Распад протона как физическая гипотеза

Распад протона как физическая гипотеза

Распад протона как физическая гипотеза

Определение 1

Распад протона – это возможная форма радиоактивной реакции, в результате которой протон может превратиться в субатомные частицы с меньшей массой.

Этот распад до настоящего времени наблюдать не удалось. Примером радиоактивного распада протона ($p$) может стать реакция:

$p \to n+e+ +u_e (1),$

где $n$ — нейтрон; $e+$ — позитрон; $u_e$ — нейтрино.

Распад протона можно объяснить наличием следующих фактов:

  1. Отсутствием взаимодействия, которое было бы связано с барионным зарядом.
  2. Барионной асимметрией Вселенной.
  3. Требованиями теории Великого объединения взаимодействий.

Ограничения времени жизни протона, установленное на сегодняшний день по наиболее вероятным каналам распада, составляет $10{33} – 10{34}$ лет. Это много больше, чем возраст Вселенной, но теория полагает, что протон не способен существовать вечно. А если протон не является бессмертным, то и вся материя когда-то обязательно испарится.

Имеется множество данных, что вещество исчезает не быстро. Если обычное вещество распадается, то его распад имеет очень малую скорость и необходимы эксперименты огромного масштаба, для его обнаружения.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Беккерель нашел распад ядра урана в кристалле соли урана массой несколько грамм. Для выявления радиоактивности, которая бы была связана с распадом протона необходимо проверить много тонн вещества.

Условия возможности распада элементарных частиц

Любой процесс самопроизвольного распада элементарных частиц считают возможным, если он не запрещен законами сохранения. Распад может проходить как более или менее сложная последовательность излучений и поглощений частиц.

Рассматривая вопрос, связанный со стабильностью частицы, следует понять, будет ли распад противоречить какому-либо закону сохранения.

Так, сначала имеет рассмотреть выполнение в ходе распада закона сохранения энергии. Он требует, чтобы масса распадающейся частицы была больше, чем сумма масс продуктов распада (следует учесть, что часть массы исходной частицы превратится с кинетическую энергию продуктов распада).

Протон имеет положительный электрический заряд, который по величине равен заряду электрона. Следовательно, из закона сохранения заряда данная частица не может распадаться на:

  • нейтрино,
  • фотоны и
  • гравитоны.

Возможные варианты распадов протона на основании законов сохранения энергии и заряда

Протон, в 1820 раз тяжелее электрона. Имеется несколько частиц обладающих меньшей массой, с положительным зарядом. Это означает, что протон способен распадаться на такие частицы и при этом не будет нарушаться закон сохранения заряда и энергии. Так, законы сохранения энергии и заряда не могут запретить протону распадаться на:

  • позитрон,
  • фотоны,
  • и нейтрино.

Еще одним кандидатом в продукты распада протона считают антимюон.

Мюон во многом подобен электрону, обладает тем же электрическим зарядом, то в 210 раз массивнее электрона. Мюон распадается на электрон и нетрино.

Соответственно антимюон обладает той же массой, что мюон, но противоположным зарядом. Масса антимюона равна одной девятой массы протона.

Теоретически протон может распадаться на антимюон в совокупности с легкими нейтральными частицами, например, фотонами и нейтрино.

Следующим вариантом продуктов распада протона может стать мезон. Мезон – это представитель группы нестабильных частиц, которые находятся между электронами и протонами, если использовать классификацию частиц по массе.

Законы сохранения энергии и заряда не запрещают протону распадаться, например, на:

  • положительный мезон и
  • нейтрино.

или на:

  • нейтральный мезон и
  • позитрон.

Причины стабильности материи

Первым вопрос о стабильности материи публично задал Г. Вейль в 1929 году. Почему протон в атоме не поглощает электрон с орбиты? Тогда, например, атом водорода превращался бы в фотонный ливень.

Вейль предположил, что стабильность атома вызвана наличием двух типов электрического заряда:

  • один тип – это заряд протона (положительный);
  • другой тип – заряд электрона (отрицательный).

При сохранении каждого заряда по отдельности, взаимная аннигиляция запрещена. Гипотеза Вейля не встретила поддержки в то время.

Вопрос был анимирован позднее в 1938 году Э. Штюкельбергом и в 1949 году Е. Вигнером. Они предположили, что помимо энергии и электрического заряда, имеется еще закон сохранения барионного числа.

Замечание 1

Барионы – это семейство частиц, обладающих барионным числом, равным $+1$. К барионам относят:

  • протоны,
  • нейтрон,
  • гипероны и др.

Для атома барионное число — это сумма барионных чисел компонент его составляющих.

Закон сохранения барионного числа говорит о том, что полное барионное число не может изменяться.

Закон сохранения барионного числа не утверждает, что протон живет вечно, но требует, чтобы протон не распадался самопроизвольно, если в веществе не имеется антипротонов.

Многие ученые считают, что барионное число не имеет динамического смысла, как, например, электрический заряд. Любое возможное предположение о том, что барионное число не сохраняется приходит в противоречие с фактом стабильности материи. М.

Голдьдхабер писал о том, что человек знает своими костями, что среднее время жизни протона больше, чем $10{16}$ лет.

Если бы данное время жизни частицы было много меньше, то $10{28}$ протонов в теле человека, распались со средней скоростью большей, чем $10{12}$ протонов в год или 30 000 распадов в секунду.

Эксперименты по поиску распада протона

Первый опыт по поиску распада протона сделали в 1954 году Ф. Райенс, К. Коуэн и Гольдхабер. Они исследовали 300 литров жидкого сцинтиллятора, вещества в котором заряженные частицы с большой энергией, возникающие при распаде протона оставляли бы заметную вспышку света.

Вся аппаратура размещалась глубоко под землей для избегания влияния космических лучей. Ученые получили очень мало вспышек, которые отнесли на счет космических лучей, проникающих глубоко под землю. Был сделан вывод о продолжительности жизни протона более, чем $10{22}$ лет.

Дальнейшие эксперименты разных исследователей поднимали нижнюю границу времени жизни протона. Так, было получено, что протон живет более $10{30}$ лет.

Это очень большой срок жизни, если учесть, что возраст Вселенной оценивается в $10{10}$ лет.

Надежда зарегистрировать распад частицы с таким большим сроком жизни имеется только потому, что процессы радиоактивного распада работают статистически.

Техника экспериментов по распаду протона основана на том, чтобы провести компенсацию малой скорости распада при помощи детальной проверки большой массы вещества. Чем больше масса, тем больше протонов, следовательно, растет вероятность увидеть распад.

Опыты, в основном отличаются:

  • составом вещества и его количеством;
  • типом и конструкциями приборов, для регистрации протонов;
  • мерами предосторожности, подавляющими случайные сигналы от космических лучей.

Источник: https://spravochnick.ru/fizika/fizicheskie_gipotezy/raspad_protona_kak_fizicheskaya_gipoteza/

Огромная цистерна, которая может навсегда изменить физику распада протона

Распад протона как физическая гипотеза

В девяностых годах прошлого века учёные залили 50000 тонн воды в резервуар, оборудованный под горой в Японии. В течение двадцати с лишним лет эта жидкость позволяла исследователям узнавать интересные факты о мире субатомных частиц.

Однако учёная братия за столько лет наблюдений не дождалась самого ожидаемого события — распада протона. Это разложение указанной элементарной частицы на более лёгкие составляющие. Наука до сих пор не фиксировала данное явление, и это многих выбивает из колеи.

Ведь физики уверены, что протоны должны распадаться.

Стандартная модель и её проблемы

Протон (p, p+). Jacek rybak [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

При этом подобная уверенность на первый взгляд кажется более чем странной. По той причине, что Стандартная модель, являющаяся основной теорией, объясняющей взаимодействие фундаментальных частиц, прямо говорит о невозможности распада протонов.

В частности, из-за особенностей их «конструкции». Они состоят из трех кварков — двух верхних и одного нижнего. Кварки не могут существовать сами по себе, поэтому просто не допустят разрушения протона. Чтобы он распался, составляющие его «кирпичики» должны превратиться во что-то более невесомое.

Проблема в том, что верхние кварки уже и так самые легкие из известных субатомных частиц, поэтому они не могут стать легче. Нижние могут превратиться в верхние, но внутри протонов это не происходит — потому, что три верхних будут обладать большей энергией, чем два верхних и нижний, а это означало бы создание энергии из ниоткуда. Что, как понятно, невозможно.

Поэтому нижний кварк всегда остается нижним, а протон не распадается. Вот и вся песня.

Это объяснение стандартной модели кажется вполне разумным, но ровно до тех пор, пока вы не начинаете разглядывать его пристально. Потому что в какой-то момент оно начинает выглядеть… Притянутым за уши. Дело в том, что на самом деле частицы легче кварков существуют.

Это лептоны, вроде электронов и нейтрино — частицы, которые не склонны к сильному ядерному взаимодействию, скрепляющему ядра атомов. Однако стандартная модель отвергает возможность превращения кварков в лептоны. Почему? Внятного объяснения не существует.

И это довольно большая проблема.

Сегодня многие физики считают «Стандартную модель» переусложнённой. Она неплохо описывает, как сильные, слабые и электромагнитные силы заставляют частицы двигаться и распадаться. Это одна из самых проверенных теорий в истории науки. Но совершенно прозрачной и понятной её не назовёшь.

Три упомянутые силы передаются в ней четырьмя типами частиц, разделённых на дюжину разновидностей. Стандартная модель также непонятно зачем отличает кварки от лептонов, хотя у них много общего.

Кроме того, в ней есть просто зияющие дыры — например, она не включает в себя гравитацию и темную материю.

В этой связи ученые пытаются искать другие объяснения. В частности, они выносят за скобки всё ту же гравитацию и пытаются сформулировать теории Великого объединения (Grand Unified Theories, GUT). Они призваны объединить три силы Стандартной модели в одну — единую и универсальную.

Основная идея тут заключается в том, что эти силы кардинально отличаются на нынешнем этапе эволюции Вселенной, когда она гораздо холоднее, чем была раньше, в своей юности. Если бы она была горячее, то все три силы были бы более похожи.

А при сверхвысоких температурах все они были бы неотличимы, слились в единое целое.

Здесь можно провести аналогию с событиями 19 века, когда учёные в какой-то момент поняли, что электричество и магнетизм — это просто разные проявления электромагнетизма. Сегодня существует огромное количество различных GUT, но, к сожалению, их трудно проверить.

В условиях нынешней Вселенной они должны быть практически неотличимы от Стандартной модели, правильность которой подтверждена тысячекратно.

Расхождения должны начинаться при гораздо более высоких уровнях энергии, причем настолько, что ни один из существующих ускорителей частиц не способен достичь их в принципе.

Зачем нужен бассейн?

И в этот момент мы возвращаемся к изучению распада протона и японскому резервуару на 50000 тонн. Многие из тех, кто пытается сформулировать теорию Великого объединения, говорят о том, что «сверхсила» не должна различать кварки и лептоны, и поэтому кварки, находящиеся в протонах, должны иногда распадаться на лептоны.

По их мнению, на заре существования Вселенной эти переходы происходили очень часто, но сегодня, в связи с «похолоданием», подобные события стали гораздо более редкими. Разные GUT расходятся в оценках того, как долго надо ждать распада протона.

Поэтому его фиксация в тот или иной момент времени может указать, какая из теорий ближе к истине. Согласно одной из теорий, в нынешних условиях Вселенной протон распадается за сто миллионов иотталет. Это в миллиард триллионов раз больше, чем возраст космоса.

Однако если поместить достаточное количество протонов в одно место, то есть, грубо говоря, загнать 50000 тонн воды под японскую гору, то дождаться этого события можно гораздо быстрее.

Самый большой в мире подземный детектор нейтрино для изучения распада протона
Супер-Камиоканд ( http://www-sk.icrr.u-tokyo.ac.jp/index-e.html )

Если протон распадётся, образовавшиеся лептоны испустят свет, который будет обнаружен установленными в контейнере детекторами. И это многих обрадует.

Но за двадцать с лишним лет работы комплекса не было зарегистрировано ни одного события этого рода. И чтобы как-то объяснить этот феномен, исследователи волевым решением увеличили и без того огромную продолжительность жизни протонов ещё в сто раз.

Однако, как было уже сказано, теорий Великого объединения множество, и в некоторые их них подобное развитие событий пока вписывается самым наилучшим образом.

Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны. (Термины — гиперссылки на статьи ВП). Headbomb

Естественно, отсутствие подтверждающего сигнала в течение даже тысячи лет не будет доказательством того, что протоны не могут распадаться.

Это лишь ещё больше увеличит оценки продолжительности жизни каждого из них. Но если протоны действительно лишены этого свойства, то это значит, что наука упустила нечто важное в понимании Вселенной. В общем, остаётся только ждать. Либо распада протона под японской горой, который, наконец, свергнет с пьедестала Стандартную модель, либо других открытий.

 

Уникальность статьи проверена на text.ru!

Подписывайтесь на наш молодой и энергичный канал!

Ставьте пальце вверх если статья о ракетах Вам понравилась!

Если не понравилась — напишите что именно и мы постараемся ответить на Ваши вопросы !

Вам так же понравятся:

|10 САМЫХ ПЕРСПЕКТИВНЫХ НАПРАВЛЕНИЙ ДЛЯ ПОИСКА БЕССМЕРТИЯ|

|10 АЛЬТЕРНАТИВ ТЕОРИИ БОЛЬШОГО ВЗРЫВА|

|ЗАЧЕМ “MICROSOFT” ОПУСКАЕТ ДАТА-ЦЕНТРЫ НА МОРСКОЕ ДНО?|

СПАСИБО ЧТО ВЫ С НАМИ!

Источник: https://zen.yandex.ru/media/id/5cbb2edb82637e00b3da6c12/5d1d6871ef033f00ae246b83

Индуцированный распад протона (стр. 1 из 2)

Распад протона как физическая гипотеза

Поляков Д.В.

Дано теоретическое обоснование новому физическому эффекту — индуцированному распаду протона. Индуцированный распад протона (ИРП) рассматривается как ядерная реакция нового вида, которая может происходить только при учете особенностей фрактального строения протона. Индуцированный распад протона открывает новые возможности для энергетики.

На основе эффекта ИРП рассматривается новый способ получения энергии, который по удельной энергоэффективности почти на 2 порядка превосходит термоядерный синтез и на 5 порядков превосходит энергетические возможности химических реакций.

Индуцированный распад протонов водорода, содержащихся в воде, делает воду неисчерпаемым и самым эффективным энергоносителем, способным заменить нефть, уголь, природный газ, уран.

1. Внутренняя структура протона.

Протон был открыт в начале 20-х г.г. прошлого века в экспериментах с альфа-частицами. В опытах по рассеянию на протонах электронов и гамма-квантов были получены доказательства существования внутренней структуры у этой частицы. В 1970 г.

в Стенфордском центре линейного ускорителя удалось в эксперименте получить прямое свидетельство того, что протон действительно обладает внутренней структурой [1]. Однако, до сих пор отсутствует понимание, на каких принципах строится механизм формирования структуры протона. Из-за этого у протона остается много нераскрытых тайн.

Непонятен механизм его происхождения, неизвестна причина его стабильности. Не находит объяснение природа его массы, равная 1836,1526675(39) электронным массам. Из всех тяжелых частиц протон является единственной стабильной частицей. Эта частица входит в состав ядер элементов и выступает основой всех сложных вещественных образований Вселенной.

Мир своим существованием обязан протону. Есть все основания полагать, что раскрытие его внутренней структуры откроет доступ к новым очень эффективным способам получения энергии. Освоение энергии протона может стать важнейшим фактором в решении энергетической проблемы.

Во второй половине прошлого века теоретическая физика пришла к выводу о возможности распада протона [2,3]. Распад протона представляет собой очень заманчивое явление для цели получения экологически чистой энергии.

Теория внутренней структуры протона изложена в [6,8,10] где показано, что структура протона представляет собой фрактальную конструкцию. На рис.1 показан фрактал протона, который содержит десять иерархических уровней самоподобной внутренней структуры.

Рис.1. Фрактал протона.

Фрактал, выявленный в струтуре протона, отражает детерминированный процесс его образования.

Открытие фрактальной закономерности образования протона, позволило получить расчетным путем основные характеристики элементарных частиц, которые были известны лишь из эксперимента, в частности, фундаментальная безразмерная константа 1836,1526675(39). В [6,8,10] исследовались фрактальные структуры и найдено математическое описание фрактала протона.

Этапы и закономерность формирования структуры протона приведены на рис.2. Формирование полной структуры протона происходит за десять шагов структурообразования, что представлено «фрактальным треугольником» [10].

Рис.2. Десять этапов формирования структуры протона.

На рис.2 Рn — количество ветвей фрактала, адекватных зарядово-сопряженным вещественным образованиям. Фрактал протона имеет перекрывающиеся самоподобные структуры различного масштаба.

Общая структура представляет собой переплетающийся узор, где завершающий фрагмент субструктуры низшего порядка является одновременно началом субструктуры более высокого порядка (рис.3).

Невозможно отделить или изъять из общей структуры повторяющуюся самоподобную субструктуру, не разрушая при этом весь переплетающийся узор фрактала (рис.3). В этой особенности причина стабильности протона.

Такая особенность фрактала протона имеет много общего с конфайнментом кварков в квантовой хромодинамике. По моему мнению, то, что в теории названо конфайнментом, обусловлено фрактальностью внутреннего строения протона. Протон имеет 10 самоподобных внутренних субструктур, повторяющих в масштабе первичную ячейку фрактала.

Рис.3. Фрагмент самоподобной внутреннней структуры протона.

Внутренняя структура протона образуется системой последовательных вложений, основанной на едином алгоритме. На каждом структурном уровне фрактальная субструктура повторяет фрактал предыдущего уровня.

Исследование фрактала протона показывает, что внутренняя структура протона имеет квантованность, пространственную упорядоченность и иерархию внутренего строения. Для внутренней струтуры протона свойственна определенная иерархия характерных частот.

Таким образом, наряду с пространственной упорядоченностью, которая проявляется в фрактальной структуре протона, существует и фрактальная зависимость характерных частот.

Фрактальная теория внутреннего строения протона не противоречит кварковой модели. Как конфайнмент в кварковой модели, так и невозможность отделить субструктуру фрактала протона от общего фрактала протона в фрактальной модели хорошо согласуется с теорией асимптотической свободы кварков.

Фрактал протона позволил получить теоретическим расчетом фундаментальную константу протона mp/me =1836,1526, что указывает на экспериментальное подтверждение теории внутренней структуры протона [6,8,10]. Раскрытие закономерности внутренней структуры протона дает ключ к пониманию причины его исключительной стабильности и открывает доступ к новым способам получения энергии.

2. Теоретическое обоснование индуцированного распада протона.

Теория внутренней структуры протона указывает на то, что возможен процесс индуцированного его распада с выделением огромной энергии. Ниже приведено теоретическое обоснование возможности индуцированного распада протона и дано обоснование физическим явлениям, происходящим при распаде частицы. Получены условия, при которых протон теряет устойчивость.

2.1. Энергия, определяющая стабильность протона.

Формула, описывающая фрактал протона, имеет вид [6,8,10]:

Pp =2(2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1)+1 (1)

Из фрактала протона и из фрактальной формулы следует соотношение, отображающее дискретный ряд внутренних уровней энергии протона [6]:

(2)

где: me — масса электрона, c — скорость света.

Эта энергия разделяется на две составляющие. Первая составляющая представляет собой суммарную энергию покоя вещественных образований, участвующих в формировании структуры протона. Вторая составляющая представлена слагаемыми, которые задают величину энергии, определяющую стабильность протона:

(3)

Фрактальный закон формирования внутренней структуры протона позволил открыть новую безразмерную физическую константу (P), относящуюся к внутренней структуре протона [6,11,13]. Эту константу я назвал константой фрактальной структуры протона. Это новая константа, которая не была известна в физике, она отражает степень устойчивости этой частицы.

Формула для вычисления константы фрактальной структуры протона P имеет вид [8,10,13]:

где: ge — g-фактор электрона, D0 — большое число [7,9,13], a — постоянная Зоммерфельда. Значение константы фрактальной структуры протона равно: P = 210,8473325(39).

Для протона выполняется следующее соотношение:

где: mр — масса протона, me — масса электрона.

Константа фрактальной структуры протона P представляет собой десятикомпонентный дискретный ряд:

Десятикомпонентному дискретному ряду константы фрактальной структуры протона P соответствует десятикомпонентный дискретный ряд внутренней энергии протона. Эта энергия определяет степень устойчивости протона.

Таким образом, теория внутренней структуры протона раскрывает механизм его строения и причину высокой стабильности протона.

Раскрытие механизма, ответственного за стабильность протона, позволяет реализовать его индуцированный распад, что открывает путь к совершенно новым способам получения энергии.

2.2. Индуцированный распад протона.

Из уравнений (1) — (3) следует, что возможен процесс обратный структурогенезу протона.

Это значит, что возможна деструктуризация частицы в случае, если внешнее энергетическое воздействие превысит внутреннюю энергию, определяющую стабильность протона.

Необходимым условием, приводящим к индуцированному распаду протона (ИРП), является сообщение протону энергии, которая должна превышать определенную пороговую величину [8]. Достаточным условием является учет особенностей фрактала протона.

Из формул (2) и (3) следует, что в формировании структуры протона принимают участие зарядово-сопряженные вещественные образования. В формировании структуры протона реализован рекурсивный алгоритм [8, 10].

ИРП также подчиняется рекурсивному алгоритму [4]. Из уравнений следует, что при деструктуризации частицы будут появляться зарядово-сопряженные частицы в результате распада промежуточных вещественных образований.

На рис.4 приведен «перевернутый фрактальный треугольник», отражающий динамику индуцированного распада протона.

Рис. 4. Перевернутый фрактальный треугольник, отражающий динамику ИРП.

Источник: https://mirznanii.com/a/312096/indutsirovannyy-raspad-protona

Бета-распад

Распад протона как физическая гипотеза

Бета-распад, b-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон.

В первом случае из ядра вылетает электрон (е-) — происходит так называемый b—распад. Во втором случае из ядра вылетает позитрон (е+) — происходит b+-распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц.

Взаимные превращения нуклонов сопровождаются появлением ещё одной частицы — нейтрино (n) в случае b+-распада или антинейтрино  в случае b—распада. При b—распаде число протонов (Z) в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу.

Массовое число ядра А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов.

Наоборот, при b+-распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:

где  — символ ядра, состоящего из Z протонов и АZ нейтронов.

  Простейшим примером (b—распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона » 13 мин):

Более сложный пример (b—распада — распад тяжёлого изотопа водорода — трития, состоящего из двух нейтронов (n) и одного протона (p):

Очевидно,что этот процесс сводится к b—распаду связанного (ядерного) нейтрона. В этом случае b-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента — ядро лёгкого изотопа гелия 32Не.

  Примером b+-распада может служить распад изотопа углерода 11С по следующей схеме:

Этот процесс можно представить как распад связанного протона

В этом случае ядро углерода превращается в ядро предшествующего ему в периодической таблице элемента — бора.

  Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона  с ближайшей к ядру К-оболочки, т. н. К-захват. При К-захвате, как и при b+-распаде, образуется изобар, стоящий в периодической системе элементов слева от исходного ядра. Уравнение К-захвата имеет вид:

После захвата К-электрона на освободившееся место переходят электроны с более высоких оболочек; при этом испускается фотон. Т. о., К-захват сопровождается испусканием характеристического рентгеновского излучения. Примером К-захвата может служить реакция, при которой ядро изотопа бериллия захватывает К-электрон и превращается в ядро лития:

  Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов b-превращения (т. е. могло испытать Б.-р.

), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р.

Еb можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с — скорость света в вакууме. В случае b-распада

где М — массы нейтральных атомов. В случае b+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:

где me — масса электрона.

  Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до Eb т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

  Итак, при b—распаде масса исходного атома превышает массу конечного атома, а при b+-распаде это превышение составляет не менее двух электронных масс.

  Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное).

Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией.

Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В.

Паули о существовании новой частицы — нейтрино — спасло не только закон сохранения энергии, но и другой важнейший закон физики — закон сохранения момента количества движения. Поскольку спины (т. е. собственные моменты) нейтрона и протона равны 1/2, то для сохранения спина в правой части уравнений Б.-р.

может находиться лишь нечётное число частиц со спином 1/2. В частности, при b—распаде свободного нейтрона n ® p + e- + n только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

  Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к b-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о.

, тенденция к b+-распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к b—распаду — для нейтроноизбыточных изотопов. Известно около 1500 b-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ³ 102).

Энергия Б.-р. ныне известных изотопов лежит в пределах от

периоды полураспада заключены в широком интервале от 1,3 · 10-2 сек (12N) до ~ 2 1013 лет (природный радиоактивный изотоп 180W).

  В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р.

, природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 1012 раз слабее ядерного и в 109 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см.

Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым».

Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

  Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра b-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

  Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах.

Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер.

Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р.

происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра b-частиц.

  Экспериментальное исследование энергетического распределения электронов, испускаемых b-радиоактивными ядрами (бета-спектра), производится с помощью бета-спектрометров. Примеры b-спектров приведены на рис. 1 и рис. 2.

  Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22—24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.

  Е. М. Лейкин.

Бета-спектр RaE (пример b -спектра тяжёлого элемента).

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв, на оси ординат — число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).

Оглавление

Источник: https://www.booksite.ru/fulltext/1/001/008/114/532.htm

Распад протона

Распад протона как физическая гипотеза

Один из сюрпризов, преподнесенный нам физикой частиц во второй половине двадцатого века, состоит в том, что протон, оказывается, не вечен. Протоны, на протяжении продолжительного времени считавшиеся стабильными и бесконечно долго живущими частицами, как оказалось, по истечении достаточно долгого времени могут распасться на более мелкие частицы.

В сущности, протонам свойственна экзотическая разновидность радиоактивности. Они излучают более мелкие частицы и превращаются в нечто новое. Этот процесс распада займет невероятно долгое время, значительно превышающее современный возраст Вселенной, значительно превышающее время жизни звезд и даже намного превышающее время жизни галактик.

Однако, по сравнению с вечностью, протоны исчезнут довольно скоро.

Как это возможно? Мы уже знакомы с позитроном — несущим положительный заряд антиматериальным партнером более привычного нам электрона.

Можно предположить, что в результате распада протона должен появляться позитрон и дополнительно выделяться определенная энергия, поскольку масса протона почти в две тысячи раз больше массы позитрона. Таким образом, позитрон представляет собой состояние с более низкой энергией.

Один из фундаментальных физических принципов гласит, что все системы эволюционируют в направлении состояний с более низкой энергией. Вода стекает с холма. Возбужденные атомы испускают свет.

Легкие ядра типа водорода в ходе синтеза превращаются в более тяжелые, от гелия и до железа, потому что более крупные ядра имеют более низкую энергию (на частицу). Большие ядра вроде урана являются радиоактивными и распадаются на более мелкие ядра с более низкой энергией. Так почему протоны не могут распасться на позитроны или другие маленькие частицы?

На самом фундаментальном уровне многие физические теории имеют неотъемлемый закон, запрещающий распад протонов, даже несмотря на то, что в результате этого распада они могли бы перейти в состояние с более низкой энергией. Кратко этот закон можно сформулировать так: барионное число всегда сохраняется.

Протоны и нейтроны состоят из обычного вещества, которое мы зовем барионным. Каждый протон или нейтрон содержит одну единицу барионного числа. Частицы типа электронов и позитронов имеют нулевое барионное число, равно как и фотоны, частицы света.

Таким образом, если протон распадается на позитроны, в этом процессе происходит потеря барионного числа.

Однако в более новых версиях теорий частиц имеется лазейка. Закон, запрещающий распад протона, иногда может нарушаться, но исключительно иногда. На практике этот кажущийся оксюморон[6] означает, что протоны распадутся по истечении очень долгого времени, намного превышающего современный возраст Вселенной.

Распад протона может пойти по множеству разных путей, вследствие чего могут получиться много разных продуктов этого распада. Один из типичных примеров изображен на рисунке 16.

В этом случае протон распадается на позитрон и нейтральный пион, который впоследствии распадется на фотоны (излучение). Возможны и многие другие пути распада.

Все разнообразие продуктов этого распада и их популяций нам пока не известно.

Рис. 16. Здесь изображен один из возможных путей распада протона. В данном случае конечным результатом распада протона является позитрон (античастица электрона) и нейтральный пион.

Пион крайне нестабилен и быстро превращается в излучение (т. е.

распадается на фотоны) Если такой распад происходит в плотной среде типа белого карлика, позитрон быстро аннигилирует с электроном, образуя еще два высокоэнергетических фотона

Читатель может спросить, а почему, собственно, мы обсуждаем распад именно протона, а не нейтрона. Дело в том, что нейтроны, находящиеся внутри ядра, распадутся примерно через тот же период времени. Свободные же нейтроны живут не слишком долго.

Нейтрон, предоставленный самому себе, распадается на протон, электрон и антинейтрино приблизительно через десять минут. Такой способ распада не разрешен для нейтронов, связанных в атомные ядра.

Связанные нейтроны могут пережить лишь долгосрочные способы распада, аналогичные путям распада протона.

Современная физика не дает точного определения среднего времени жизни протона. Простейшая версия этой теории предсказывает, что протон распадется примерно через тридцать космологических декад (1030 лет, или квадрильон квадрильонов лет).

Однако это простое предсказание уже было опровергнуто экспериментами, которые показывают, что время жизни протона должно превышать тридцать две космологические декады. Распад протона предсказывает теория великого объединения — теория, объединяющая сильное, слабое и электромагнитное взаимодействия.

Эти теории связаны с невероятно высокими энергиями, которые существовали в нашей Вселенной только в первые несколько мгновений после Большого взрыва. Энергии самых больших ускорителей частиц в миллиарды раз меньше тех, что требуются для изучения этого интересного физического режима.

В результате этого физики пока не располагают окончательной версией теории великого объединения. В настоящее время изучается много возможных вариантов, причем все они дают разные предсказания относительно времени жизни протона.

Если принять во внимание, что Вселенной всего десять миллиардов лет, мысль о том, чтобы провести опыт по измерению времени в квадрильон квадрильонов лет (тридцать космологических декад), выглядит практически нереальной.

Однако, если иметь общее представление о процессе радиоактивного распада, становится понятной лежащая в ее основе идея. Все частицы, в данном случае протоны, не живут в течение какого-то определенного времени, по истечении которого одновременно распадаются.

Напротив, существует вероятность распада частиц в любое время. В силу того что вероятность такого распада ничтожно мала, большинство частиц доживет до глубокой старости. Время жизни частицы — это среднее время, которое проживают частицы, а никак не реальное время, отпущенное каждой из них.

Всегда будут частицы, которые распадутся рано. И эту разновидность младенческой смертности среди частиц можно измерить опытным путем.

Чтобы обнаружить процесс распада, нужно большое количество частиц. Для пущей ясности предположим, что мы хотим измерить распад протона, предполагаемое время жизни которого составляет 1032 лет.

Если взять большой резервуар, содержащий 1032 протонов (в его качестве вполне может выступить небольшой плавательный бассейн двадцать метров в длину, пять в ширину и два в глубину), то в пределах этого экспериментального аппарата будет распадаться приблизительно один протон в год.

Если бы нам удалось создать чувствительные инструменты, позволяющие зарегистрировать каждый такой распад, то нам оставалось бы только подождать несколько лет, по истечении которых наше измерение можно было бы считать завершенным.

На практике же эти измерения сопряжены с несколько более замысловатыми экспериментальными проблемами, но основная идея при этом вполне понятна. В частности, чтобы узнать ответ на поставленный нами вопрос, совсем необязательно ждать 1032 лет. Эксперименты такого типа уже показали, что время жизни протона превышает 1032 лет. В настоящее время эксперименты по обнаружению распада протона продолжаются.

Распад протона можно предсказать в очень общих терминах. В ранней Вселенной какой-то процесс, протекавший с нарушением барионного числа, создал вещество, которое мы наблюдаем в современной нам Вселенной. Вспомним, что небольшой избыток вещества над антивеществом образовался в первую микросекунду истории космоса.

Количество вещества во Вселенной может превышать количество антивещества только в том случае, если в результате какого-то физического процесса образуется дополнительное барионное число. Но если может иметь место подобный процесс, в ходе которого нарушается закон сохранения барионного числа, значит, протоны обречены на гибель.

Тогда распад протона — это лишь вопрос времени.

Возможные пути распада протона, упомянутые до сих пор, не включают четвертой силы природы — гравитации. Вместе с тем именно сила гравитации управляет дополнительным механизмом распада протона.

На самом деле, протон не является неделимой частицей: он образован тремя составляющими частицами, которые носят название кварков. Кварки в протоне не пребывают в покое: они находятся в состоянии постоянного возбуждения.

Хоть и очень-очень редко, но они все же могут занять почти одно и то же положение внутри протона. Как только такое схождение происходит, если кварки оказываются достаточно близко друг к другу, они могут слиться в микроскопическую черную дыру.

Оценки среднего времени, которое потребуется протону, чтобы туннелировать в миниатюрную черную дыру, весьма разнятся: от сорока пяти до ста шестидесяти девяти космологических декад, причем предпочтение отдается меньшему концу этого диапазона.

Нет нужды говорить, что этот процесс еще недостаточно хорошо изучен, вследствие чего соответствующее ему время жизни протона может быть названо только в очень грубом приближении. Но если только протоны не распадутся еще раньше, им суждено исчезнуть в ходе этого процесса — принять смерть от силы гравитации.

Как мы расскажем в следующей главе, черные дыры тоже не вечны. Причем маленькие черные дыры живут гораздо меньше больших. После самостоятельного превращения протона в черную дыру он почти мгновенно испарится, оставив после себя позитрон. Таким образом, протон служит еще одним полем боя гравитации и термодинамики.

Из-за неослабевающего действия гравитации, рано или поздно, она может спровоцировать гибель протонов и образование крошечных черных дыр. Но этот явный триумф гравитации недолговечен. Черные дыры испаряются сразу после их появления.

Большая часть массы-энергии протона уходит в излучение, энтропия высвобождается во Вселенную, и термодинамика празднует окончательную победу.

Существует еще один, даже более экзотический, механизм распада протонов. Вакуумные конфигурации пустого пространства могут иметь более одного возможного состояния. В принципе, вакуум способен самопроизвольно изменять свою конфигурацию в ходе процесса квантово-механического туннелирования.

Поскольку переходы вакуума из одного состояния в другое вызывают изменения барионного числа, они могут послужить спусковым крючком для протонного распада. Однако подобные переходы сильно подавлены, вследствие чего они требуют огромного времени.

В отсутствие более быстрого пути распада протоны будут разрушены под действием этого механизма в сто сороковую-сто пятидесятую космологическую декаду.

[6]Сочетание противоположных по значению слов. — Прим. перев.

Источник: http://indbooks.in/mirror1.ru/?p=166491

Booksm
Добавить комментарий