Шкала электромагнитных волн

Обобщающий урок

Шкала электромагнитных волн

Цель урока: обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое  ее углубление;

Развивающая: Развитие устной речи учащихся,  творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная: Формировать интерес учащихся к изучению физики. воспитывать аккуратность  и навыки рационального использования своего  времени;

Тип урока: урок повторения и коррекции знаний;

Оборудование :  компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее,  именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
   2.

  Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g-излучения, вы уже знакомы. Самое коротковолновое g-излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет.

Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
  4.

 Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
   5.

  Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.
   6.

  По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо.

Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и  запишем все виде таблиц. 

1. Низкочастотные колебания

Низкочастотные колебания
Длина волны(м)1013  —  105
Частота(Гц)3· 10 -3  — 3  ·10 3
Энергия(ЭВ)1 – 1,24 ·10 -10
ИсточникРеостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной ( промышленной) частоты ( 200 Гц) Телефонные сети ( 5000Гц)Звуковые генераторы ( микрофоны, громкоговорители)
Приемник Электрические приборы и двигатели
История открытияЛодж ( 1893 г.), Тесла ( 1983 )
 ПрименениеКино, радиовещание( микрофоны, громкоговорители)

2. Радиоволны

 Радиоволны
Длина волны(м)  10 5  —  10 -3
Частота(Гц)3 ·103 — 3 ·10 11
Энергия(ЭВ)1,24 ·10-10  — 1,24 · 10 -2
Источник Колебательный контур Макроскопические вибраторы
ПриемникИскры в зазоре приемного вибратора Свечение газоразрядной трубки, когерера
История открытия Феддерсен ( 1862 г.), Герц ( 1887 г.), Попов , Лебедев, Риги
 ПрименениеСверхдлинные— Радионавигация, радиотелеграфная связь,     передача метеосводок        Длинные – Радиотелеграфная и радиотелефонная связь,    радиовещание, радионавигацияСредние— Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация Короткие— радиолюбительская связьУКВ— космическая радио связьДМВ— телевидение, радиолокация, радиорелейная связь, сотовая телефонная связьСМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидениеММВ— радиолокация
Инфракрасное излучение
Длина волны(м)2 ·10 -3   — 7,6· 10 -7
Частота(Гц)3 ·1011  — 3 ·10 14
Энергия(ЭВ)1,24· 10 -2 – 1,65
ИсточникЛюбое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания Человек излучает электромагнитные  волны длиной 9 10 -6 м
ПриемникТермоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия Рубенс и Никольс ( 1896 г.), 
ПрименениеВ криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте,  прогревание тканей живого организма ( в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

 Видимое излучение
Длина волны(м)6,7· 10-7  — 3,8 ·10 -7
Частота(Гц)4·  1014  — 8· 1014
Энергия(ЭВ)1,65 – 3,3 ЭВ
Источник Солнце, лампа накаливания, огонь
ПриемникГлаз, фотопластинка, фотоэлементы, термоэлементы
История открытияМеллони
 ПрименениеЗрение Биологическая жизнь

5. Ультрафиолетовое излучение

Ультрафиолетовое излучение
Длина волны(м)  3,8 10 -7  —  3 ·10 -9
Частота(Гц)8 ·1014  —  10 17
Энергия(ЭВ)3,3 – 247,5 ЭВ
Источник  Входят в состав солнечного света Газоразрядные лампы с трубкой из кварцаИзлучаются всеми  твердыми телами , у которых температура больше 1000 ° С, светящиеся ( кроме ртути)
Приемник Фотоэлементы, Фотоумножители,Люминесцентные вещества
История открытияИоганн Риттер, Лаймен
 ПрименениеПромышленная электроника и автоматика, Люминисценнтные лампы, Текстильное производствоСтерилизация воздуха

6. Рентгеновское излучение

Рентгеновское излучение
Длина волны(м)   10 -9  —  3 ·10 -12
Частота(Гц)3 ·1017  — 3 ·10 20
Энергия(ЭВ)247,5 – 1,24 ·105 ЭВ
ИсточникЭлектронная рентгеновская трубка ( напряжение на аноде – до 100 кВ. давление в баллоне – 10-3 – 10-5 н/м2, катод – накаливаемая нить . Материал анодов W,Mo, Cu, Bi, Co, Tl и др. Η = 1-3%,  излучение – кванты большой энергии)Солнечная корона
ПриемникФотопленка, Свечение некоторых кристаллов
История открытияВ. Рентген , Милликен
 ПрименениеДиагностика и лечение заболеваний ( в медицине), Дефектоскопия ( контроль внутренних структур, сварных швов)

7. Гамма — излучение

Гамма — излучение
Длина волны(м)  3,8 ·10 -11  — меньше
Частота(Гц)8· 1014  —   больше
Энергия(ЭВ)9,03 ·103 – 1, 24 ·1016 ЭВ
ИсточникРадиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение
Приемниксчетчики
История открытия
 ПрименениеДефектоскопия; Контроль технологических процессов;Терапия и диагностика в медицине

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко — при больших.

И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в  качественные ).

  Приложение 1 шкала электромагнитных излучений.ppt

Приложение 2

Литература:

  1. « Физика- 11» Мякишев 
  2. Диск «Уроки физики Кирилла и Мефодия. 11 класс»( ))) «Кирилл и Мефодий, 2006)
  3. Диск « Физика. Библиотека наглядных пособий. 7-11 классы»( ( 1С: «Дрофа» и «Формоза» 2004)
  4. Ресурсы Интернета

7.09.2009

Источник: https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/533875/

Шкала электромагнитных волн

Шкала электромагнитных волн

Казалось бы, что должны существовать волны всех частот ($u $) от $u =0\ Гц$ до $u =\infty \ Гц.

$ Однако так как световая волна обладает помимо волновых свойств корпускулярными свойствами, существуют некоторые ограничения.

Квантовая теория утверждает, что электромагнитное излучение испускается в виде квантов (порций энергии). Энергия кванта (W) связана с его частотой выражением:

где $h=6,62\cdot {10}{-34}Дж\cdot с$ — постоянная Планка, $\hbar =\frac{h}{2\pi }=1,05\cdot {10}{-34}Дж\cdot с$ — постоянная Планка с чертой.

Из выражения (1) следует, что бесконечные частоты невозможны, так как не существует квантов с бесконечно большой энергией.

Это же выражение накладывает ограничения на низкие частоты, так как существует минимальное значение ванта энергии ($W_0$), из чего следует, что минимальная частота (${u }_0$) равна:

Примечание 1

Надо сказать, что по сей день в физике не доказано существование нижней границы энергии фотонов. Минимальная частота порядка 8 Гц наблюдается в стоячих электромагнитных волнах между ионосферой и земной поверхностью.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Все известные на сегодняшний день электромагнитные волны разделяют на:

Рисунок 1.

Каждый из диапазонов имеет свои особенности. С ростом частоты увеличивается проявление корпускулярных свойств излучения. Волны разных частей спектра различны способами генерации.

Каждый диапазон волн изучает свой раздел физики. Данные участки спектра отличаются не физической природой, а способом их получения и приема.

Между данными видами волн не существует резких переходов, участки могут перекрываться, границы являются условными.

Видимую часть спектра электромагнитных волн в совокупности с зоной ультрафиолетового и инфракрасного излучения исследуют в оптике (так называемый оптический диапазон). Кванты излучения видимого диапазона называются фотонами. Их энергия заключена в интервале:

Волновые и квантовые свойства имеются у всего спектра электромагнитного излучения, но в зависимости от длины волны один вид свойств превалирует по значимости над другим, соответственно, применяются различные в методы их исследования. В зависимости от длины волны разные группы волн имеют различные виды практического применения.

Особенности разных видов электромагнитного излучения

Особенностями оптического диапазона являются:

  • выполнение законов геометрической оптики,
  • слабое взаимодействие света с веществом.

Примечание 2

Для частот ниже, чем оптический диапазон перестают действовать законы геометрической оптики, тогда как электромагнитное поле высоких частот либо проходит сквозь вещество, либо разрушает его. Видимый свет, является необходимым условием жизни на Земле, так как является обязательным условием для фотосинтеза.

Радиоволны применяются для радиосвязи, телевидения, радиолокации. Это самые длинные волны из спектра электромагнитных волн.

Радиоволны легко искусственно генерировать при помощи колебательного контура (соединения ёмкости и индуктивности). Атомы и молекулы способны излучать радиоволны, что используют в радиоастрономии.

В самом общем вид, следует отметить, что излучателем электромагнитных волн являются ускоренно движущиеся заряженные частицы, находящиеся в атомах и ядрах.

Инфракрасную область спектра впервые экспериментально была изучена в 1800 г. В. Гершелем.

Ученый поместил термометр за красным краем спектра и зафиксировал повышение температуры, что означало нагревание термометра невидимым глазу излучением. Инфракрасное излучение испускают любые нагретые тела.

Используя специальные средства инфракрасное излучение можно превратить в видимый свет. Так получают изображения нагретых тел в темноте. Инфракрасное излучение используют для сушки чего — либо.

Ультрафиолетовое излучение открыл И. Риттер. Он обнаружил, что за фиолетовым краем спектра существуют лучи, невидимые глазу, которые воздействуют на некоторые химические соединения.

Оно способно убивать болезнетворных бактерий, из-за этого его широко используют в медицине.

Ультрафиолетовое излучение в составе солнечных лучей воздействует на кожу человека, вызывая ее потемнение (загар).

Рентгеновские лучи обнаружены В. Рентгеном в 1895 г. Они невидимы глазом, проходят без существенного поглощения через большие слои вещества, которые непрозрачны для видимого света.

Обнаруживаются рентгеновские лучи по способности вызывать свечение некоторых кристаллов и воздействовать на фотопленку. Эти лучи используются в частности в медицинской диагностике.

Рентгеновское излучение имеет сильное биологическое действие.

Определение 1

Гамма- излучение — это излучение, которое испускают возбужденные атомные ядра и взаимодействующие элементарные частицы. Это самое коротковолновое излучение.

У него самые ярко выраженные корпускулярные свойства. Обычно гамма- излучение рассматривается как поток гамма — квантов.

В области длин волн порядка ${10}{-10}-{10}{-14}м$ диапазоны гамма излучения и рентгеновский перекрываются.

Пример 1

Задание: Что является излучателем для различных видов электромагнитных волн?

Решение:

Излучателем электромагнитных волн всегда являются движущиеся заряженные частицы. В атомах и ядрах эти частицы движутся ускоренно, значит, являются источниками электромагнитных волн. Радио волны излучают атомы и молекулы.

Это единственный тип волн, которые можно искусственно генерировать, используя колебательный контур. Инфракрасное излучение получается в основном за счет колебаний атомов в молекулах. Эти колебания носят название тепловых, так как порождаются тепловыми столкновениями молекул.

С увеличением температуры частота колебаний увеличивается.

Видимые лучи генерируются отдельными возбуждёнными атомами.

Ультрафиолетовый свет, также относят к атомарному.

Рентгеновские лучи излучаются за счет того, что электроны, обладающие высокой кинетической энергией, взаимодействуют с атомами и ядрами атомов или ядра атомов сами излучают за счет собственного возбуждения.

Гамма — лучи генерируются возбужденными ядрами атомов и возникают при взаимодействии и взаимных превращениях элементарных частиц.

Пример 2

Задание: Чему равны частоты волн видимого диапазона?

Решение:

Видимый диапазон — совокупность волн, которые воспринимает человеческий глаз. Границы этого диапазона зависят от индивидуальных особенностей зрения человека, и находится примерно в пределах $\lambda =0,38-0,76\ мкм.$

В оптике используют два вида частот. Круговую частоту ($\omega $), которая определяется как:

\[\omega =\frac{2\pi }{T}\left(2.1\right),\]

где $T$ — период колебаний волны. Также используют частоту $u $, которая связывается с периодом колебаний как:

\[u =\frac{1}{T}\left(2.2\right).\]

Следовательно, обе частоты связаны между собой соотношением:

\[\omega =2\pi u \left(2.3\right).\]

Зная, что скорость распространения электромагнитных волн в вакууме равна $c=3\cdot {10}8\frac{м}{с}$, имеем:

\[\lambda =cT\to T=\frac{\lambda }{c}\left(2.4\right).\]

В таком случае для границ видимого диапазона получим:

\[u =\frac{c}{\lambda },\ \omega =2\pi \frac{c}{\lambda }.\]

Используя то, что длины волн для видимого света нам известны, получим:

\[{u }_1=\frac{3\cdot {10}8}{0,38\cdot {10}{-6}}=7,9\cdot {10}{14}\left(Гц\right),\ {u }_2=\frac{3\cdot {10}8}{0,76\cdot {10}{-6}}=3,9\cdot {10}{14}\left(Гц\right).\] \[{\omega }_1=2\cdot 3,14\cdot 7,9\cdot {10}{14}=5\cdot {10}{15}\left(с{-1}\right),{\omega }_1=2\cdot 3,14\cdot 3,9\cdot {10}{14}=2,4\cdot {10}{15}\left(с{-1}\right).\ \]

Ответ: $3,9\cdot {10}{14}Гц

Источник: https://spravochnick.ru/fizika/optika/shkala_elektromagnitnyh_voln/

Шкала электромагнитных волн (низкочастотные излучения и радиоволны вплоть до инфракрасного излучения). Общие свойства волн. урок. Физика 11 Класс

Шкала электромагнитных волн

Электромагнитная волна обладает всеми характеристиками волн, то есть длина волны и частота. Для обычных механических волн существует взаимосвязь между скоростью волны, длиной волны и частотой. Такая же связь наблюдается и у электромагнитных волн. Рассмотрим уравнение для механической волны:

υ = λ · ν

Скорость волны равна длине волны, умноженной на частоту. Для электромагнитных волн скорость распространения – величина постоянная и равная c = 3·108 м/с, то есть

c = λ · ν

Для электромагнитных волн произведение длины волны и частоты всегда остается величиной постоянной.

Рис. 1. Шкала электромагнитных волн (Источник)

Возьмем шкалу (рис. 1) и отметим на ней частоту, по направлению шкалы происходит возрастание частоты, вторая шкала соответствует длине волны, и на ней мы видим

уменьшение длины волны. Для одной и той же электромагнитной волны произведение частоты на длину волны всегда будет оставаться величиной постоянной.

λ1 · ν1 = С

λ2 · ν2  = С

Для всех электромагнитных волн скорость будет оставаться постоянной: 3·108 м/с.

Такое распределение позволяет создать шкалу, по которой мы можем разложить все электромагнитные колебания по их частоте или длине волны и обсудить их свойства. По такой шкале очень удобно обсуждать вопрос происхождения электромагнитных волн, то есть как эти электромагнитные волны появляются и, соответственно, что является источником этих электромагнитных волн.

Электромагнитную шкалу можно разделить на две части: низкочастотные колебания и радиоволны.

К низкочастотным колебаниям относятся те, которые производятся при помощи генератора, самым ярким представителем является переменный ток, и, соответственно, эти колебания распространяются в основном по проводам, а те электромагнитные волны, которые создаются такими колебаниями, на большие расстояния не распространяются, они очень быстро поглощаются окружающей средой.

Вторая часть – радиоволны – может быть разделена на большое количество поддиапазонов.

Это, в первую очередь, длинные волны, средние, короткие и ультракороткие волны. Каждый из этих диапазонов используется по своему назначению. Например, длинные волны очень хорошо поглощаются окружающей средой, ионосферой и поверхностью Земли, и поэтому на большие расстояния они распространяться не могут. При мощных передатчиках длинные волны используют для радиовещания.

Для вещания на весь мир используются короткие волны, в результате многократного отражения они отражаются от земной поверхности и ионосферы и распространяются по всему земному шару. Ультракороткие волны распространяются в пределах прямой видимости, они достаточно плохо отражаются, но хорошо преломляются и используются для связи с космическими аппаратами или для телевидения.

Источниками для распространения радиоволн являются генераторы высокой частоты, колебательный контур Томпсона, открытый колебательный контур Герца и другие излучатели высокочастотных электромагнитных колебаний волн. Данные для электромагнитной шкалы сведены в схему, изображенную на рисунке 2.

Рис. 2. Данные электромагнитной шкалы (Источник)

Длина волны располагается по уменьшению, а частота по нарастанию.

Все электромагнитные волны похожи друг на друга, все они порождаются ускоренно движущимся электрическим зарядом и обнаруживаются по действию на другой электрический заряд. Проявление свойств может быть различным, в зависимости от длины волны или от частоты волны ведут себя по-разному.

Вектор магнитной индукции и вектор напряженности вихревого электрического поля взаимно перпендикулярны, но, кроме этого, плоскость, где располагается вектор индукции и вектор напряженности, соответственно перпендикулярна вектору, вдоль которого направлена скорость распространения электромагнитной волны. Все это объединяет электромагнитные волны.

Но в результате зависимости от длины волны или частоты проявляются следующие особенности: поглощение волн окружающей средой будет различным. Одни волны поглощаются достаточно хорошо, другие, наоборот, преобладают над поглощением-отражением, поэтому длинные волны не могут распространяться на большие расстояния, а короткие достаточно хорошо это делают.

С другой стороны, волны могут существовать в одном пространстве от разных источников, никак при этом не мешая друг другу. Волны могут от одного и того же источника складываться друг с другом и, соответственно, огибать препятствия. Эти возможности называются интерференция и дифракция волн, то есть сложение волн и огибание препятствий, которые приводят к определенному результату.

 Радиолокация, например, связана с ультракороткими волнами, потому что она эффективна в том случае, когда размеры объекта много больше, чем длина волны.

Общие свойства и характеристики электромагнитных волн

Таблица состоит из двух столбцов, в левом размещены свойства, а в правом – характеристики. Свойства расположены в соответствии характеристикам.

Шкала электромагнитных волн не ограничивается только радиоволнами, она может продолжаться и дальше, существуют другие излучения, которые также соответствуют электромагнитным волнам. Эти вопросы мы рассмотрим в дальнейшем.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. – М.: Просвещение, 1990.

Домашнее задание

  1. Какая связь между характеристиками электромагнитных волн?
  2. На какие части подразделяется шкала электромагнитных волн?
  3. Особенности электромагнитных волн?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Источник: https://interneturok.ru/lesson/physics/11-klass/belektromagnitnye-kolebaniya-i-volny-b/shkala-elektromagnitnyh-voln-nizkochastotnye-izlucheniya-i-radiovolny-vplot-do-infrakrasnogo-izlucheniya-obschie-svoystva-voln

Спектры шкалы электромагнитных излучений

Шкала электромагнитных волн
Шкала электромагнитных волн

Шкала электромагнитных волн или излучений представляет собой ряд диапазонов электромагнитных волн, которые распределяются в соответствии с частотой. Распространяющиеся в пространстве периодически изменяющиеся вихревые электрическое и магнитное поля представляют собой электромагнитные колебания.

Общее понятие

Свойства электромагнитных колебаний открыты в начале XIX века английским ученым Д. К. Максвеллом. Физик считал, что электромагнитные волны перпендикулярны направлению распространения волны, ее скорости.

Но электромагнитное поле существует отдельно от указанных выше двух.

Магнитное и электрическое поля, взаимодействуя друг с другом, действуют на заряженные частицы поверхности волнового фронта, создают поле, существующее независимо, обладающее собственными свойствами.

Электромагнитные волны могут распространяться в разных средах, в том числе и в вакууме. Само поле — материя, которая распространяется в среде. Скорость распространения электромагнитной волны в вакууме равна скорости света, т. е. 3*10 в 8 степени м/с. Значение не затухает, проходя через пространство, постоянно.

Шкала электромагнитных излучений показывает, как один качественный вид излучений переходит в другой по мере того, как изменяются взаимосвязанные количественные показатели частоты, длины волны. Один из видов диапазонов излучений — видимый свет.

Дополнительные цвета спектра

Спектр видимого света содержит как основные, так и дополнительные цвета. Каким образом можно получить дополнительные цвета? Их получение основано на опыте И. Ньютона, который в 1671 году, используя призму, разложил белый луч солнечного света на спектр: последовательно расположенные красный, оранжевый, желтый, зеленый, синий и фиолетовый цвета.

Дополнительные цвета спектра получаются разными способами:

Дополнительные цвета спектра

  1. Если разделить спектр на две части (красно-оранжево-желтую и зелено-сине-фиолетовую), две смеси из трех первых и трех вторых дадут два цвета. Особенность последних такова, что если собрать их вместе линзой, снова получается белый.
  2. Если физически закрыть в спектре один цвет, затем собрать линзой оставшиеся цвета, полученный цвет будет дополнительным по отношению к закрытому. Например, если закрыть зеленый, соберется красный, закрывая желтый — фиолетовый. Красный цвет будет дополнительным к зеленому, а фиолетовый — к желтому.

Замкнув последовательность цветов спектра в круг, получим схему, называемую спектральным кругом.

Первичные дополнительные цвета:

  • красный и зеленый;
  • желтый и фиолетовый;
  • синий и оранжевый.

Таблица 1. Дополнительные цвета.

Выделенная частьКраснаяОранжеваяЖелтаяЖелто-зеленаяЗеленаяГолубовато-зеленая
Цвет смеси оставшихся лучейГолубовато-зеленыйГолубойСинийФиолетовыйПурпурныйКрасный

При смешении дополнительных цветов, что доказано опытным путем, чистый цвет получить уже невозможно — любая примесь дополнительного цвета к основному снижает насыщенность.

Спектр солнечного излучения

Солнце — источник жизни на планете, источник излучения, солнечного света, несущего энергию.

Спектр солнечного излучения

В электромагнитный спектр солнечного света включаются три разных вида волн:

  • ультрафиолетовое излучение;
  • видимый свет;
  • инфракрасное излучение.

Первый последовательный вид обладает наиболее низкими частотами и относительно длинной волной, последний — высокими частотами и короткой волной.

Видимая часть спектра

Д. К. Максвелл сделал вывод, что видимый свет — один из видов электромагнитных излучений, спектр видимого солнечного света состоит из семи цветов. Человек может увидеть, как в призме, преломляясь, свет распадается на семь цветов, может любоваться преломленным в каплях дождя светом, глядя на радугу.

Цвета распределены на шкале в соответствии с частотой и на шкале занимают маленький отрезок, умещаются в сравнительно небольшом диапазоне, но это все, что можно увидеть глазами. Инфракрасное и ультрафиолетовое излучения, с меньшими и большими значениями, уже недоступны человеческому зрению.

В радуге один цвет постепенно переходит в другой согласно определенной последовательности, отображающей распределение цветов при разделении луча видимого света белого цвета. Свойства цвета (красного, синего, желтого) определяются свойствами длины соответствующих волн.

Видимая часть солнечного спектра — часть спектра, которая при воздействии на орган зрения вызывает зрительные ощущения.

Наиболее сильные отзывы в человеческом глазу вызывает желто-зеленый луч, остальные менее чувствительны. Лучи, видимые глазу, обладают длиной волны в пределах 400–760 нм.

Глазу доступны некоторые более длинноволновые и более коротковолновые лучи при их достаточной интенсивности.

Свет важен для человека. Раздражая орган зрения, свет активизирует обмен веществ, улучшает самочувствие, вдохновляет, способствует повышению работоспособности. Можно заметить, что недостаточное освещение приводит к снижению активности, на предприятиях приводит к ошибкам, производственным травмам.

Шкала электромагнитных излучений

Отличаясь друг от друга количественно, электромагнитные волны определенным образом могут быть получены с использованием приборов. Существуют естественные и искусственные источники явления. Помимо приборов и источников волн на Земле, электромагнитные волны излучаются и космическими объектами.

Низкочастотные волны, радиоволны, инфракрасное световое излучение, оптическое излучение, рентгеновские спектры, невидимые излучения гамма — различные участки условной шкалы, показывающей области λ — области длин волн.

Таблица спектра электромагнитных излучений

НазваниеЧастотаДлина волнИсточники,Космические источники
Низкочастотные излученияболее 10000м0-30 кГцГенератор переменного тока, домашняя и офисная электротехника, ЛЭП и др.Магнитное поле Земли
Радиоволны1мм-10000м30кГц-300ГГцПеременный ток в колебательном контуре, полупроводниковые приборыСолнце, планеты и малые тела Солнечной системы, облака межзвездного газа, реликтовое излучение на ранней стадии расширения Вселенной, квазары
Инфракрасное световое излучение1мм-780нм300ГГц-429ТГцТепловые источники, лазер, ртутно-кварцевая лампаСолнце, межзвездная и околозвездная пыль, реликтовое излучение на ранней стадии расширения Вселенной, планеты, малые тела Солнечной системы
Видимое излучение световое780-380нм429-750ТГцЛампа накаливания, пламя, молния, лазерСолнце, другие звезды (с температурой 10-100 тысяч градусов)
Ультрафиолетовое излучение380-10нм7,5*1000000000000000-3*100000000000000000ГцУглеродная дугаСолнце, горячие Звезды, высокотемпературная плазма
Рентгеновское излучение10-5*10в-3 степени нм3*100000000000000000-6*100000000000000000000ГцРентгеновская трубкаСолнце, нейтронные звезды и, возможно, черные дыры, шаровые звездные скопления, к внегалактическим источникам – квазары, отдаленные галактики и их скопления.
Гамма-излучениеменее 5*10 в 3 степени нмболее 6*100000000000000000000 ГцАтомные ядра, Кобальт-60Солнце, фоновое Космическое излучение, некоторые пульсары (нейтронные звезды), сверхновые звезды, Млечный Путь, области галактического центра, многих галактик и квазаров

Чувствительность человеческого глаза
Одно из главных свойств электромагнитных волн является степень их поглощения веществом. Различие можно обнаружить между длинноволновыми и коротковолновыми излучениями. Первые поглощаются с гораздо большей интенсивностью, чем коротковолновые, однако обладают дополнительным свойством: при поглощении обнаруживают свойства частиц.

Спектральная чувствительность глаза

Преобразуя энергию, идущую от источника видимого светового диапазона, в зрительной системе человек получает сигналы из окружающей среды.

Свет попадает на сетчатку глаза, возбуждает фоторецепторы, от которых сигнал передается в нейронные связи коры головного мозга, находящиеся в затылочной доле коры больших полушарий.

В головном мозге в результате подобных преобразований формируется зрительный образ.

Развиваясь эволюционно, человеческий глаз сформировался наилучшим образом для восприятия солнечного света. В результате зрительный орган современного человека улавливает электромагнитное излучение в диапазоне длин волн 400–750 нм (видимое излучение). От более низковолновых излучений (ультрафиолета) глаз защищен областью хрусталика с низкой прозрачностью.

Определение спектральных границ чувствительности глаза

Зная законы преломления света, можно опытным путем определить спектральную чувствительность глаза. Основной инструмент — дифракционная решетка с определенным периодом.

Луч света, проходя через решетку, попадает на сетчатку. Глаз играет роль линзы, собирающей лучи в пучок, результат зависит от угла луча. Опыт доказывает, что чувствительность человеческого глаза совпадает с диапазоном видимого света по шкале.

Электромагнитная природа света

На заре изучения природы света до открытия электромагнитных световых волн существовали различные мнения. Так, история открытия гласит, что из рассуждений И.

Ньютона развилась теория о свете как о потоке частиц, квантов, об электрических колебаниях, а из рассуждений Х. Гюйгенса — волновая теория света.

Согласно квантовой теории, от источников энергии атомов последняя передается веществу, то же происходит и с энергией квантов. Волны светового спектра излучений обладают квантовыми свойствами.

Электромагнитная природа света была доказана и описана при помощи формул Д. К. Максвеллом.

Теоретическое исследование природы электромагнитных излучений принесло несомненную пользу человечеству. Явление стало применяться в медицине, быту, радиовещании и многих других областях.

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.Беспалова Ирина Леонидовна опубликовала статей: 486

Источник: https://ObOtravlenii.ru/izluchenie/elektromagnitnoe/shkala-elektromagnitnyh-izluchenij.html

Booksm
Добавить комментарий