Расстояние между 2 прямыми в пространстве

Расстояние между скрещивающимися прямыми – определение и примеры нахождения

Расстояние между 2 прямыми в пространстве
Прямая, плоскость, их уравнения

В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.

Расстояние между скрещивающимися прямыми – определение

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

В разделе взаимное расположение прямых в пространстве мы упоминали, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Через каждую из скрещивающихся прямых проходит единственная плоскость, которой параллельна другая прямая.

Пусть даны скрещивающиеся прямые a и b. Докажем, что через прямую b проходит единственная плоскость, параллельная прямой a (абсолютно аналогично можно будет доказать, что через прямую a проходит плоскость, параллельная прямой b, притом только одна). Это будет служить доказательством теоремы.

Отметим на прямой b некоторую точку Q. В статье параллельные прямые, параллельность прямых была доказана теорема, гласящая, что через произвольную точку пространстве проходит единственная прямая, параллельная заданной прямой. Следовательно, через точку Q можно провести единственную прямую, параллельную прямой a. Обозначим ее a1.

В разделе способы задания плоскости мы упоминали, что через две пересекающиеся прямые проходит единственная плоскость (что следует из аксиомы о плоскости, проходящей через три различные точки, не лежащие на одной прямой). Следовательно, через пересекающиеся прямые b и a1 проходит единственная плоскость. Обозначим ее .

Признак параллельности прямой и плоскости позволяет утверждать, что прямая a параллельна плоскости (так как прямая a параллельна прямой a1, лежащей в плоскости ).

Единственность плоскости следует из единственности прямой, проходящей через заданную точку пространства параллельно заданной прямой.

Теперь можно переходить непосредственно к определению расстояния между скрещивающимися прямыми. Определение расстояния между скрещивающимися прямыми дается через расстояние между прямой и параллельной ей плоскостью.

Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

Рассмотрим скрещивающиеся прямые a и b. Отметим на прямой a некоторую точку М1, через прямую b проведем плоскость , параллельную прямой a, и из точки М1 опустим перпендикуляр М1H1 на плоскость . Длина перпендикуляра M1H1 есть расстояние между скрещивающимися прямыми a и b.

К началу страницы

При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию.

Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п.

Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена прямоугольная система координат Oxyz и в ней заданы скрещивающиеся прямые a и b, то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть — плоскость, проходящая через прямую b, параллельно прямой a. Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М1, лежащей на прямой a, до плоскости .

Таким образом, если мы определим координаты некоторой точки М1, лежащей на прямой a, и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости).

А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М1, лежащей на прямой a, и к нахождению нормального уравнения плоскости .

С определением координат точки М1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве. А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М2, через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М2 можно взять любую точку, лежащую на прямой b, так как плоскость проходит через прямую b. Таким образом, координаты точки М2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a.

Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямой a (обозначим его ), и направляющему вектору прямой b (обозначим его ).

Тогда в качестве вектора можно взять векторное произведение векторов и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

  • определить координаты и точек М1 и М2 соответственно, лежащих на прямых a и b соответственно;
  • получить координаты и направляющих векторов прямых a и b соответственно;
  • найти координаты нормального вектора плоскости , проходящей через прямую b параллельно прямой a, из равенства ;
  • записать общее уравнение плоскости как ;
  • привести полученное уравнение плоскости к нормальному виду ;
  • вычислить расстояние от точки до плоскости по формуле — это и есть искомое расстояние между скрещивающимися прямыми a и b.

Разберем решение примера.

Очевидно, прямая a проходит через точку и имеет направляющий вектор . Прямая b проходит через точку , а ее направляющим вектором является вектор .

Вычислим векторное произведение векторов и :

Таким образом, нормальный вектор плоскости , проходящей через прямую b параллельно прямой a, имеет координаты .

Тогда уравнение плоскости есть уравнение плоскости, проходящей через точку и имеющей нормальный вектор :

Нормирующий множитель для общего уравнения плоскости равен . Следовательно, нормальное уравнение этой плоскости имеет вид .

Осталось воспользоваться формулой для вычисления расстояния от точки до плоскости :

Это и есть искомое расстояние между заданными скрещивающимися прямыми.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Некогда разбираться?

Закажите решение

К началу страницы

Источник: http://www.cleverstudents.ru/line_and_plane/distance_between_skew_lines.html

Четыре способа решения задач на нахождение расстояния между скрещивающимися прямыми

Расстояние между 2 прямыми в пространстве

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от «выигрышных» задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу.

Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми.

Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями «пространственного мышления» конкретного учащегося.

Каждый из этих способов позволяет решить самую главную часть задачи — построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый «экран») до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче: «В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани». Ответ: .

1 способ.

Рисунок 1

hскр

перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, hскр и является расстоянием между ребром а и диагональю d.

2 способ.

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная hскр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

3 способ.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

4 способ.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная hскр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

СПОСОБ I.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных — ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Примеры

Задача 1.

В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А1А перпендикулярна плоскости АВСD , то А1А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А1А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2.

В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD — квадрат. Следовательно, DH — расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

СПОСОБ II

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Примеры

Задача 2

. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH — расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Ответ:

Задача 3.

В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA1 параллельна плоскости BB1D1D, B1D принадлежит этой плоскости, следовательно расстояние от AA1 до плоскости BB1D1D равно расстоянию между прямыми AA1 и B1D. Проведем AHBD. Также, AH B1B, следовательно AH(BB1D1D), следовательно AHB1D, т. е. AH — искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4.

В правильной шестиугольной призме A:F1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA1 и ED1.

Рассмотрим плоскость E1EDD1. A1E1EE1, A1E1E1D1, следовательно

A1E1 (E1EDD1). Также A1E1 AA1. Следовательно, A1E1 является расстоянием от прямой AA1 до плоскости E1EDD1. ED1(E1EDD1)., следовательно AE1 — расстояние от прямой AA1 до прямой ED1. Находим A1E1 из треугольника F1A1E1 по теореме косинусов. Ответ:

б) AF и диагональю BE1.

Проведем из точки F прямую FH перпендикулярно BE. EE1FH, FHBE, следовательно FH(BEE1B1), следовательно FH является расстоянием между прямой AF и (BEE1B1), а значит и расстоянием между прямой AF и диагональю BE1. Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Примеры

Задача 4.

Рисунок 11

а) Плоскости BAA1B1 и DEE1D1 параллельны, так как AB || ED и AA1 || EE1. ED1DEE1D1, AA1(BAA1B1), следовательно, расстояние между прямыми AA1 и ED1 равно расстоянию между плоскостями BAA1B1 и DEE1D1. A1E1AA1, A1E1A1B1, следовательно, A1E1BAA1B1.

Аналогично доказываем, что A1E1(DEE1D1). Т.о., A1E1 является расстоянием между плоскостями BAA1B1 и DEE1D1, а значит, и между прямыми AA1 и ED1. Находим A1E1 из треугольника A1F1E1, который является равнобедренным с углом A1F1E1, равным .

Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE1 находится аналогично.

Ответ:.

Задача 5.

В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A1C обеим параллельным плоскостям (AB1D1 || BC1D). B1CBC1 и BC1A1B1, следовательно, прямая BC1 перпендикулярна плоскости A1B1C, и следовательно, BC1A1C. Также, A1CBD.

Следовательно, прямая A1C перпендикулярна плоскости BC1D. Вычислительная же часть задачи особых трудностей не вызывает, так как hскр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A1AB1D1 и CC1BD.

Ответ:

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным.

Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным.

Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на «экран»

Примеры.

Задача 5.

Все та же «классическая» задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится «экран» — диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A1B1CD. C1F (A1B1CD), т. к. C11C и C1FA1B1. Тогда проекцией C1D на «экран» будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6.

В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a.

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль «экрана», перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH — искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

18.03.2012

Источник: https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/614270/

Расстояние между скрещивающимися прямыми: определение и примеры нахождения, найти расстояние между скрещивающимися прямыми

Расстояние между 2 прямыми в пространстве

Статья нацелена на нахождение расстояния между скрещивающимися прямыми методом координат. Будет рассмотрено определение расстояния между этими прямыми, получим алгоритм при помощи которого преобразуем нахождение расстояния между скрещивающимися прямыми. Закрепим тему решением подобных примеров.

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения

Расстояния между скрещивающимися прямыми находятся при построении отрезка. Искомое расстояние равняется длине этого отрезка. По условию задачи его длина находится по теореме Пифагора, по признакам равенства или подобия треугольников или другим.

Когда имеем трехмерное пространство с системой координат Охуz с заданными в ней прямыми a и b, то вычисления следует проводить, начиная с расстояния между заданными скрещивающимися при помощи метода координат. Произведем подробное рассмотрение.

Пусть по условию χ является плоскостью, проходящей через прямую b, которая параллельна прямой a. Искомое расстояние между скрещивающимися прямыми a и b равняется расстоянию от точки М1, расположенной на прямой a, к плоскости _χ.

Для того, чтобы получить нормальное уравнение плоскости χ, необходимо определить координаты точки M1(x1, y1, z1), расположенной на прямой a. Тогда получим cos α·x+cos β·y+cos γ·z-p=0, которое необходимо для определения расстояния M1H1 от точки M1x1, y1, z1 к плоскости χ.

Вычисления производятся по формуле M1H1=cos α·x1+cos β·y1+cos γ·z1-p. Необходимое расстояние равняется искомому расстоянию между скрещивающимися прямыми.

Данная задача предполагает получение координат точки М1, которая располагается на прямой a, нахождение нормального уравнения плоскости χ.

Определение координат точки М1 необходимо и возможно при знании основных видов уравнений прямой в пространстве. Чтобы получить уравнение плоскости χ, необходимо остановиться подробней на алгоритме вычисления.

Если координаты x2, y2, z2 будут определены при помощи точки М2, через которую проведена плоскость χ, получаем нормальный вектор плоскости χ в виде вектора n→=(A, B, C). Следуя из этого, можно записать общее уравнение плоскости χ в виде A·x-x2+B·(y-y2)+C·(z-z2)=0.

Вместо точки М2 может быть взята любая другая точка, принадлежащая прямой b, потому как плоскость χ проходит через нее. Значит, координаты точки М2 найдены. Необходимо перейти к нахождению нормального вектора плоскости χ.

Имеем, что плоскость χ проходит через прямую b, причем параллельна прямой a.

Значит, нормальный вектор плоскости χ перпендикулярен направляющему вектору прямой a, обозначим a→, и направляющему вектору прямой b, обозначим b→.

Вектор n→ будет равняться векторному произведению a→ и b→, что значит, n→=a→×b→. После определения координат ax, ay, az и bx, by, bz направляющих векторов заданных прямых a и b, вычисляем

n→=a→×b→=i→j→k→axayazbxbybz

Отсюда находим значение координат A, B, C нормального вектора к плоскости χ.

Знаем, что общее уравнение плоскости χ имеет вид A·(x-x2)+B·(y-y2)+C·(z-z2)=0.

Необходимо привести уравнение к нормальному виду cos α·x+cos β·y+cos γ·z-p=0. После чего нужно произвести вычисления искомого расстояния между скрещивающимися прямыми a и b, исходя из формулы M1H1=cos α·x1+cos β·y1+cos γ·z1-p.

Чтобы найти расстояние между скрещивающимися прямыми a и b, необходимо следовать алгоритму:

  • определение координат (x1, y1, z1) и x2, y2, z2 точек М1 и М2, расположенных на прямых a и b соответственно;
  • получение координат ax, ay, az и bx, by, bz, принадлежащим направляющим векторам прямых a и b;
  • нахождение координат A, B, C, принадлежащим  вектору n→ на плоскости χ, проходящей через прямую b, расположенную параллельно a, по равенству n→=a→×b→=i→j→k→axayazbxbybz;
  • запись общего уравнения плоскости χ в виде A·x-x2+B·(y-y2)+C·(z-z2)=0;
  • приведение полученного уравнения плоскости χ к уравнению нормального вида cos α·x+cos β·y+cos γ·z-p=0;
  • вычисление расстояния M1H1 от M1x1, y1, z1 к плоскости χ, исходя из формулы M1H1=cos α·x1+cos β·y1+cos γ·z1-p.

Пример 1

Имеются две скрещивающиеся прямые в прямоугольной системе координат Охуz трехмерного пространства. Прямая a определена параметрическим уравнением прямой в пространстве x=-2y=1+2·λz=4-3·λ,  прямая b при помощи канонического уравнения прямой в пространстве x1=y-1-2=z+46. Найти расстояние между скрещивающимися прямыми.

Решение

Понятно, что прямая а пересекает точку M1(-2, 1, 4) с направляющим вектором a→=(0, 2, -3), а прямая b пересекает точку M2(0, 1, -4) с направляющим вектором b→=(1, -2, 6).

Для начала следует произвести вычисление направляющих векторов a→=(0, 2, -3) и b→=(1, -2, 6) по формуле. Тогда получаем, что 

a→×b→=i→j→k→02-31-26=6·i→-3·j→-2·k→

Отсюда получаем, что n→=a→×b→ — это вектор плоскости χ, который проходит через прямую b параллельно a с координатами 6, -3, -2. Получим:

6·(x-0)-3·(y-1)-2·(z-(-4))=0⇔6x-3y-2z-5=0

Находим нормирующий множитель для общего уравнения плоскости 6x-3y-2z-5=0. Вычислим по формуле 162+-32+-22=17. Значит, нормальное уравнение примет вид 67x-37y-27z-57=0.

Необходимо воспользоваться формулой, чтобы найти расстояние от точки M1-2, 1, 4 до плоскости, заданной уравнением  67x-37y-27z-57=0. Получаем, что

M1H1=67·(-2)-37·1-27·4-57=-287=4

Отсюда следует, что искомым расстоянием является расстояние между заданными скрещивающимися прямыми, является значение 4.

Ответ: 4.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/rasstojanie-mezhdu-skreschivajuschimisja-prjamymi/

Расстояние между 2 прямыми в пространстве

Расстояние между 2 прямыми в пространстве

Очень часто на практике необходимо найти расстояние между точкой и некой прямой линией или между двумя прямыми линиями в пространстве, например, иногда определять расстояние между двумя линиями приходится и в реальной жизни. Хорошая иллюстрация такого примера — это знак, который вешают на мосты для грузовиков, указывающий максимальную высоту грузовика, которая может проехать под данным мостом.

Расстояние от верхней грани грузовика и нижней грани в данном случае определяют как расстояние между двумя прямыми.

Расстояние между 2 прямыми в пространстве — это отрезок, соединяющий две прямые линии по наикратчайшему расстоянию между ними, то есть перпендикулярный к обеим прямым.

Определение 1

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной заданной прямой и плоскостью, в которой лежит вторая прямая.

Чтобы было чуть проще понять, что это такое, давайте повторим определение скрещивающихся прямых:

Определение 2

Скрещивающиеся прямые — это две прямые, которые не лежат в одной плоскости и не имеют каких-либо совместных друг для друга точек.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Соответственно, для того чтобы найти расстояние между скрещивающимися прямыми в пространстве, необходимо от одной из прямых опустить перпендикуляр на плоскость, в которой лежит другая прямая.

Расстояние же между двумя параллельными прямыми в пространстве является одинаковым на протяжении всей длины параллельных прямых, то есть перпендикуляр, опущенный из одной параллельной прямой на другую, всегда будет одной и той же длины вне зависимости от того, из какой именно точки его опустили.

Метод координат для определения расстояния между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми в пространстве можно найти используя метод координат, для этого необходимо:

  1. Найти координаты точек $M_1$ и $M_2$, лежащих на прямых $a$ и $b$ соответственно.
  2. Вычислить икс, игрек и зет направляющих векторов для прямых $a$ и $b$.
  3. С помощью векторного произведения векторов $\overline{a}$ и $\overline{b}$ нужно найти вектор-нормаль для плоскости, в которой лежит прямая $b$. Затем необходимо записать общее уравнение плоскости: $A (x – x_0) + B(y – y_0) + C(z – z_0) = 0$, и от него перейти к нормированному виду уравнения плоскости следующего вида: $ x \cdot cos α + y \cdot cos β + z \cdot cos{γ} – p = 0$, где $cos α, cos β$ и $cos γ$ — координаты единичного нормального вектора плоскости, а $p$ — свободный член, это число равно расстоянию от точки начала координат до плоскости.
  4. Для вычисления расстояния от точки $M$ до искомой плоскости, нужно воспользоваться следующим уравнением:$M_1H_1 = |x_1 \cdot cos α + y_1 \cdot cos β + z_1 \cdot cos{γ} – p|$, где $x_1, y_1, z_1$ – координаты точки $M_1$, лежащей на прямой $a$, а $H_1$ — точка, лежащая на искомой плоскости.

Пример 1

Найти расстояние между двумя скрещивающимися прямыми, заданными уравнениями:$d_1$:$\frac {x-2}{2} = \frac {y + 1}{-3} = \frac{z}{-1}$

и $d_2$: $\begin{cases} \frac{x + 1}{1} = \frac{y}{-2} \\ z – 1 = 0 \end{cases}$

Рисунок 1. Расстояние между двумя скрещивающимися прямыми в пространстве

Для этого воспользуемся следующей формулой:

$ ρ(d_1d_2) = \frac{| \overline{p_1} \cdot \overline{p_2} \cdot \overline{M_1M_2}|}{[\overline{p_1} × \overline{p_2}]}$

Сначала найдём смешанное произведение векторов. Для этого найдём точки, лежащие на данных прямых, и их направляющие вектора:

$d_1$: $\frac {x-2}{2} = \frac {y + 1}{-3} = \frac{z}{-1}$, точка, лежащая на прямой — $M_1$ с координатами $(2;-1;0)$, а направляющий вектор — $\overline{p_1}$ с координатами $(2; -3; -1)$

$d_2$: $\begin{cases} \frac{x + 1}{1} = \frac{y}{-2} \\ z – 1 = 0 \end{cases}$, точка, лежающая на прямой — $M_2$ с координатами $(-1; 0; 1)$,

а её направляющий вектор — $\overline{p_2}$ с координатами $(1; -2; 0)$

Теперь найдём вектор $\overline{M_1M_2}$:

$\overline{M_1M_2} = (-1-2;0-(-1);1-0) = (-3; 1; 1)$

Найдём смешанное произведение векторов:

$\overline{p_1} \cdot \overline{p_2} \cdot \overline{M_1M_2} = \begin{array}{|ccc|} 2& 1 & -3 \\ -3& -2 & 1 \\ -1 & 0 & 1 \\ \end{array} = — \begin{array}{|cc|} 1 & -3 \\ -2 & 1 \\ \end{array} + \begin{array}{|cc|} 2 & 1 \\ -3 & -2 \\ \end{array} = -(1 — 6) + (4 + 3) = 4$

Теперь найдём векторное произведение векторов:

$[|\overline{p_1} × \overline{p_2}|] = \begin{array}{|ccc|} i& j & k \\ 2 & -3 & -1 \\ 1 & -2 & 0 \end{array} = \begin{array}{|cc|} -3 & -1 \\ -2 & 0 \end{array} \cdot \overline{i} — \begin{array}{|cc|} 2 & -1 \\ 1 & 0 \end{array} \cdot \overline{j} + \begin{array}{|cc|} 2 & -3 \\ 1 & -2 \end{array} \cdot \overline{k}$

$[|\overline{p_1} × \overline{p_2} |]= -2 \overline{i} — \overline{j} — \overline{k}$

Длина этого векторного произведения составит:

$\overline{p_1} × \overline{p_2} = \sqrt{(-2)2 + (-1)2 + (-1)2} = \sqrt{6}$

Соответственно, длина между скрещивающимися прямыми составит:

$ ρ(d_1d_2) = \frac{|4|}{\sqrt{6}} ≈ 1,63$

Пример 2

Даны две параллельные несовпадающие прямые $g$ и $m$, ниже приведены уравнения для них. Определить расстояние между ними.

$g$: $\frac{x-1}{4} = \frac{y + 1}{6}= \frac{z+3}{8}$

$m$: $\frac{x+1}{2} = \frac{y — 1}{3}= \frac{z — 3}{4}$

Расстояние в этом случае для них вычисляется по следующей формуле:

$ρ(m;g) =\frac{|[\overline{r_2} — \overline{r_1} × \overline{s_1}]|}{|\overline{s_1}|}$, где

$\overline{r_2}, \overline{r_1}$ — радиус-векторы для каждой прямой, а $s_1$ — направляющий вектор.

Радиус-вектор для первой прямой будет $r_1=\{1; -1; -3\}$, а направляющий вектор $s_1 = \{4; 6; 8\}$.

Радиус-вектор для второй прямой будет $r_2=\{-1; 1; 3\}$, а направляющий вектор $s_2 = \{2; 3; 4\}$.

Найдём векторную разность радиус-векторов:

$\overline{r_2} — \overline{r_1} = \{-1; 1; 3\} — \{1; -1; -3\} = \{-2;0;0\}$

Теперь найдём её произведение с направляющим вектором для первой прямой:

$[\overline{r_2} — \overline{r_1} × \overline{s_1}] = \begin{array}{|ccc|} i & j & k \\ -2 & 0 & 0 \\ 4 & 6 & 8 \\ \end{array} = — 16j – 12k = \{0;-16;-12\}$

$|[\overline{r_2} — \overline{r_1} × \overline{s_1}]| = \sqrt{(-16)2 + (-12)2} = 20$

$|\overline{s_1}| = \sqrt{42 + 62 +82} = 2\sqrt{29}$

$ρ(m;g) = \frac{20}{2\sqrt{29}} = \frac{10}{\sqrt{29}} ≈ 1.85$

Источник: https://spravochnick.ru/geometriya/rasstoyanie_mezhdu_2_pryamymi_v_prostranstve/

Booksm
Добавить комментарий