Применение поляризации света

Применение поляризации света

Применение поляризации света

Практические применения поляризации света. Применения поляризации света для нужд практики очень разнообразны. Некоторые из них разработаны давно и детально и широко используются.

Другие только еще пробивают себе дорогу.

В методическом отношении всем им свойственна следующая черта — они либо позволяют решить задачи, вовсе недоступные для других методов, либо решают их совершенно оригинальным путем, кратким и эффективным.

Отнюдь не претендуя на полноту описания всех практических применений поляризации света, мы ограничимся только примерами из разных областей деятельности, иллюстрирующими широту применения и полезность этих методов.

Светотехника. Одной из важных повседневных задач светотехники является плавное изменение и регулировка интенсивности световых потоков. Решение этой задачи с помощью пары поляризаторов (например, поляроидов) имеет ряд преимуществ перед другими методами регулировки.

Интенсивность может плавно изменяться от максимальной (при параллельных поляроидах) практически до темноты (при скрещенных). При этом интенсивность меняется одинаково по всему сечению пучка и само сечение остается постоянным.

Поляроиды могут быть изготовлены большого размера, поэтому такие пары употребляются не только в лабораторных установках, фотометрах, в секстантах или солнечных очках, но и в иллюминаторах пароходов, окнах железнодорожных вагонов и т. п.

Поляроиды могут использоваться также в системах световой блокировки, т. е. в таких системах, которые пропускают свет там, где нужно, и не пропускают там, где не нужно. Пример — светоблокировка автомобильных фар.

Если на фары и смотровые стекла автомобилей поставить поляроиды, ориентированные под 45° вправо к вертикали, то поляроиды на фарах и смотровом стекле данного автомобиля будут параллельны. Следовательно, шофер будет хорошо видеть дорогу и встречные машины, освещаемые собственными фарами.

Но поляроид, фар встречных автомобилей будут скрещены с поляроидом смотрового стекла данного автомобиля. Поэтому слепящий свет фар встречного автомобиля будет погашен. Несомненно, это сделало бы ночную работу шоферов значительно проще и безопаснее.

Другой пример поляризационной светоблокировки — световое оборудование рабочего места оператора, который должен одновременно видеть, например, экран осциллографа и какие-нибудь таблицы, графики или карты.

Свет ламп, освещающих таблицы, попадая на экран осциллографа, ухудшает контрастность изображения на экране.

Можно избежать этого, оборудовав осветитель и экран поляроидами с взаимно перпендикулярной ориентацией.

Поляроиды могут быть полезны тем, кто работает на воде (морякам, рыбакам и т. п.), для гашения зеркально отраженных от воды бликов, которые, как мы знаем, частично поляризованы.

Поляризаторы широко применяются в фотографии для устранения бликов от фотографируемых объектов (картин, стеклянных и фарфоровых изделий и пр.). При этом можно помещать поляризаторы между источником и отражающей поверхностью, это помогает вовсе погасить блики.

Такой метод полезен при освещении фотостудий, картинных галерей, при фотографировании хирургических операций и в ряде других случаев.

Погашение отраженного света при нормальном или близком к нормальному падении может осуществляться с помощью циркулярных поляризаторов. Ранее наукой было доказано, что при этом правоциркулярный свет превращается в левоциркулярный (и наоборот). Следовательно, тот же самый поляризатор, который создает циркулярную поляризацию падающего света, будет гасить отраженный свет.

В спектроскопии, астрофизике и светотехнике находят широкое применение поляризационные фильтры, позволяющие выделять из исследуемого спектра узкие полосы, а также изменять нужным образом насыщенность или оттенок цвета. Действие их основано на том, что основные параметры поляризаторов и фазовых пластинок (например, дихроизм поляроидов) зависят от длины волны.

Поэтому различные комбинации этих устройств могут использоваться для изменения спектрального распределения энергии в световых потоках. Например, пара хроматических поляроидов, обладающих дихроизмом только в видимой области, в скрещенном положении будет пропускать красный свет, а в параллельном — белый. Это простейшее устройство удобно для освещения фотолабораторий.

Применяемые для астрофизических исследований поляризационные фильтры содержат довольно большое число элементов (например, шесть поляризаторов и пять чередующихся с ними фазовых пластинок с определенной ориентацией) и позволяют получать достаточно узкие полосы пропускания.

Множество новых материалов все более прочно входят в наш обиход. Речь идет не только о каких-то компьютерных или иных высоких технологиях.

Справедливости ради следует отметить, что в современные мешки для мусора 100л можно помещать как отходы, так и сыпучие субстанции для переноса и временного хранения.

Мешки обладают достаточно высокой прочностью, благодаря чему находят широкое применение на продовольственных и химических складах. Многие хозяйственники уже оценили достоинства данных изделий и активно применяют их как в складских, так и в бытовых нуждах.

Источник: http://www.a-Smirnov.ru/primenenie-polyarizacii-sveta/

Поляризованный свет в природе

Применение поляризации света

Явление поляризации света, изучаемое и в школьном и в институтском курсах физики, остается в памяти многих из нас как любопытный, находящий применение в технике, но не встречающийся в повседневной жизни оптический феномен. Голландский физик Г. Кеннен в своей статье, опубликованной в журнале «Натуур эн техниек», показывает, что это далеко не так – поляризованный свет буквально окружает нас.

Человеческий глаз весьма чувствителен к окраске (то есть длине волны) и яркости света, но третья характеристика света, поляризация, ему практически недоступна. Мы страдаем «поляризационной слепотой». В этом отношении некоторые представители животного мира гораздо совершеннее нас.

Например, пчелы различают поляризацию света почти так же хорошо, как цвет или яркость. И так как поляризованный свет часто встречается в природе, им дано увидеть в окружающем мире нечто такое, что человеческому глазу совершенно недоступно.

Человеку можно объяснить, что такое поляризация, с помощью специальных светофильтров он может увидеть, как меняется свет, если «вычесть» из него поляризацию, но представить себе картину мира «глазами пчелы» мы, видимо, не можем (тем более что зрение насекомых отличается от человеческого и во многих других отношениях).

Рис. 1. Схема строения зрительных рецепторов человека (слева) и членистоногого (справа). У человека молекулы родопсина расположены беспорядочно с складках внутриклеточной мембраны, у членистоногих – на выростах клетки, аккуратными рядами

Поляризация – это ориентированность колебаний световой волны в пространстве. Эти колебания перпендикулярны направлению движения луча света.

Элементарная световая частица (квант света) представляет собой волну, которую можно сравнить для наглядности с волной, которая побежит по канату, если, закрепив один его конец, другой встряхнуть рукой.

Направление колебаний каната может быть различным, смотря по тому, в каком направлении встряхивать канат. Точно так же и направление колебаний волны кванта может быть разным. Пучок света состоит из множества квантов.

Если их колебания различны, такой свет не поляризован, если же все кванты имеют абсолютно одинаковую ориентацию, свет называют полностью поляризованным. Степень поляризации может быть различной в зависимости от того, какая доля квантов в нем обладает одинаковой ориентацией колебаний.

Существуют светофильтры, пропускающие только ту часть света, волны которой ориентированы определенным образом. Если через такой фильтр смотреть на поляризованный свет и при этом поворачивать фильтр, яркость пропускаемого света будет меняться.

Она будет максимальна при совпадении направления пропускания фильтра с поляризацией света и минимальна при полном, (на 90°) расхождении этих направлений.

С помощью фильтра можно обнаружить поляризацию, превышающую примерно 10%, а специальная аппаратура обнаруживает поляризацию порядка 0,1%.

Поляризационные фильтры, или поляроиды, продаются в магазинах фотопринадлежностей.

Если через такой фильтр смотреть на чистое голубое небо (при облачности эффект выражен гораздо слабее) примерно в 90 градусах от направления на Солнце, то есть чтобы Солнце было сбоку, и при этом фильтр поворачивать, то ясно видно, что при некотором положении фильтра на небе появляется темная полоса.

Это свидетельствует о поляризованности света, исходящего от этого участка неба. Поляроидный фильтр открывает нам явление, которое пчелы видят «простым глазом». Но не надо думать, что пчелы видят ту же темную полосу на небе. Наше положение можно сравнить с положением полного дальтоника, человека, неспособного видеть цвета.

Тот, кто различает только черное, белое и различные оттенки серого цвета, мог бы, смотря на окружающий мир попеременно через светофильтры различного цвета, заметить, что картина мира несколько меняется.

Например, через красный фильтр иначе выглядел бы красный мак на фоне зеленой травы, через желтый фильтр стали бы сильнее выделяться белые облака на голубом небе. Но фильтры не помогли бы дальтонику понять, как выглядит мир человека с цветным зрением. Так же, как цветные фильтры дальтонику, поляризационный фильтр может лишь подсказать нам, что у света есть какое-то свойство, не воспринимаемое глазом.

Поляризованность света, идущего от голубого неба, некоторые могут заметить и простым глазом. По данным известного советского физика академика С.И. Вавилова, этой способностью обладают 25…

30% людей, хотя многие из них об этом не подозревают.

При наблюдении поверхности, испускающей поляризованный свет (например, того же голубого неба), такие люди могут заметить в середине поля зрения слабо-желтую полоску с закругленными концами.

Рис. 2. Фигура Гайдингера

Еще слабее заметны голубоватые пятнышки в ее центре, по краям. Если плоскость поляризации света поворачивается, то поворачивается и желтая полоска. Она всегда перпендикулярна к направлению световых колебаний. Это так называемая фигура Гайдингера, она открыта немецким физиком Гайдингером в 1845 году.

Способность видеть эту фигуру можно развивать, если хотя бы раз удастся ее заметить. Интересно, что еще в 1855 году, не будучи знакомым со статьей Гайдингера, напечатанной за девять лет до того в одном немецком физическом журнале, Лев Толстой писал («Юность», глава XXXII): «…

я невольно оставляю книгу и вглядываюсь в растворенную дверь балкона, в кудрявые висячие ветви высоких берез, на которых уже заходит вечерняя тень, и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает…

» Такова была наблюдательность великого писателя.

Рис. 3.

В неполяризованном свете (1) колебания электрической и магнитной составляющей идут в самых разных плоскостях, которые можно свести к двум, выделенным на этом рисунке. Но колебаний по пути распространения луча нет (свет в отличие от звука – не продольные колебания).

В поляризованном свете (2) выделена одна плоскость колебаний. В свете, поляризованном по кругу (циркулярно), эта плоскость закручивается в пространстве винтом (3). Упрощенная схема объясняет, почему поляризуется отраженный свет (4).

Как уже сказано, все существующие в луче плоскости колебаний можно свести к двум, они показаны стрелками. Одна из стрелок смотрит на нас и условно видна нам как точка.

После отражения света одно из существующих в нем направлений колебаний совпадает с новым направлением распространения луча, а электромагнитные колебания не могут быть направлены вдоль пути своего распространения.

Фигуру Гайдингера можно увидеть гораздо яснее, если смотреть через зеленый или синий светофильтр.

Поляризованность света, исходящего от чистого неба, – лишь один из примеров явлений поляризации в природе. Другой распространенный случай – это поляризованность отраженного света, бликов, например, лежащих на поверхности воды или стеклянных витрин.

Собственно, фотографические поляроидные фильтры и предназначены для того, чтобы фотограф мог в случае необходимости устранять эти мешающие блики (например, при съемке дна неглубокого водоема или фотографировании картин и музейных экспонатов, защищенных стеклом).

Действие поляроидов в этих случаях основано на том, что отраженный свет в той или иной степени поляризован (степень поляризации зависит от угла падения света и при определенном угле, разном для разных веществ, – так называемом угле Брюстера – отраженный свет поляризован полностью).

Если теперь смотреть на блик через поляроидный фильтр, нетрудно подобрать такой поворот фильтра, при котором блик полностью или в значительной мере подавляется.

Применение поляроидных фильтров в противосолнечных очках или ветровом стекле позволяет убрать мешающие, слепящие блики от поверхности моря или влажного шоссе.

Почему поляризован отраженный свет и рассеянный свет неба? Полный и математически строгий ответ на этот вопрос выходит за рамки небольшой научно-популярной публикации (читатели могут найти его в литературе, список которой приведен в конце статьи).

Поляризация в этих случаях связана с тем, что колебания даже в неполяризованном луче уже в определенном смысле «поляризованы»: свет в отличие от звука не продольные, а поперечные колебания. В луче нет колебаний по пути его распространения (см. схему).

Колебания и магнитной и электрической составляющей электромагнитных волн в неполяризованном луче направлены во все стороны от его оси, но не по этой оси. Все направления этих колебаний можно свести к двум, взаимно перпендикулярным.

Когда луч отражается от плоскости, он меняет направление и одно из двух направлений колебаний становится «запретным», так как совпадает с новым направлением распространения луча. Луч становится поляризованным. В прозрачном веществе часть света уходит вглубь, преломляясь, и преломленный свет тоже, хотя и в меньшей степени, чем отраженный, поляризован.

Рассеянный свет неба не что иное, как солнечный свет, претерпевший многократное отражение от молекул воздуха, преломившийся в капельках воды или ледяных кристаллах. Поэтому в определенном направлении от Солнца он поляризован.

Поляризация происходит не только при направленном отражении (например, от водной глади), но и при диффузном. Так, с помощью поляроидного фильтра нетрудно убедиться, что поляризован свет, отраженный от покрытия шоссе.

При этом действует удивительная зависимость: чем темнее поверхность, тем сильнее поляризован отраженный от нее свет. Эта зависимость получила название закона Умова, по имени русского физика, открывшего ее в 1905 году.

Асфальтовое шоссе в соответствии с законом Умова поляризовано сильнее, чем бетонное, влажное – сильнее, чем сухое. Влажная поверхность не только сильнее блестит, но она еще и темнее сухой.

Заметим, что свет, отраженный от поверхности металлов (в том числе от зеркал – ведь каждое зеркало покрыто тонким слоем металла), не поляризован. Это связано с высокой проводимостью металлов, с тем, что в них очень много свободных электронов. Отражение электромагнитных волн от таких поверхностей происходит иначе, чем от поверхностей диэлектрических, непроводящих.

Поляризация света неба была открыта в 1871 году (по другим источникам даже в 1809 году), но подробное теоретическое объяснение этого явления было дано лишь в середине нашего века.

Тем не менее, как обнаружили историки, изучавшие древние скандинавские саги о плаваниях викингов, отважные мореходы почти тысячу лет назад пользовались поляризацией неба для навигации.

Обычно они плавали, ориентируясь по Солнцу, но, когда светило было скрыто за сплошной облачностью, что не редкость в северных широтах, викинги смотрели на небо через специальный «солнечный камень», который позволял увидеть на небе темную полоску в 90° от направления на Солнце, если облака не слишком плотны.

По этой полосе можно судить, где находится Солнце.

«Солнечный камень» – видимо, один из прозрачных минералов, обладающих поляризационными свойствами (скорее всего распространенный на севере Европы исландский шпат), а появление на небе более темной полосы объясняется тем, что, хотя за облаками Солнца и не видно, свет неба, проникающий через облака, остается в какой-то степени поляризованным. Несколько лет назад, проверяя это предположение историков, летчик провел небольшой самолет из Норвегии в Гренландию, в качестве навигационного прибора пользуясь только кристаллом минерала кордиерита, поляризующего свет.

Уже говорилось, что многие насекомые в отличие от человека видят поляризацию света. Пчелы и муравьи не хуже викингов пользуются этой своей способностью для ориентировки в тех случаях, когда Солнце закрыто облаками.

Что придает глазу насекомых такую способность? Дело в том, что в глазе млекопитающих (и в том числе человека) молекулы светочувствительного пигмента родопсина расположены беспорядочно, а в глазе насекомого те же молекулы уложены аккуратными рядами, ориентированы в одном направлении, что и позволяет им сильнее реагировать на тот свет, колебания которого соответствуют плоскости размещения молекул. Фигуру Гайдингера можно видеть потому, что часть нашей сетчатки покрыта тонкими, идущими параллельно волокнами, которые частично поляризуют свет.

Любопытные поляризационные эффекты наблюдаются и при редких небесных оптических явлениях, таких, как радуга и гало. То, что свет радуги сильно поляризован, обнаружили в 1811 году. Вращая поляроидный фильтр, можно сделать радугу почти невидимой.

Поляризован и свет гало – светящихся кругов или дуг, появляющихся иногда вокруг Солнца и Луны. В образовании и радуги и гало наряду с преломлением участвует отражение света, а оба эти процесса, как мы уже знаем, приводят к поляризации.

Поляризованы и некоторые виды полярного сияния.

Наконец, следует отметить, что поляризован и свет некоторых астрономических объектов. Наиболее известный пример – Крабовидная туманность в созвездии Тельца. Свет, испускаемый ею, – это так называемое синхротронное излучение, возникающее, когда быстро летящие электроны тормозятся магнитным полем. Синхротронное излучение всегда поляризовано.

Вернувшись на Землю, отметим, что некоторые виды жуков (например скарабеи), обладающие металлическим блеском, превращают свет, отраженный от их спинки, в поляризованный по кругу.

Так называют поляризованный свет, плоскость поляризации которого закручена в пространстве винтообразно, налево или направо. Металлический отблеск спинки такого жука при рассмотрении через специальный фильтр, выявляющий круговую поляризацию, оказывается левозакрученным.

Все эти жуки относятся к семейству скарабеев, В чем биологический смысл описанного явления, пока неизвестно.

Литература:

  1. Брэгг У. Мир света. Мир звука. М.: Наука, 1967.
  2. Вавилов С.И. Глаз и Солнце. М.: Наука, 1981.
  3. Венер Р. Навигация по поляризованному свету у насекомых. Журн. «Сайентифик америкен», июль 1976 г.
  4. Жевандров И.Д. Анизотропия и оптика. М.: Наука, 1974.
  5. Кеннен Г.П. Невидимый свет. Поляризация в природе. Журн. «Натуур эн техниек». №5. 1983.
  6. Миннарт М. Свет и цвет в природе. М.: Физматгиз, 1958.
  7. Фриш К. Из жизни пчел. М.: Мир, 1980.

Ранее опубликовано:

Наука и жизнь. 1984. №4.

Источник: https://earth-chronicles.ru/news/2012-02-28-17970

Явление поляризации света

С целью более детального знакомства с применением поляризации света, следует понимать суть самого явления поляризации.

Определение 1

Явление поляризации света является оптическим феноменом, нашедшим свое применение в техническом смысле, однако при этом не встречающимся в рамках повседневной жизни. Поляризованный свет нас в буквальном смысле окружает, однако для человеческого глаза сама поляризация остается практически недоступной. Мы, таким образом страдаем «поляризационной слепотой».

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Создаваемый солнцем (или каким-либо иным обычным источником, например, лампой) естественный свет является совокупностью волн, которые излучаются за счет огромного числа атомов.

Поляризованной волной будет считаться поперечная волна, где колебания всех частиц выполняется в пределах в одной плоскости.

Ее при этом можно получить, благодаря резиновому шнуру, в том случае, если поставить на его пути специальную преграду с тонкой щелью.

Щель, в свою очередь, будет пропускать исключительно колебания, происходящие вдоль нее. Плоскополяризованная волна излучается отдельным атомом.

Примеры поляризации света и закон Умова

В природе существует множество разнообразных примеров поляризации света. При этом можно рассмотреть наиболее распространенные из них:

  • Самым простым и широко известным примером поляризации является чистое небо, которое считается ее источником.
  • Другими широко распространёнными случаями можно считать блики на стеклянных витринах и водной поверхности. При необходимости они устраняются за счет соответствующих поляроидных фильтров, которыми зачастую пользуются фотографы. Данные фильтры становятся незаменимыми в случае необходимости запечатления на фотоснимках каких-либо защищённых стеклом картин либо экспонатов из музея.

Принцип действия вышеуказанных фильтров базируется на том факте, что совершенно любому отраженному свету (в зависимости от угла падения) присуща определенная степень поляризации. При взгляде на блик, таким образом, легко можно подобрать оптимальный угол расположения фильтра, при котором он подавляется, вплоть до своего полного исчезновения.

Аналогичный принцип задействуют производители качественных очков с солнцезащитным фильтром. За счет задействования в их стекле поляроидных фильтров, убираются те блики, которые мешают. Они, в свою очередь, исходят от поверхностей мокрого шоссе или моря.

Замечание 1

Эффективное применение явления поляризации демонстрирует закон Умова: любой рассеянный свет с неба – это солнечные лучи, ранее претерпевшие множественные отражения от молекул воздуха, и неоднократно при этом преломившиеся в каплях воды или кристаллах льда. Наряду с тем, процесс поляризации будет характерным не только в отношении направленного отражения (от воды, например), но и для диффузного.

В 1905 году физики представили доказательство версии о том, что, чем темнее поверхность отражения световой волны, тем более высокой оказывается степень поляризации, и именно эту зависимость удалось доказать в законе Умова. Если рассматривать данную зависимость на конкретном примере с асфальтовым шоссе, выходит, что во влажном состоянии оно становится более поляризованным в сравнении с сухим.

Применение поляризации света в истории и в повседневной жизни

Поляризация света, таким образом, оказывается непростым явлением для изучения, а важным в плане широкого практического применения в физике. На практике в повседневной жизни встречаются следующие примеры:

  1. Ярким примером, знакомым всем, является 3D-кинематограф.
  2. Еще одним распространенным примером являются поляризационные очки, скрывающие солнечные блики от воды и света фар на трассе.
  3. Так называемые поляризационные фильтры задействованы в фототехнике, а поляризация волн применяется с целью передачи сигналов между антеннами разных космических аппаратов.
  4. Одной из главнейших повседневных задач светотехники считается постепенное изменение и регулирование интенсивности световых потоков. Решение данной задачи за счет пары поляризаторов (поляроидов) обладает определенными преимуществами перед остальными методами регулирования. Поляроиды могут изготавливаться в формате больших размеров, что предполагает употребление таких пар не только в лабораторных установках, но и в иллюминаторах пароходов, окнах ж/д вагонов и пр.
  5. Еще одним примером является поляризационная блокировка, применяемая в световом оборудовании рабочего места операторов, которые обязаны видеть одновременно, например, экран осциллографа и определенные таблицы, карты или графики.
  6. Поляроиды могут оказаться полезными для тех, чья работа связана с водой (моряки, рыбаки), с целью гашения зеркально отражающихся от воды бликов, частично поляризованных.

Рисунок 2. Применение поляризационных устройств. Автор24 — интернет-биржа студенческих работ

Замечание 2

Гашение отраженного света в условиях нормального или близкого к нормальному падения может осуществляться за счет циркулярных поляризаторов. Ранее наука доказала, что в этом случае право циркулярный свет преобразуется в лево циркулярный (и обратно). Тот же самый поляризатор, таким образом, создающий циркулярную поляризацию падающего света, будет провоцировать гашение отраженного света.

В астрофизике, спектроскопии, светотехнике свое широкое применение находят так называемые поляризационные фильтры, позволяющие вычленять узкие полосы из исследуемого спектра и провоцирующие изменения насыщенности или цветовых оттенков.

Действие таких фильтров основывается на свойствах основных параметров фазовых пластинок (дихроизм поляроидов) и поляризаторов, находящихся в непосредственной зависимости от длины волны. По этой причине разнообразные комбинации подобных устройств могут применяться в целях изменений спектрального энергораспределения в световых потоках.

Пример 1

Так, например, пара хроматических поляроидов, которым присущ дихроизм исключительно в пределах видимой сферы, в скрещенном положении начнет пропускать красный свет, а в параллельном – только белый. Такое простейшее устройство будет эффективным в практическом применении при освещении фотолабораторий.

Таким образом, сфера применения поляризации света является достаточно разнообразной. По этой причине исследование явления поляризации приобретает свою особенную актуальность.

Источник: https://spravochnick.ru/fizika/fizicheskaya_optika/primenenie_polyarizacii_sveta/

Применение поляризованного света

Применение поляризации света

Световое лечение (лечение светом)

Разнообразие способов лечения светом

Многие из нас не знают о том, что свет, в качестве видимого излучения, может проникать в глубину кожных покровов практически на сантиметр. Волна видимого излучения короче, чем инфракрасный луч.

А влияние света на кожу возможно благодаря именно инфракрасным и ультрафиолетовым лучам, оказывающим как тепловое, так и химическое воздействие.

К примеру, в лампе накаливания (в обычном источнике видимого каждому из нас света) заключено около 85% инфракрасных лучей.

Лечение инфракрасным световым излучением

При такой терапии используют лампы накаливания. Особенность инфракрасных лучей в том, что они способны глубже других проникать в ткани, нагревая при этом не только кожу, но и подкожные ткани.

Инфракрасным излучением лечат болезни нервной системы, опорно-двигательного аппарата, глаз, лор-органов, сосудов.

Такое излучение показано при терапии некоторых воспалительных процессов и при лечении последствий повреждений кожи вследствие ожога или обморожения.

Лечебный эффект инфракрасного света основан на его способности ускорять регенерацию тканей, повышая при этом их антиинфекционный барьер. Инфракрасное излучение способствует быстрому устранению воспалительных процессов в организме.

Лечение ультрафиолетовым светом

Искусственное ультрафиолетовое излучение дают ртутно-кварцевые лампы. Такой свет лечит самые разные кожные болезни и избавляет от юношеской угревой сыпи, фурункулов, гнойных воспалений, гидраденита, а также последствий косметических операций. Биологически допустимая доза определяется биодозиметром перед лечением.

Нетрадиционные формы лазерного светолечения

К новым формам лечения лазером можно смело отнести терапию квантовыми генераторами. Такое лечение основывается на способности квантового генератора выдавать направленный однородный пучок световой энергии видимого диапазона. Такое облучение эффективно при лечении проблем позвоночника, артритов, бронхиальной астмы, стоматитов, полиневритов, долго неисчезающих нарушений кожного

Применение поляризованного света

Регулировка освещения и гашение бликов. Одно из распространенных применений поляризованного света — регулировка интенсивности освещения. Пара поляризаторов позволяет плавно изменять интенсивность освещения в огромных пределах — до 100 000 раз.

Поляризованный свет часто используется для гашения света, зеркально отраженного от гладких диэлектрических поверхностей. На этом принципе устроены, например, поляроидные солнечные очки.

Когда естественный неполяризованный свет падает на поверхность водоема, часть его зеркально отражается и при этом поляризуется. Этот отраженный свет мешает видеть предметы, расположенные под водой.

Если смотреть на воду через соответствующим образом ориентированный поляризатор, то большая часть зеркально отраженного света будет поглощаться и видимость подводных объектов значительно улучшится.

При наблюдении через такие очки «шум» — свет, отраженный от поверхности, — уменьшается в 5—20 раз, а «сигнал» — свет от подводных объектов — уменьшается всего в 2—4 раза. Таким образом, отношение сигнала к «шуму» значительно возрастает.

Поляризационная микроскопия. В ряде исследований широко применяется поляризационная микроскопия. Поляризационный микроскоп снабжен двумя поляризационными призмами или двумя поляроидами. Один из них — поляризатор — расположен перед конденсором, а второй — анализатор — за объективом.

В последние годы в поляризационные микроскопы вводят специальные поляризационные компенсаторы, значительно повышающие чувствительность и контраст.

С помощью микроскопов с компенсаторами были обнаружены и сфотографированы такие мелкие и неконтрастные объекты, как внутриклеточные двоякопреломляющие структуры и детали строения ядер клетки, которые невозможно обнаружить другим способом.

Усиление контраста. Поляризационные фильтры часто используют для повышения контраста прозрачных и малоконтрастных элементов.

Так, например, их применяют при фотосъемке облачного неба с целью усиления контраста между облаками и чистым небом. Свет, рассеянный облаками, почти совсем неполяризован, свет же ясного голубого неба поляризован значительно.

Применение поляризационных фильтров является самым эффективным средством усиления контраста.

Кристаллографические исследования и фотоупругий анализ. В кристаллографии поляризационные исследования проводят особенно часто.

Многие кристаллы и ориентированные полимерные материалы обладают значительным двойным лучепреломлением и дихроизмом.

Изучая эти характеристики и определяя направление соответствующих осей, можно проводить идентификацию материалов, а также получать данные о химической структуре новых веществ.

Особое значение в технике имеет фотоупругий анализ. Это метод, позволяющий по сдвигу фаз судить о механических напряжениях. Для проведения фотоупругого анализа исследуемую деталь изготовляют из прозрачного материала с высоким коэффициентом фотоупругости.

Основная часть установки для фотоанализа — полярископ, состоящий из осветительной системы, поляризатора, анализатора и окуляра. Если плоскую стеклянную полосу подвергнуть растяжению, то стекло окажется несколько деформированным, в нем возникнут механические напряжения.

Вследствие этого оно станет двоякопреломляющим и будет сдвигать фазу световой волны. Измеряя сдвиг фазы, можно определить величину напряжения.

Источник: https://sdamzavas.net/3-25838.html

Booksm
Добавить комментарий