Продольные и поперечные волны

Поперечные и продольные волны

Продольные и поперечные волны

Различают продольные и поперечные волны. Волна называется поперечной, если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны (рис. 15.3). Поперечная волна распространяется, например, вдоль натянутого горизонтального резинового шнура, один из концов которого закреплен, а другой приведен в вертикальное колебательное движение.

Рис. 15.3

Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны (рис. 15.5).

Рис. 15.5

Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра.

Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке 15.

6 точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.

Рис. 15.6

Таким образом, продольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины.

Энергия бегущей волны. Вектор плотности потока энергии

Упругая среда, в которой распространяется волна, обладает как кинетической энергией колебательного движения частиц так и потенциальной энергией, обусловленной деформацией среды.

Можно показать, что объемная плотность энергии для плоской бегущей гармонической волны S = Acos(ω(t-) + φ0) где r = dm/dV — плотность среды, т.е. периодически изменяется от 0 до rА2w2 за время p/w = Т/2.

Среднее значение плотности энергии за промежуток времени p/w = Т/2

Для характеристики переноса энергии вводят понятие вектора плотности потока энергии — вектор Умова. Выведем выражение для него.

Если через площадку DS , перпендикулярную к направлению распространения волны, переносится за время Dt энергия DW, то плотность потока энергии Рис. 2 где DV = DS uDt — объем элементарного цилиндра, выделенного в среде.

Поскольку скорость переноса энергии или групповая скорость есть вектор, то и плотность потока энергии можно представить в виде вектора, Вт/м2 (18)

Этот вектор ввел профессор Московского университета Н.А. Умов в 1874 г. Среднее значение его модуля называют интенсивностью волны(19) Для гармонической волны u = v [cм.

(14)], поэтому для такой волны в формулах (17)-(19) u можно заменить на v.

Интенсивность определяется плотностью потока энергий — этовектор совпадает с направлением, в котором переносится энергия и равен потоку энергии перенсимой через.

Когда говорят о интенсивности, то подразумевают физическое значение вектора —потока энергии. Интенсивность волны пропорциональна квадрату амплитуды.

Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергииэлектромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля.

Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СГС),

(в системе СИ),

где E и H — векторы напряжённости электрического и магнитного полей соответственно.

(в комплексной форме)[1],

где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.

Стоячая волна — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов)амплитуды.

Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую.

При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе; в природе — волны Шумана.

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.

Для демонстрации стоячих волн в газе используют трубу Рубенса.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/13_138055_slozhenie-vzaimno-perpendikulyarnih-kolebaniy.html

Упругие волны (механические волны)

Продольные и поперечные волны

Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называют волнами.

Упругие волны — это возмущения, распространяющиеся в твердой, жидкой и газообразной средах благодаря действию в них сил упругости.

Сами эти среды называют упругими. Возмущение упругой среды — это любое отклонение частиц этой среды от своего положения равновесия.

Возьмем, например, длинную веревку (или резиновую трубку) и прикрепим один из ее концов к стене. Туго натянув веревку, резким боковым движением руки создадим на ее незакрепленном конце кратковременное возмущение. Мы увидим, что это возмущение побежит вдоль веревки и, дойдя до стены, отразится назад.

Начальное возмущение среды, приводящее к появлению в ней волны, вызывается действием в ней какого-нибудь инородного тела, которое называют источником волны. Это может быть рука человека, ударившего по веревке, камешек, упавший в воду, и т. д.

Если действие источника носит кратковременный характер, то в среде возникает так называемая одиночная волна. Если же источник волны совершает длительное колебательное движение, то волны в среде начинают идти одна за другой.

Подобную картину можно увидеть, поместив над ванной с водой вибрирующую пластину, имеющую наконечник, опущенный в воду.

Необходимым условием возникновения упругой волны является появление в момент возникновения возмущения сил упругости, препятствующих этому возмущению. Эти силы стремятся сблизить соседние частицы среды, если они расходятся, и отдалить их, когда они сближаются.

Действуя на все более удаленные от источника частицы среды, силы упругости начинают выводить их из положения равновесия. Постепенно все частицы среды одна за другой вовлекаются в колебательное движение. Распространение этих колебаний и проявляется в виде волны.

В любой упругой среде одновременно существуют два вида движения: колебания частиц среды и распространение возмущения. Волна, в которой частицы среды колеблются вдоль направления ее распространения, называется продольной, а волна, в которой частицы среды колеблются поперек направления ее распространения, называется поперечной.

Продольная волна

Волна, в которой колебания происходят вдоль направления распространения волны, называется продольной.

В упругой продольной волне возмущения представляют собой сжатия и разрежения среды. Деформация сжатия сопровождается возникновением сил упругости в любой среде. Поэтому продольные волны могут распространяться во всех средах (и в жидких, и в твердых, и в газообразных).

Пример распространения продольной упругой волны изображен на рисунке а и б выше. По левому концу длинной пружины, подвешенной на нитях, ударяют рукой. От удара несколько витков сближа­ются, возникает сила упругости, под действием которой эти витки начинают расходиться.

 Про­должая движение по инерции, они будут продолжать расходиться, минуя положение равновесия и образуя в этом месте разрежение (рисунок б). При ритмичном воздействии витки на конце пружины будут то сближаться, то отходить друг от друга, т. е. колебаться возле своего положе­ния равновесия.

Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, или упругая волна.

Поперечная волна

Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными. В поперечной упругой волне возмущения представляют собой смещения (сдвиги) одних слоев среды относительно других.

Деформация сдвига приводит к появлению сил упругости только в твердых телах: сдвиг слоев в газах и жидкостях возникновением сил упругости не сопровождается. Поэтому поперечные волны могут распространяться только в твердых телах.

Плоская волна

Плоская волна — это волна, у которой направление распространения одинаково во всех точках пространства.

В такой волне амплитуда не меняется со временем (по мере удаления от источника). Получить такую волну можно, если большую пластину, находящуюся в сплошной однородной упругой среде, заставить колебаться перпендикулярно плоскости.

Тогда все точки среды, примыкающей к пластине, будут колебаться с одинаковыми амплитудами и одинаковыми фазами.

Распространяться эти колебания будут в виде воли в направлении нормали к пластине, причем все частицы среды, лежащие в плоскостях, параллельных пластине, будут колебаться с одина­ковыми фазами.

Геометрическое место точек, в которых фаза колебаний имеет одно и то же значение, называ­ется волновой поверхностью, или фронтом волны.

С этой точки зрения плоской волне можно дать и следующее определение:

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Линия, нормальная к волновой поверхности, называется лучом. Вдоль лучей происходит перенос энергии волны. Для плоских волн лучи — это параллельные прямые.

Уравнение плоской синусоидальной волны имеет вид:

s = sm sin [ω(t – x/v) + φ0],

где s — смещение колеблющейся точки, sm — амплитуда колебаний, ω — циклическая частота, t — время, х — текущая координата, v — скорость распространения колебаний или скорость волны, φ0 — начальная фаза колебаний.

Сферическая волна

Сферической называется волна, волновые поверхности которой имеют вид концентрических сфер. Центр этих сфер называется центром волны.

Лучи в такой волне направлены вдоль радиусов, расходящихся от центра волны. На рисунке источником волны является пульсирующая сфера.

Амплитуда колебаний частиц в сферической волне обязательно убывает по мере удаления от источника. Энергия, излучаемая источником, равномерно распределяется по поверхности сферы, радиус которой непрерывно увеличивается по мере распространения волны. Уравнение сферической волны имеет вид:

.

В отличии от плоской волны, где sm = А — амплитуда волны постоянная величина, в сферической волне она убывает с расстоянием от центра волны.

Источник: https://www.calc.ru/Uprugiye-Volny-Mekhanicheskiye-Volny.html

Механические волны

Продольные и поперечные волны

Когда в каком-нибудь месте твердой, жидкой или газообразной среды происходит возбуждение колебаний частиц, результатом взаимодействия атомов и молекул среды становится передача колебаний от одной точки к другой с конечной скоростью.

Определение 1

Волна – это процесс распространения колебаний в среде.

Виды механических волн

Различают следующие виды механических волн:

Определение 2

Поперечная волна: частицы среды смещаются в направлении, перпендикулярном направлению распространения механической волны.

Пример: волны, распространяющиеся по струне или резиновому жгуту в натяжении (рисунок 2.6.1);

Определение 3

Продольная волна: частицы среды смещаются в направлении распространения механической волны.

Пример: волны, распространяющиеся в газе или упругом стержне (рисунок 2.6.2).

Интересно, что волны на поверхности жидкости включают в себя и поперечную, и продольную компоненты.

Замечание 1

Укажем важное уточнение: когда механические волны распространяются, они переносят энергию, форму, но не переносят массу, т.е.

в обоих видах волн переноса вещества в направлении распространения волны не происходит. Распространяясь, частицы среды совершают колебания около положений равновесия.

При этом, как мы уже сказали, волны переносят энергию, а именно энергию колебаний от одной точки среды к другой.

Рисунок 2.6.1. Распространение поперечной волны по резиновому жгуту в натяжении.

Рисунок 2.6.2. Распространение продольной волны по упругому стержню.

Модель твердого тела

Характерная черта механических волн – их распространение в материальных средах в отличие, например, от световых волн, способных распространяться и в пустоте. Для возникновения механического волнового импульса необходима среда, имеющая возможность запасать кинетическую и потенциальную энергии: т.е.

среда должна иметь инертные и упругие свойства. В реальных средах эти свойства получают распределение по всему объему. К примеру, каждому небольшому элементу твердого тела присуща масса и упругость. Самая простая одномерная модель такого тела представляет из себя совокупность шариков и пружинок (рисунок 2.6.

3).

Рисунок 2.6.3. Простейшая одномерная модель твердого тела.

В этой модели инертные и упругие свойства разделены. Шарики имеют массу m, а пружинки – жесткость k. Такая простая модель дает возможность описать распространение продольных и поперечных механических волн в твердом теле.

При распространении продольной волны шарики смещаются вдоль цепочки, а пружинки растягиваются или сжимаются, что есть деформация растяжения или сжатия.

Если подобная деформация происходит в жидкой или газообразной среде, ее сопровождает уплотнение или разрежение.

Замечание 2

Отличительная особенность продольных волн заключается в том, что они способны распространяться в любых средах: твердых, жидких и газообразных.

Если в указанной модели твердого тела один или несколько шариков получают смещение перпендикулярно всей цепочке, можно говорить о возникновении деформации сдвига.

Пружины, получившие деформацию в результате смещения, будут стремиться вернуть смещенные частицы в положение равновесия, а на ближайшие несмещенные частицы начнет оказываться влияние упругих сил, стремящихся отклонить эти частицы от положения равновесия. Итогом станет возникновение поперечной волны в направлении вдоль цепочки.

В жидкой или газообразной среде упругая деформация сдвига не возникает. Смещение одного слоя жидкости или газа на некоторое расстояние относительно соседнего слоя не приведет к появлению касательных сил на границе между слоями.

Силы, которые оказывают воздействие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. Аналогично можно сказать и о газообразной среде.

Замечание 3

Таким образом, появление поперечных волн невозможно в жидкой или газообразной средах.

В плане практического применения особый интерес представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны получают распространение в однородных средах с некоторой постоянной скоростью υ.

Запишем выражение, показывающее зависимость смещения y(x, t) частиц среды из положения равновесия в синусоидальной волне от координаты x на оси OX, вдоль которой распространяется волна, и от времени t: 

y(x, t)=Acos ωt-xυ=Acos ωt-kx.

В приведенном выражении k=ωυ – так называемое волновое число, а ω=2πf является круговой частотой.

Бегущая волна

Рисунок 2.6.4 демонстрирует «моментальные фотографии» поперечной волны в момент времени t и t+Δt. За промежуток времени Δt волна перемещается вдоль оси OX на расстояние υΔt. Подобные волны носят название бегущих волн.

Рисунок 2.6.4. «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t+Δt.

Определение 4

Длина волны λ – это расстояние между двумя соседними точками на оси OX, испытывающими колебание в одинаковых фазах.

Расстояние, величина которого есть длина волны λ, волна проходит за период Т. Таким образом, формула длины волны имеет вид: λ=υT, где υ является скоростью распространения волны.

С течением времени t происходит изменение координатыx любой точки на графике, отображающем волновой процесс (к примеру, точка А на рисунке 2.6.4), при этом значение выражения ωt–kx остается неизменным. Спустя время Δt точка А переместится по оси OX на некоторое расстояние Δx=υΔt. Таким образом: 

ωt-kx=ω(t+∆t)-k(x+∆x)=const или ω∆t=k∆x.

Из указанного выражения следует:

υ=∆x∆t=ωk или k=2πλ=ωυ.

Становится очевидно, что бегущая синусоидальная волна имеет двойную периодичность – во времени и пространстве. Временной период является равным периоду колебаний T частиц среды, а пространственный период равен длине волны λ.

Определение 5

Волновое число k=2πλ – это пространственный аналог круговой частоты ω=-2πT.

Сделаем акцент на том, что уравнение y(x,t)=Acos ωt+kx является описанием синусоидальной волны, получающей распространение в направлении, противоположном направлению оси OX, со скоростью υ=-ωk.

Когда бегущая волна получает распространение, все частицы среды гармонически колеблются с некоторой частотой ω. Это означает, что как и при простом колебательном процессе, средняя потенциальная энергия, являющаяся запасом некоторого объема среды, есть средняя кинетическая энергия в том же объеме, пропорциональная квадрату амплитуды колебаний.

Замечание 4

Из вышесказанного можно сделать вывод, что, когда бегущая волна получает распространение, появляетсяпоток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Скорость распространения волны

Бегущие волны движутся в среде с определенными скоростями, находящимися в зависимости от типа волны, инертных и упругих свойств среды.

Скорость, с которой поперечные волны распространяются в натянутой струне или резиновом жгуте, имеет зависимость от погонной массы μ (или массы единицы длины) и силы натяжения T

υ=Tμ.

Скорость, с которой продольные волны распространяются в безграничной среде, рассчитывается при участии таких величин как плотность средыρ (или масса единицы объема) и модульвсестороннего сжатияB (равен коэффициенту пропорциональности между изменением давления Δp и относительным изменением объема ΔVV, взятому с обратным знаком): 

∆p=-B∆VV.

Таким образом, скорость распространения продольных волн в безграничной среде, определяется по формуле:

υ=Bρ.

Пример 1

При температуре 20 °С скорость распространения продольных волн в воде υ≈1480 м/с, в различных сортах стали υ≈5–6 км/с.

Если речь идет о продольных волнах, получающих распространение в упругих стержнях, запись формулы для скорости волны содержит не модуль всестороннего сжатия, а модуль Юнга:

υ=Eρ.

Для стали отличие E от B незначительно, а вот для прочих материалов оно может составлять 20–30 % и больше.

Рисунок 2.6.5. Модель продольных и поперечных волн.

Стоячая волна

Предположим, что механическая волна, получившая распространение в некоторой среде, встретила на пути некое препятствие: в этом случае характер ее поведения резко изменится.

К примеру, на границе раздела двух сред с различающимися механическими свойствами волна частично отразится, а частично проникнет во вторую среду. Волна, пробегающая по резиновому жгуту или струне, отразится от зафиксированного конца, и возникнет встречная волна.

Если у струны зафиксированы оба конца, появятся сложные колебания, являющиеся итогом наложения (суперпозиции) двух волн, получающих распространение в противоположных направлениях и испытывающих отражения и переотражения на концах.

Так «работают» струны всех струнных музыкальных инструментов, зафиксированные с обоих концов. Схожий процесс возникает при звучании духовых инструментов, в частности, органных труб.

Если волны, распространяющиеся по струне во встречных направлениях, обладают синусоидальной формой, то при определенных условиях они образуют стоячую волну.

Допустим, струна длины l зафиксирована таким образом, что один из ее концов расположен в точке x=0, а другой – в точке x1=L (рисунок 2.6.6). В струне имеется натяжение T.

Рисунок 2.6.6. Возникновение стоячей волны в струне, зафиксированной на обоих концах.

По струне одновременно пробегают в противоположных направлениях две волны с одинаковой частотой:

  • y1(x, t)=A cos (ωt+kx) – волна, распространяющаяся справа налево;
  • y2(x, t)=A cos (ωt-kx) – волна, распространяющаяся слева направо.

Точка x=0 — один из зафиксированных концов струны: в этой точке падающая волна y1 в результате отражения создает волну y2. Отражаясь от зафиксированного конца, отраженная волна входит в противофазу с падающей.

В соответствии с принципом суперпозиции (что есть экспериментальный факт) колебания, созданные встречными волнами во всех точках струны, суммируются.

Из сказанного следует, что итоговое колебание в каждой точке определяется как сумма колебаний, вызванных волнами y1 и y2 в отдельности. Таким образом:

y=y1(x, t)+y2(x, t)=(-2A sin ωt) sin kx.

Приведенное выражение является описанием стоячей волны. Введем некоторые понятия, применимые к такому явлению как стоячая волна.

Определение 6

Узлы – точки неподвижности в стоячей волне.

Пучности – точки, расположенные между узлами и колеблющиеся с максимальной амплитудой.

Если следовать данным определениям, для возникновения стоячей волны оба зафиксированных конца струны должны являться узлами. Указанная ранее формула отвечает этому условию на левом конце (x=0).

Чтобы условие было выполнено и на правом конце (x=L), необходимо чтобы kL=nπ, где n является любым целым числом.

Из сказанного можно сделать вывод, что стоячая волна в струне появляется не всегда, а только тогда, когда длина L струны равна целому числу длин полуволн:

l=nλn2 или λn=2ln(n=1, 2, 3,…).

Набору значений λn длин волн соответствует набор возможных частот f

fn=υλn=nυ2l=nf1.

В этой записи υ=Tμ есть скорость, с которой распространяются поперечные волны по струне.

Определение 7

Каждая из частот fn и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f1 носит название основной частоты, все прочие (f2, f3, …) называются гармониками.

Рисунок 2.6.6 иллюстрирует нормальную моду для n=2.

Стоячая волна не обладает потоком энергии. Энергия колебаний, «запертая» в отрезке струны между двумя соседними узлами, не переносится в остальные части струны.

В каждом таком отрезке происходит периодическое (дважды за период T) преобразование кинетической энергии в потенциальную и обратно, подобно обычной колебательной системе.

Однако, здесь имеется различие: если груз на пружине или маятник имеют единственную собственную частоту f0=ω02π, то струна характеризуется наличием бесконечного числа собственных (резонансных) частот fn. На рисунке 2.6.7 показано несколько вариантов стоячих волн в струне, зафиксированной на обоих концах.

Рисунок 2.6.7. Первые пять нормальных мод колебаний струны, зафиксированной на обоих концах.

Согласно принципу суперпозиции стоячие волны различных видов (с разными значениями n) способны одновременно присутствовать в колебаниях струны.

Рисунок 2.6.8. Модель нормальных мод струны.

Источник: https://Zaochnik.com/spravochnik/fizika/volny/mehanicheskie-volny/

Продольные и поперечные волны

Волна называется продольной, если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис.

1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е.

перпендикулярно слоям).

Рис. 1. Продольная волна

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.

Рис. 2. Поперечная волна

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества.

Наиболее просты для изучения гармонические волны. Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица ) начала совершать колебания с периодом . Действуя на соседнюю частицу она потянет её за собой. Частица в свою очередь, потянет за собой частицу и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом .

Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица в своём движении будет несколько отставать от частицы , частица будет отставать от частицы и т. д. Когда частица пустя время завершит первое колебание и начнёт второе, своё первое колебание начнёт частица , находящаяся от частицы на некотором расстоянии .

Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние . Это расстояние называется длиной волны. Колебания частицы будут идентичны колебаниям частицы колебания следующей частицы будут идентичны колебаниям частицы и т.

д. Колебания как бы воспроизводят себя на расстоянии можно назвать пространственным периодом колебаний; наряду с временным периодом она является важнейшей характеристикой волнового процесса.

В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1). В поперечной — расстоянию между соседними горбами или впадинами (рис. 2).

Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной ).

Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:

.

Частотой волны называется частота колебаний частиц:

.

Отсюда получаем связь скорости волны, длины волны и частоты:

. (1)

На поверхности жидкости могут существовать волны особого типа, похожие на поперечные — так называемые поверхностные волны. Они возникают под действием силы тяжести и силы поверхностного натяжения.

Звук

Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука, выше — область ультразвука.

К основным характеристикам звука относятся громкость и высота.
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ — тиканье часов, 50 дБ — обычный разговор, 80 дБ — крик, 130 дБ — верхняя граница слышимости (так называемый болевой порог).

Тон — это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах — больше, чем в жидкостях.
Например, скорость звука в воздухе при равна примерно 340 м/с (её удобно запомнить как «треть километра в секунду»)*.

В воде звук распространяется со скоростью около 1500 м/с, а в стали — около 5000 м/с.
Заметим, что частота звука от данного источника во всех средах одна и та же: частицы среды совершают вынужденные колебания с частотой источника звука.

Согласно формуле (1) заключаем тогда, что при переходе из одной среды в другую наряду со скоростью звука изменяется длина звуковой волны.

Если хочешь найти расстояние до грозовых туч в километрах, посчитай, через сколько секунд после молнии придёт гром, и раздели полученное число на три.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/mexanicheskie-volny/

Продольные и поперечные волны

Продольные и поперечные волны

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является деформация сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой траектории.

Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны.

Они возникают в результате действия силы тяжести и силы поверхностного натяжения.

Рис.1. Продольные (а) и поперечные (б) механические волны

Вопрос 30

Длина волны.

Каждая волна распространяется с какой-то скоростью. Подскоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где

v — скорость волны; T — период колебаний в волне; λ (греческая буква «ламбда») — длина волны.

Выбрав направление распространения волны за направление оси x и обозначив через y координату колеблющихся в волне частиц, можно построить график волны. График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45. Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны λ.

Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т. е. T = 1/ν, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

Вопрос 30.1

Уравнение волн

Для получения уравнения волны, то есть аналитического выражения функции двух переменных S = f (t, x) , представим что, в некоторой точке пространства возникают гармонические колебания с круговой частотой w и начальной фазой, для упрощения равной нулю (см. рис.8).

Смещение в точке М : Sм = A sin w t, где А — амплитуда. Поскольку частицы среды, заполняющие пространство, связаны между собой, то колебания от точки М распространяются вдоль оси х со скоростью v .

Через некоторое время Dt они достигают точки N . Если в среде отсутсвует затухание, то смещение в этой точке имеет вид: SN = A sin w (t — Dt), т.е. колебания запаздывают на время Dtотносительно точки M .

Поскольку , то заменив произвольный отрезок MNкоординатой х , получим уравнение волны в виде:

(23)

Учитывая, что (где Т — период), а длина волны l = v T, формулу (23) можно записать в виде:

(24) Уравнение волны (23) или (24) позволяет определить в любой момент времени t смещение любой точки, имеющей координату х.

Вопрос 31



Источник: https://infopedia.su/9x691a.html

Booksm
Добавить комментарий