Сериальные закономерности в спектре атома водорода

Сериальные закономерности атомных спектров

Сериальные закономерности в спектре атома водорода

Сериальные закономерности атомных спектров.

Атомам каждого вещества присущ определенный вид спектра. Все атомные спектры линейчаты и не зависят от способа их возбуждения. Обычно отдельные линии в спектре могут быть объединены в серии.

Спектральной серией называется совокупность спектральных линий, соответствующих переходам с одного и того же энергетического уровня спектра поглощения или на один и тот же уровень спектра испускания.

Каждое состояние электрона в атоме водорода можно охарактеризовать тремя квантовыми числами: n – главное квантовое число, определяющее энергию состояния, может принимать любые значения, начиная с единицы; l – орбитальное квантовое число, определяющее значение орбитального момента количества движения ( ); m – магнитное квантовое число, определяющее проекцию орбитального момента импульса на выбранное направление (m = -l,…0,…l, всего 2l+1 значение).

Энергия атома в состоянии (n,l,m) однозначно определяется значением n в кулоновском поле и не зависит от квантовых чисел l и m до тех пор, пока не учитываем спин-орбитальное взаимодействие, следовательно, для частицы в кулоновском поле характерно — кратное вырождение уровней.

В спектроскопии принято обозначение состояния электрона по значению орбитального квантового числа малыми латинскими буквами: l = 0 – s-состояние, l = 1 – p-состояние, l = 2 – d, l=3 – f, l = 4 – g, l = 5 – h.

Между состояниями с квантовыми числами (n,l,m) и (n’,l’,m’) возможны переходы. Если переход сопровождается излучением фотона, то такой переход называется радиационным или излучательным. Для радиационных переходов выполняется правило отбора: ∆l = l’ – l = ±1, ∆m = m’ – m = 0, ±1.

Переходы, для которых выполняется правило отбора, называются разрешенными.

В спектре излучения атома водорода отчетливо наблюдаются спектральные серии.

[1/λ] = [ ], 1/λ = R(1/ — 1/ ), n = 2,3,4… — серия Лаймана. R = 109677,581 .

В серии Лаймана отчетливо наблюдаются линии .

1/λ = R(1/ — 1/ ), n = 3,4,5… — серия Бальмера. Линии .

1/λ = R(1/ — 1/ ), n = 4,5,6… — серия Пашена

1/λ = R(1/ — 1/ ), n = 5,6,7… — серия Брэккета

1/λ = R(1/ — 1/ ), n = 6,7,8… — серия Пфунда

Для любых двух уровней с квантовыми числами n и n' существуют состояния, между которыми возможны радиационные переходы.

В спектре излучения любого атома выделяют и часто используют резонансную линию – линию, соответствующую переходу из основного состояния в первое возбужденное в спектре поглощения и наоборот в спектре испускания.

Резонансной линией водорода является главная линия серии Лаймана , соответствующая переходу из n = 1 в n = 2 ( ). Основными линиями ближнего УФ – спектра являются линии серии Бальмера:

,

,

.

Сериальные закономерности атомных спектров.

Атомам каждого вещества присущ определенный вид спектра. Все атомные спектры линейчаты и не зависят от способа их возбуждения. Обычно отдельные линии в спектре могут быть объединены в серии.

Спектральной серией называется совокупность спектральных линий, соответствующих переходам с одного и того же энергетического уровня спектра поглощения или на один и тот же уровень спектра испускания.

Каждое состояние электрона в атоме водорода можно охарактеризовать тремя квантовыми числами: n – главное квантовое число, определяющее энергию состояния, может принимать любые значения, начиная с единицы; l – орбитальное квантовое число, определяющее значение орбитального момента количества движения ( ); m – магнитное квантовое число, определяющее проекцию орбитального момента импульса на выбранное направление (m = -l,…0,…l, всего 2l+1 значение).

Энергия атома в состоянии (n,l,m) однозначно определяется значением n в кулоновском поле и не зависит от квантовых чисел l и m до тех пор, пока не учитываем спин-орбитальное взаимодействие, следовательно, для частицы в кулоновском поле характерно — кратное вырождение уровней.

В спектроскопии принято обозначение состояния электрона по значению орбитального квантового числа малыми латинскими буквами: l = 0 – s-состояние, l = 1 – p-состояние, l = 2 – d, l=3 – f, l = 4 – g, l = 5 – h.

Между состояниями с квантовыми числами (n,l,m) и (n’,l’,m’) возможны переходы. Если переход сопровождается излучением фотона, то такой переход называется радиационным или излучательным. Для радиационных переходов выполняется правило отбора: ∆l = l’ – l = ±1, ∆m = m’ – m = 0, ±1.

Переходы, для которых выполняется правило отбора, называются разрешенными.

В спектре излучения атома водорода отчетливо наблюдаются спектральные серии.

[1/λ] = [ ], 1/λ = R(1/ — 1/ ), n = 2,3,4… — серия Лаймана. R = 109677,581 .

В серии Лаймана отчетливо наблюдаются линии .

1/λ = R(1/ — 1/ ), n = 3,4,5… — серия Бальмера. Линии .

1/λ = R(1/ — 1/ ), n = 4,5,6… — серия Пашена

1/λ = R(1/ — 1/ ), n = 5,6,7… — серия Брэккета

1/λ = R(1/ — 1/ ), n = 6,7,8… — серия Пфунда

Для любых двух уровней с квантовыми числами n и n' существуют состояния, между которыми возможны радиационные переходы.

В спектре излучения любого атома выделяют и часто используют резонансную линию – линию, соответствующую переходу из основного состояния в первое возбужденное в спектре поглощения и наоборот в спектре испускания.

Резонансной линией водорода является главная линия серии Лаймана , соответствующая переходу из n = 1 в n = 2 ( ). Основными линиями ближнего УФ – спектра являются линии серии Бальмера:

,

,

.

Источник: https://cyberpedia.su/6xe3bf.html

Сериальные закономерности в спектре атома водорода

Сериальные закономерности в спектре атома водорода

Светящиеся газы показывают линейчатые спектры излучения, которые состоят из отдельных линий. Если свет пропускать через газ, то появляются линейчатые спектры поглощения, при этом атом поглощает спектральные линии, которые сам способен испускать.

Первым изучался спектр атома водорода. Во второй половине XIX века проводились множество исследований спектров излучения. Было получено, испускаемый молекулярный спектр представляет собой совокупность широких размытых полос, у которых отсутствуют резкие границы.

Такие спектры получили названия полосатых.

Спектр излучения атомов принципиально отличен по виду. Он состоит из четко обозначенных линий. Спектры атомов называют линейчатыми. Для каждого элемента есть определенный испускаемый только им линейчатый спектр. При этом вид спектра излучения не зависит от способа, которым возбужден атом. По такому спектру определяют принадлежность спектра элементу.

Закономерности в линейчатых спектрах

Линии в спектре расположены закономерно. Найти данные закономерности и объяснить их — важная задача физического исследования. Первым эмпирическую формулу, которая описала часть линий излучения для спектра атома водорода, получил Бальмер. Он отметил, что длины волн, девяти линий спектра водорода, которые были известны в то время, могут вычисляться по формуле:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

где $\lambda =364,613\ нм,\ n=3,4,\dots ,11.$

Анализ экспериментальных материалов показал, что отдельные линии в спектре можно объединять в группы линий, которые называют сериями. Ридберг записал формулу (1) в виде:

где $R=3,29\cdot {10}{15}c{-1}$- константа Ридберга, ${u }_{n2}$ — частота излучения соответствующей линии. Такая серия носит имя Бальмера. Формула Бальмера — Ридберга (2) указала на специальную роль целых чисел в закономерностях, которые описывают спектры. Данное выражение играло существенную роль в развитии учения о строении атомов.

Сейчас известно много спектральных линий водорода, частоты которых с большой точностью подчинены формуле (2). С ростом $n$ линии в спектре серии приближаются друг к другу. Граница Бальмеровской серии определена с помощью длины волны (${\lambda }_{gran}$), при данной длине волны $n\to \infty :$ ${\lambda }_{gran}=\frac{4}{R}=364,5968$ нм.

Другой ученый, Лайман, исследовал серию линий в ультрафиолетовой части спектра атома водорода и открыл серию, которую описал выражением:

Данную серию называют серией Лаймана.

Серию в инфракрасной области спектра атома водорода описал Пашен:

Такая серия названа в его честь (серия Пашена). Поздние в инфракрасной области спектра атома водорода были найдены следующие серии:

Брэкета:

Пфундта:

Хэмфри:

Каждая из приведенных серий имеет сгущение линий при росте чисел $n$ и свою граничную частоту (длину волны).

Рассматривая приведенные выше формулы, вводя обозначение: $T\left(n\right)=\frac{R}{n2}$, то каждую испускаемую частоту можно записать как разность (для разных значений целых чисел):

Серию линий спектра получают в соответствии с формулой (8), если одно из целых чисел фиксируется, а другое принимает все целые значения, которые больше числа, которое фиксировано.

Граничные частоты (граничные волновые числа) серий спектра водорода определены как:

Формула (8) подтверждается эмпирически с высокой спектроскопической точностью. Особая роль целых чисел, ставшая очевидной в закономерностях спектров, до конца была осмыслена только в квантовой механике.

Пример 1

Задание: Какова максимальная ($E_{max}$) и минимальная ($E_{min}$) энергии фотона в серии Бальмера?

Решение:

В качестве основы для решения задачи используем сериальную формулу для частот спектра атома водорода:

\[{u }_{n2}=R\left(\frac{1}{22}-\frac{1}{n2}\right)\left(n=3,4,5,\dots \right)\left(1.1\right),\]

где $R=3,29\cdot {10}{15}c{-1}$- константа Ридберга.

Минимальная энергия фотона может быть вычислена при использовании выражения:

\[E=hu \ \left(2.2\right)\]

при $n=3.$

\[E_{min}=hR\left(\frac{1}{22}-\frac{1}{32}\right)=\frac{5}{36}hR.\]

Максимальная энергия находится при $n=\infty $:

\[E_{max}=hR\left(\frac{1}{22}-\frac{1}{{\infty }2}\right)=\frac{1}{4}hR.\]

Рисунок 1.

Ответ: $E_{min}=\frac{5}{36}hR,\ E_{max}=\frac{1}{4}hR.$

Пример 2

Задание: Определите, какова длина волна, которая соответствует: 1) границе серии Лаймана, 2) границе серии Бальмера.

Решение:

1) В качестве основы для решения задачи используем сериальную формулу для длин волн спектра водорода (серия Лаймана):

\[\frac{1}{{\lambda }_1}=R'\left(\frac{1}{12}-\frac{1}{n2}\right)\left(n=2,3,4,\dots ,\infty \right)\left(2.1\right),\]

где $R'=1,1\cdot {10}7м{-1}.$ На границе $n=\infty \ $преобразуем выражение (2.1) в формулу:

\[\frac{1}{{\lambda }_1}=R'\left(\frac{1}{12}\right)\to {\lambda }_1=\frac{1}{R'}.\]

Проведем вычисление:

\[{\lambda }_1=\frac{1}{1,1\cdot {10}7}=0,91\cdot {10}{-7}\left(м\right).\]

2) В качестве основы для решения второй части задачи используем сериальную формулу для длин волн спектра водорода (серия Бальмера):

\[\frac{1}{{\lambda }_2}=R'\left(\frac{1}{22}-\frac{1}{n2}\right)\left(n=3,4,\dots ,\infty \right)при\ n=\infty \to \frac{1}{{\lambda }_2}=R'\frac{1}{22}\left(2.2\right),\]

Получим искомую длину волны:

\[{\lambda }_2=\frac{4}{R'}.\]

Проведем вычисления:

\[{\lambda }_2=\frac{4}{1,1\cdot {10}7}=364\cdot {10}{-9}\left(м\right).\]

Ответ: ${\lambda }_1=910нм$, ${\lambda }_2=364\cdot {10}{-9}$нм.

Источник: https://spravochnick.ru/fizika/predmet_i_zadachi_atomnoy_fiziki/serialnye_zakonomernosti_v_spektre_atoma_vodoroda/

Booksm
Добавить комментарий