окружающей средой;
  • открытые — есть и энерго- и массообмен с внешним пространством.

Энергию любой термодинамической системы можно разделить на зависящую от положения и движения системы энергию, а также энергию, которая определяется движением и взаимодействием микрочастиц, образующих концепцию. Вторую часть называют в физике внутренней энергией системы.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Особенности термодинамических систем

Рисунок 1. Типы термодинамических систем. Автор24 — интернет-биржа студенческих работ

Замечание 1

В качестве отличительных характеристик систем в термодинамике можно привести любой предмет, наблюдаемый без использования микроскопов и телескопов.

Чтобы предоставить полноценное описание такой концепции, необходимо подобрать макроскопические детали, посредством которых возможно точно определить давление, объем, температуру, величину магнитной индукции, электрическую поляризацию, химический состав, массу движущихся компонентов.

Для любых термодинамических систем есть условные, либо реальные пределы, отделяющие их от окружающей среды. Вместо них часто рассматривают понятие термостата, которое характеризуется таким высоким показателем теплоемкости, что в случае теплообмена с анализируемой концепцией температурный параметр сохраняет неизменное значение.

В зависимости от общего характера взаимодействия термодинамической системы с окружающей средой, принято выделять:

  • изолированные виды, которые не обмениваются ни веществом, ни энергией с внешней средой;
  • адиабатически изолированные- системы, не совершающие обмена с внешней средой веществом, но вступающие в обмен энергией;
  • закрытые системы- те, у которых нет обмена с веществом, допускается только незначительное изменение величины внутренней энергии;
  • открытые системы — те что характеризуются полноценной передачей энергии, вещества;
  • частично открытые – обладают полупроницаемыми перегородками, поэтому не в полной мере участвуют в материальном обмене.

В зависимости от формулировки, значения термодинамической концепции, могут подразделяться на простые и сложные варианты.

Внутренняя энергия систем в термодинамике

Рисунок 2. Внутренняя энергия термодинамической системы. Автор24 — интернет-биржа студенческих работ

Замечание 2

К основным термодинамическим показателям, которые непосредственно зависят от массы системы, относят внутреннюю энергию.

Она включает в себя кинетическую энергию, обусловленную движением элементарных частиц вещества, а также потенциальную энергию, появляющуюся во время взаимодействия молекул между собой.

Этот параметр всегда является однозначным.

То есть значение и реализация внутренней энергии постоянны всякий раз, как концепция оказывается в нужном состоянии, независимо от того, каким методом это положение было достигнуто.

В системах, химический состав которых в процессе энергетических преобразований остается неизменным, при определении внутренней энергии важно учитывать только энергию теплового движения материальных частиц.

Хорошим примером такой системы в термодинамике является идеальный газ.

Свободная энергия есть определенная работа, которую могло бы совершить физическое тело в изотермическом обратимом процессе, или свободная энергия представляет собой максимально возможной функционал, который может совершить концепция, обладая существенным запасом внутренней энергии. Внутренняя энергия системы приравнивается сумме связанное и свободной напряженности.

Определение 2

Связанная энергия – это та часть внутренней энергии, которая не способна самостоятельно превратиться в работу, – это обесцененный элемент внутренней энергии.

При одной и той же температуре указанный параметр увеличивается с ростом энтропия. Таким образом, энтропия термодинамической системы есть мера обеспеченности ее начальной энергии. В термодинамике есть еще определение – энергетическая потеря в стабильной изолированной системе

Обратимый процесс является термодинамическим процессом, который может быстро проходить как в обратном, так и в прямом направлении, проходя через одинаковые промежуточные положения, причем концепция в итоге возвращается в исходное состояние без затрат внутренней энергии, и в окружающем пространстве не остается макроскопических изменений.

Обратимые процессы дают максимальную работу. Самый лучший результат работы от системы на практике получить невозможно. Это придает обратимым явлениям теоретическую значимость, которая протекает бесконечно медленно, и можно только на небольшие расстояния приблизиться к нему.

Определение 3

Необратимым в науке называется процесс, который нельзя осуществить в противоположную сторону через все те же промежуточные состояния.

Все реальные явления в любом случае необратимы. Примеры таких эффектов: термодиффузия, диффузия, вязкое течение и теплопроводность. Переход кинетической и внутренней энергии макроскопического движения через постоянное трение в теплоту, то есть в саму систему, является необратимым процессом.

Переменные состояния систем

Рисунок 3. Переменные состояния. Автор24 — интернет-биржа студенческих работ

Состояние любой термодинамической системы можно определить по текущему сочетанию ее характеристик или свойств. Все новые переменные, которые в полной мере определяются только в определенный момент времени и не зависят от того, как именно концепция пришла в это положение, называются термодинамическими параметрами состояния или основными функциями пространства.

Система в термодинамике считается стационарной, если переменные значения с течением времени остаются стабильными и не изменяются. Один из вариантов стационарного состояния — это термодинамическое равновесие.

Любое, даже самое незначительное изменение в концепции, — уже физический процесс, поэтому в нем может быть от одного до нескольких переменных показателей состояния.

Последовательность, в которой состояния системы систематически переходят друг в друга, носит название «путь процесса».

К сожалению, путаница с терминами и детальным описанием все еще существует, ибо одна и та же переменная в термодинамике может быть, как независимой, так и итогом сложения сразу нескольких функций системы. Поэтому такие термины, как «параметр состояния», «функция состояния», «переменная состояния» могут иногда рассматриваться в виде синонимов.

Источник: https://spravochnick.ru/fizika/termodinamika/sistemy_v_termodinamike/

Термодинамические системы и их классификация. Параметры системы. Первый закон термодинамики

Системы в термодинамике

Термодинамические системы и их классификация. Параметры системы. Первый закон термодинамики. Понятие о термодинамической функции состояния. Внутренняя энергия и энтальпия.

Применение первого закона термодинамики  к изохорному, изобарному, изотермическому и адиабатному процессам. стандартные условия. Стандартная энтальпия образования вещества. Закон Гесса и следствия из него.

Теплой эффект химической реакции. Термохимические расчеты. Закон Кирхгоффа.

Термодинамическая система – часть пространства, выделенная для рассмотрения и отделенная от окружающей среды реальной (межфазовой) или условной границей. Системы могут быть изолированными, закрытыми (замкнутыми) и открытыми.

Изолированная  система характеризуется постоянством массы m, объема V, энергии U (m=соnst, V= соnst, U= соnst) она не обменивается с окружающей средой ни веществом, ни энергией. Закрытая система обменивается с окружающей средой только энергией и не обменивается веществом (m= соnst, V≠ соnst, U≠соnst).

В открытой системе осуществляются оба указанных вида обмена с окружающей средой (m≠соnst, V≠соnst, U≠соnst).

Состояние системы определяется ее физическими и химическими свойствами (объем, давление, температура, химический состав, внутренняя энергия, энтальпия, энтропия и др.), которые подразделяются на параметры состояния и функции состояния. Параметры состояния – свойства системы, выбранные в качестве независимых переменных.

Функция состояния – величина, определяемая этими параметрами, однозначно характеризует систему и не зависит от пути ее перехода из одного состояния в другое. (если для 1 моля идеального газа параметрами состояния выбрать давление и температуру, то функцию состояния объем можно рассчитать по ура нению состояния Менделеева-Клапейрона РV=RТ).

Первый закон термодинамики вытекает из болееобщего закона сохранения энергии. Для термодинамической системы он формулируется следующим образом: количество теплоты Q, сообщенное системе, расходуется на увеличение  ее внутренней энергии  êU и на совершение работы W системой, т.е.

Q = êU + W

Для элементарных процессов с бесконечно малыми изменениями параметров принимает вид dQ=dU+dW= dU+рdV+dW! Где рdV –работа расширения системы; dW! – сумма других видов работ (электрической, сил поверхностного натяжения и др). Внутренняя энергия соответствует функции состояния системы, поэтому перед символом U поставлен знак полного дифференциала.

Теплота  и работа не являются функциями состояния, и их бесконечно малые количества обозначены буквой d. Вышеприведенные уравнения описывают первый закон термодинамики в интегральной и дифференциальной формах соответственно. В  термомеханических системах при протекании процессов совершается только работа расширения или сжатия, т.е. dW!=0.

и dQ= dU+рdV

Согласно этому закону внутренняя энергия является однозначной функцией состояния вещества (или совокупности вещества) и зависит только от параметров состояния, тогда как по отдельности каждая из величин, определяющих внутреннюю энергию (теплота Q, работа W) зависит от пути процесса, переводящего реагенты в продукты.

Другой функцией состояния системы является энтальпия – тепловой эффект реакции при постоянном давлении (êН).

Теплота Q, выделившаяся или поглощенная в химической реакции, называется тепловым эффектом реакции. Его можно измерить в специальных приборах – калориметрах.

Изотермический процесс (Т=соnst) в идеальном газе силы межмолекулярного взаимодействия равны нулю. Внутренняя энергия идеального газа зависит от  температуры, количества вещества и не зависит от давления и объема, поэтому для данных условий U=соnst; dU=0

dQТ= dW = рdV  ; QТ= W теплота, сообщенная системе, в изотермическом процессе полностью расходуется на совершение работы расширения. используя р=RТ⁄V и проинтегрировав получим W= RТln(V⁄V1 = RТln(р ⁄р1), т.к. по закону Бойля-Мариотта (р V)Т = соnst

Изохорный процесс (V= соnst) при постоянном объеме dV=0, значит работа расширения газа dW= рdV=0 и

dQ V = dU или Q  = U2- U1 =∆ U

В изохорном процессе теплота, сообщенная системе, полностью расходуется на увеличение ее внутренней энергии и характеризует изменение состояния системы.

Изобарный процесс (р= соnst) постоянную величину р можно внести под знак дифференциала, поэтому работа расширения dW = рdV  =dW = d(рV) и

dQр=dU+  d(рV) = d(U +рV)= ∆Н

Величины рV и U характеризуют состояние системы. Их сума Н=U+рV также соответствует функции состояния, которую называют энтальпией. По физическому смыслу энтальпия есть энергия расширения системы.

В изобарном процессе теплота, сообщенная системе расходуется на увеличение внутренней энергии и н совершение работы расширения против сил внешнего давления и характеризует изменение состояния системы.

Сложные вещества можно условно или реально синтезировать из соответствующего количества простых веществ в стандартных термодинамических условиях. За стандартное состояние твердого вещества при Т=2980К принимают его  чистый кристалл под давлением р=101,3кПа.

За стандартное состояние жидкого вещества при при Т=2980К принимают чистую жидкость под давлением р=101,3кПа.

Для газообразного при этой же температуре вещеста  стандартным является состояние условного идеального газа, имеющего летучесть f=101,3 кПа и свойства бесконечно разреженного газа.

Стандартной энтальпией образования вещества (∆f Н0298) называют тепловой эффект реакции образования 1 моль данного вещества из соответствующего количества простых веществ, находящихся в стандартных условиях.

Русский ученый Г.И.Гесс в 1840г экспериментально установил основной закон термохимии: тепловой эффект химической реакции определяется только видом и состоянием исходных веществ и продуктов. Но не зависит от пути процесса.

Первое следствие: тепловой эффект реакции равен сумме энтальпий образования продуктов за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов.

êrН298О = Sn'i êfН' 298i О -Sni êfН 298 i О

                            i                                  i

Второе следствие: тепловой эффект реакции равен сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов с учетом стехиометрических коэффициентов.

êrН298О = Sn'i êсН' 298i О -Sni êсН 298 i О

                            i                                  i

Источник: https://studizba.com/lectures/107-himija/1452-jekzamenacionnaja-teorija-po-himii/26952-termodinamicheskie-sistemy-i-ih-klassifikacija-parametry-sistemy-pervyj-zakon-termodinamiki.html

Термодинамическая система

Системы в термодинамике

Надо иметь в виду, что работа и теплота не являются энергией или ее видом, а является лишь двумя способами передачи энергии, двумя способами обмена энергией. Они могут вызывать во взаимодействующих телах изменение движения материи любой формы.

1.2.  Термодинамическая система

Термодинамической системой (ТС) называется совокупность тел, обменивающихся между собой и окружающей средой энергией и веществом.

Объектом изучения может быть вещество — термодинамическое рабочее тело (ТРТ), как частный случай ТС, или совокупность тел, состоящая из источника тепла, холодильника, ТРТ и аккумулятора работы и составляющая ТС. Тела, не входящие в состав исследуемой ТС, объединяются общим понятием «окружающая среда».

На границе ТС и окружающей среды происходит взаимодействие между ТС и окружающей средой, которое заключается в передаче энергии и вещества в ТС и из нее. Число воздействующих на ТС сил определяется числом степеней свободы ТС-N.

Если на ТС воздействуют только силы нормального давления – р и температуры – Т, т. е. число степеней свободы ТС N=2, то такая ТС называется простой или термодеформационной.

Примером такой ТС может служить рабочее тело в цилиндре поршневого двигателя. Если число степеней свободы ТС N>2, то такие ТС называются сложными.

Например, если кроме давления р и температуры Т на ТС воздействуют электрические и магнитные поля (N=4).

В зависимости от характера взаимодействия между ТС и окружающей средой, т. е. в зависимости от свойств границы между ТС и окружающей средой различают:

— закрытые или замкнутые термодинамические системы, если граница ТС непроницаема для вещества, т. е. отсутствует массообмен между ТС и окружающей средой;

— открытые термодинамические системы, если имеется массообмен между ТС и окружающей средой и через границу ТС переходит вещество;

— проточные термодинамические системы, как частный случай открытых ТС, когда на одних участках границы вещество входит в ТС, а на других участках границы выходит из ТС;

— изолированные ТС, когда границу системы не пересекают ни потоки вещества, ни потоки энергии;

— адиабатные ТС, когда система не обменивается с окружающей средой теплотой, т. е. термодинамическая система находится в тепловой изоляции.

В термодинамике обычно рассматриваются неподвижные макроскопические ТС в системе координат, связанной с центром масс ТС.

1.3.  Вещество. Фазы. Агрегатные состояния

Под веществом понимается материя, обладающая массой покоя.

Чистое вещество – это вещество, состоящее из одинаковых структурных частиц, т. е. из частиц одинакового вида. При этом под частицами понимаются молекулы, атомы, положительные или отрицательные ионы, электроны.

Индивидуальным веществом называется чистое вещество в определенном фазовом состоянии. Например, С (графит), С (алмаз), С (газ).

Тела могут находиться в ТС в различных агрегатных состояниях: твердом (т), жидком (ж) и газообразном (г). Плазма с точки зрения термодинамики – это ионизированный газ со специфическими свойствами. Пар – это газ, контактирующий со своей конденсированной фазой, и деление на пар и газ является условным. Примеры обозначения агрегатного состояния: СО2 (т), Н2О (ж), Н2О (г).

Фаза – это гомогенная часть гетерогенной ТС, ограниченная поверхностью раздела. Гетерогенная ТС – это ТС, состоящая из двух и более фаз.

Гомогенная ТС – это ТС, между любыми частями которой нет поверхностей раздела. Гомогенная ТС, во всех частях которой свойства системы одинаковые, называется однородной ТС.

Фаза, содержащая одно вещество, называется чистой фазой.

Конденсированная ТС – это ТС, состоящая только из твердых и жидких фаз.

Многокомпонентрая ТС – это ТС, состоящая из двух и более индивидуальных веществ (компонентов ТС). Такими ТС являются растворы, сплавы и смеси. Если в фазе находится несколько газообразных веществ, то это газовая смесь.

1.4.  Состояние термодинамической системы. Параметры и функции состояния.

Состояние рассматриваемой ТС определяется совокупностью физических величин, характеризующих данную ТС. По изменениям этих величин можно проследить за изменениями в ТС при ее взаимодействии с окружающей средой.

Состояние ТС является равновесным, если в ТС наблюдается равномерное распределение физических величин. Так, для простой ТС во всех ее точках должны быть одинаковыми температура и давление.

Если в ТС идут процессы выравнивания неравномерностей физических величин, то состояние системы является неравновесным.

Состояние ТС изменяется в результате обмена энергией и массой между ТС и окружающей средой.

Параметрами и функциями состояния ТС называют физические величины, значения которых не зависят от пути, по которому ТС пришла в данное состояние, т. е. от предыстории ТС.

К параметрам состояния относятся величины, которые имеют простую физическую природу и могут быть непосредственно измерены: температура Т, давление р, плотность r и удельный объем v. Эти параметры выражают интенсивные свойства.

Функции состояния имеют сложную физическую природу и не могут быть непосредственно измерены. К ним относятся: внутренняя энергия U, энтальпия Н, энтропия S и другие величины.

На ТС при взаимодействии ее с окружающей средой действуют термодинамические силы, которые называются потенциалами термодинамических воздействий или обобщенными силами.

К ним относятся механические силы: давление р [Па], касательное напряжение рt [Па], сила F [Н] и обобщенные силы немеханического характера: температура Т [К], напряженность магнитного поля Н [А/м], напряженность электрического поля Е [В/м].

Каждой обобщенной силе соответствует обобщенная координата. Обобщенными координатами называются параметры состояния, изменяющиеся при наличии взаимодействия данного рода.

Так для простой ТС обобщенной силе – давлению р соответствует обобщенная координата – объем v, поскольку перемещение поршня приводит к изменению объема ТС.

Для обобщенной силы – температуры Т роль обобщенной координаты выполняет энтропия S [Дж/К].

Различие значений обобщенной силы на границе между ТС и окружающей средой приводит к взаимодействию данного рода, т. е. к передаче энергии в данной форме. Это необходимое условие возникновения в ТС различных процессов: теплообмена и различных видов работ.

Все физические величины, характеризирующие ТС, подразделяются на независимые, которые задаются, и зависимые, которые вычисляются через известные параметры, а также на калорические и термические, интенсивные и экстенсивные, полные и относительные.

Калорические величины – это величины, которые выражаются в единицах энергии.

Например: внутренняя энергия U[Дж], энтропия S[Дж/К], теплота Q [Дж], работа L [Дж], теплоемкость С [Дж/К] и др.

Термические величины – это величины, чей физический смысл не связан непосредственно с понятием энергии. Например: термодинамическая температура Т [К], давление р [Па] и др.

Параметры, не зависящие от количества вещества ТС, выражают интенсивные свойства ТС. К ним относится:

1.  термодинамическая температура Т,[К] (абсолютная термодинамическая шкала температур Кельвина), которая связана с эмпирической шкалой температур Цельсия t,0С (стоградусная международная температурная шкала) формулой:

Абсолютная термодинамическая шкала температур определяется с помощью тройной точки воды в качестве реперной точки со значением 273,15К, а нижней границей шкалы служит абсолютный нуль температур.

Эмпирической температурой называется мера отклонения тела от состояния теплового равновесия с тающим льдом, находящимся под давлением в 1 физическую атмосферу.

Измеряется эта температура термометрами: ртутным, спиртовым, газовым и др.

На термометре наносят исходные опорные точки-реперы, отвечающие устойчивым тепловым состоянием: таяния льда (00С) и кипения воды (1000С) при р=1 физ. атм.

Эмпирическая шкала температур Фаренгейта имеет реперную точку при температуре тающей смеси равных долей льда и нашатырного спирта, которая принимается за 00F. Эта точка лежит на 320 F ниже 00С, а интервал от 00С до 1000С соответствует 1800F. Таким образом, шкала Цельсия связана со шкалой Фаренгейта формулой:

.

Цена деления шкалы Реомюра больше, чем шкалы Цельсия, т. к. интервал от 00С до 1000С разбит на 80 частей.

2.  Термодинамическое абсолютное давление:

, , [Па]

где рМ — манометрическое (избыточное) давление, измеряемое манометром; рБ – барометрическое (атмосферное) давление, измеряемое барометром; рВ – давление, измеряемое вакуумметром (избыток барометрического давления над абсолютным давлением).

Давление газа р численно равно силе, действующей на единицу площади поверхности и направленной по нормали к стенкам оболочки, в которой заключен газ. В системе СИ давление измеряется в Ньютонах на м2 или Паскалях, т. е. 1Н/м2=1Па. Связь с другими системами единиц:

1техн. атм = 0,968физ. атм = 9,81×104Па = 1кгс/см2 = 104кгс/м2 = 735ммНg =
= 10000,3ммН2О = 0,981бар.

3.  Удельный объем рабочего тела v=V/m, м3/кг, где V, м3– объем ТС; m, кг – масса ТС.

Источник: http://fiziku5.ru/uchebnye-materialy-po-fizike/termodinamicheskaya-sistema

Booksm
Добавить комментарий