Правила Кирхгофа для цепей переменного тока

Правила (законы) Кирхгофа простыми словами: формулировки и расчеты

Правила Кирхгофа для цепей переменного тока

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях.

В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический  заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений».

Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода.

( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Источник: https://www.asutpp.ru/pravila-zakony-kirhgofa-prostymi-slovami.html

Законы Кирхгофа для расчёта электрических цепей

Правила Кирхгофа для цепей переменного тока

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток.

Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи.

Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

∑i = 0,

или в комплексной форме

∑I = 0.

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

∑Z ∙ I = ∑E.

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно Nу – 1, где Nу – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно Nв – Nу + 1, где Nв – число ветвей.

Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Рис. 1. Рассматриваемая электрическая цепь

https://www.youtube.com/watch?v=LzqkLKOyid8

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока J1, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

I1 – I2 – I3 = 0;

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

—I1 – I4 + I6 = 0;

для узла «3 у.»:

I2 + I4 + I5 – I7 = 0;

для узла «4 у.»:

I3 – I5 – J1 = 0

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

ZC1 ∙ I1 + R2 ∙ I2 – ZL1 ∙ I4 = E1;

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

-R2 ∙ I2 + R4 ∙ I3 + ZC2 ∙ I5 = E2;

для контура «3 к.»:

ZL1 ∙ I4 + (ZL2 + R1) ∙ I6 + R3 ∙ I7 = E3,

где ZC = — 1/(ωC), ZL = ωL.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

>> syms R1 R2 R3 R4 Zc1 Zc2 Zl1 Zl2 J1 E1 E2 E3; >> A = [1 -1 -1 0 0 0 0; -1 0 0 -1 0 1 0; 0 1 0 1 1 0 -1; 0 0 1 0 -1 0 0; Zc1 R2 0 -Zl1 0 0 0; 0 -R2 R4 0 Zc2 0 0; 0 0 0 Zl1 0 (R1+Zl2) R3]; >> b = [0; 0; 0; J1; E1; E2; E3]; >> I = A\b

В результате получим вектор-столбец I токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Источник: https://faultan.ru/simulation/toe/kirchhoffs_laws/

������ �������� — ������� � ������� �������������

Правила Кирхгофа для цепей переменного тока

������ �������� ������������� ����������� ����� ������ � ������������ � ������������� ������������� ����� ������������� ����. ������ �������� ����� ������ �������� � �������������� ��-�� ����� ���������������, ��� ��� �������� ��� ������� ����� ������������������ �����.������� �������� ����������� ��� �������� � ���������� ����� ��� ���������� � ���������� ����������� � �����.�

������ ����� �������� �������� �� ������ ���������� ������. �� ������� � ���, ��� �������������� ����� �����, ���������� � ����� ����, ����� ����.�

��� � ����� �����, ���������� � ������ ����. ��������, ��� ���� ������������� ���� (���. 1) ��������� �� ������� ������ �������� ����� �������� � ���� I1 — I2 + I3 — I4 + I5 = 0

���. 1

� ���� ��������� ����, ������������ � ����, ������� ��������������.

��������� ������ ����� �������� � ��� ����� ������������� �������������� ����.�

������ ����� ��������:��������������� ����� ������� ���������� �� ��������� �������� ���������� �������, ����������� ����������� � ������� ������������� ����, ����� �������������� ����� ��� � ���� �������

��� k � ����� ���������� ���; m�� ����� ������ � ��������� �������; Ii, Ri�� ��� � ������������� i-� �����.�

���. 2

���, ��� ���������� ������� ����� (���. 2) �1 — �2 + �3 = I1R1 — I2R2 + I3R3 — I4R4

��������� � ������ ����������� ���������:�

1) ��� ������������, ���� �� ����������� ��������� � ������������ ����������� ���������� ������ �������;�

2) ������� ���������� �� ��������� ������������, ���� ����������� ���� � ��� ��������� � ������������ ������.

��������� ������ ����� �������� ������������� ���������� ���������� � ����� ������� ����.�

������ ������������� ������������� ���� � ������� ������� ��������

����� ������� �������� ����������� � ������� ������� ���������, ������������ �� ������� � ������� ������� ��������.

����� ����������� � ����������� ��������� �� ������� � ������� ������� �������� ��� ����� � �������� ������������� ���� � ������� ���� ��������� � ����� ����������� ����������� ����� � ������ � �� ��� � ����������. ������� ����� ����������� ����� ����� ������ b, �������������, ������� �� ����������� ��������� ���������� ��������� �� ������� � ������� ������� ��������.�

����� ���������, ������� ����� ��������� �� ��������� ������� ������, ����� ����� ����� ����, ������ ������ (y � 1) ��������� �������� ������������ ���� �� �����.�

������������� ��������� �������������� ������� �����. ���� ������ �������� ���, ����� ������ ����������� ���� ��������� �� ������� ����� ���� �� ����� ������. ��������� ��������� ������������ �� ������� ������ �������� ��� ����������� ��������, �.�. ����� ��������� b — (y — 1) = b — y +1.�

������ ���������� �����������, ���� �� �������� ���� �� ���� �����, �� �������� � ������ �������.��

�������� ������� ��������� �������� ��� ������������� ���� (���. 3). ����� �������� ������ ���� � ����� ������.�

������� �� ������� ������ �������� �������� y — 1 = 4 — 1 = 3����������, � �� ������� b — y + 1 = 6 — 4 + 1 = 3, ����� ��� ���������.�

����������� ������� ������������� ����������� ����� �� ���� ������ (���. 4). ����������� ������ �������� �������� �� ������� �������.

���. 3

���������� ����������� ����� ��������� �� ������� � ������� ������� ��������

���������� ������� ��������� �������� ������������ �����. ���� ��� ������� ��� � ����� ��������� � �������, �� ��� ����������� �������������� ��������� �����������.


������������� ��������� � ��� ����������� ����������� ������� ������ ��������, ������� ����������� ��� �������� ������������ �������� � �������� ����������� �����.

������������� ��������� �������� ��� ������� ��� ���������� ����, ������ ���������� ����� ������ � ����� ��������� ������ ���������� �����������.�

���������� ������ abcda �����, ������������ �� ���. 4. � ����� ab ����� ���������� R1 � ��� E1 ��������� �������������� ����� k.

����. 4. ������ ��� ���������� ������������� ���������

��������� ������ ���� ��������� ������ ���� (��������, ?�=0), �������� ����� ������� � ���������� ���������� ����� �������:�?� = 0, ?� = ?� — I1R1, ?b = ?� + �1, ?� = ?b — I2R2, ?d = ?c -��2, ?a = ?d + I3R3 = 0

��� ���������� ������������� ��������� ���������� ���������, ��� ������������� ��� ����� ���� (���. 5).

���. 5. ������������� ���������

������ �������� � ����������� �����

��� ����� ��������������� ���� ������ �������� ������������� ��� ��, ��� � ��� ����� ����������� ����, �� ������ ��� ����������� �������� ����� � ����������.

������ ����� ��������: ��������������� ����� ���������� ���� � ���� ������������� ���� ����� ������

������ ����� ��������: �� ����� ��������� ������� ������������� ���� �������������� ����� ����������� ��� ����� �������������� ����� ����������� ���������� �� ���� ��������� ��������� ����� �������.

Источник: http://ElectricalSchool.info/spravochnik/electroteh/545-zakony-kirkhgofa.html

Правила Кирхгофа для цепей переменного тока

Правила Кирхгофа для цепей переменного тока

Замечание

Уравнение Ома для переменного тока:

\[I_mZ=U_m\ \left(1\right),\]

где импеданс $Z=R+i\left(\omega L-\frac{1}{\omega C}\right)$ позволяет решать все задачи для переменного тока в цепи, которая содержит индуктивность, емкость, сопротивление. Роль этого закона такая же, как и закона Ома для цепей постоянного тока. Следовательно, схема анализа разветвленных цепей переменного тока аналогична, анализу цепей постоянного тока.

Представим, что имеем сложную цепь переменного тока. Мы должны рассматривать только квазистационарные токи, так как для их мгновенных значений справедливы законы Кирхгофа, что и для постоянных токов. Для любого замкнутого контура выполняется второе правило Кирхгофа:

где ${{\mathcal E}}_{mk}$ — комплексные амплитуды ЭДС генераторов, $Z_k$ — комплексные импедансы, $I_{mk}$ — комплексные амплитуды сил тока.

[Определение]Для каждой точки разветвления цепи переменного тока выполняется первое правило Кирхгофа:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

[/Определение]

Замечание 1

Необходимо отметить, что законы постоянного тока применяются к комплексным амплитудам напряжения и ЭДС, тока и сопротивлений отдельных участков цепи.

Получается, что любую задачу о расчете цепи переменного тока можно решить, если получить решение для схемы, по которой течет постоянный ток, а затем заменить все физические величины (токи, напряжения, ЭДС, сопротивления участков) на их комплексные аналоги.

Замечание 2

Обобщение правил Кирхгофа на разветвленные цепи переменного тока было сделано Д.У. Рэлеем.

Как уже говорилось, каждая величина, которая входит в правила Кирхгофа является комплексной и уже содержит фазу (следовательно, и знак), при составлении уравнений надо проставлять знаки, так как один участок может принадлежать разным контурам, и соответственно может быть пройден по разным направлениям. Решение уравнений дает возможность найти как амплитуды всех сил токов, так и их фазы. Так как величины, входящие в уравнения комплексные, то количество уравнений в два раза больше, чем было бы, если бы токи были постоянными.

Метод контурных токов

При расчете сложных цепей используют метод контурных токов. Этот метод является следствием правил Кирхгофа. Сложный контур рассматривается как совокупность простых замкнутых контуров.

В данном методе принимается то, что на всех участках каждого замкнутого контура течет один и тот же ток. Эти токи называются котурнами. Суммарная сила тока, которая течет по участку контура, равна алгебраической сумме сил контурных токов, для которых этот участок общий.

Уравнение Кирхгофа записывается через контурные токи. При этом количество уравнений для контурных токов равно числу неизвестных токов.

Схема расчета сопротивления в цепи переменного тока

Для получения сопротивления цепи переменного тока можно применять простое правило. Гипотетически заменить каждую индуктивность ($L$) на комплексное сопротивление вида $i\omega L$, каждую емкость ($С$) — на $\frac{1}{i\omega C}$, все активные сопротивления оставить $R$.

С полученными комплексными сопротивлениями провести те же операции, что и при вычислении сопротивления цепи постоянного тока, используя правила нахождения сопротивления параллельных и последовательных соединений. Полученная в результате комплексная величина $Z=X+iY$ будет комплексным сопротивлением цепи (импедансом).

При этом $X$ — активное сопротивление цепи, $Y$ — реактивное сопротивление. Величина $\left|Z\right|$ — модуль импеданса:

есть сопротивление цепи переменного тока, оно определяет амплитуду силы тока при известной амплитуде напряжения на концах цепи. Аргумент импеданса определяет угол ($\varphi $), на который напряжение опережает ток в цепи:

Описанный метод расчета комплексных сопротивлений часто применяется в электротехнике. Он не требует вычисления сдвигов фаз (что требуется при построении диаграмм), так как они учтены в комплексных сопротивлениях. Кроме того этот метод позволяет проводить вычисления с любой точностью, тогда как методы графический и векторных диаграмм наглядны, но не точны.

https://www.youtube.com/watch?v=bR_cJDOMjxo

При последовательном соединении импедансов он рассчитывается как сумма:

При параллельном, соответственно:

Пример 1

Задание: Найдите токи, которые текут в участках цепи, которая изображена на рис.1. Считать известными импедансы, которые указаны на рисунке.

Рисунок 1.

Решение:

На рис.1 сложный контур состоит из трех простых контуров. В уравнении Кирхгофа при обходе замкнутого контура (между его узлами) используется сила тока, протекающая по этому участку.

На каждом участке контура, в общем случае, сила тока отличается. Найдем полный импеданс для каждого участка контура между узлами (обозначим его соответствующим индексом).

Положительное направление обхода обозначено стрелками.

Запишем уравнения, в соответствии с правилами Кирхгофа:

\[Z_{11}I_1+Z_{12}I_2+Z_{13}I_3=U\left(1.1\right),\] \[Z_{21}I_1+Z_{22}I_2+Z_{23}I_3=0\left(1.2\right),\] \[Z_{31}I_1+Z_{32}I_2+Z_{33}I_3=0(1.3).\]

где $Z_{11},Z_{22},Z_{33}$ — собственные импедансы контуров, равные:

\[Z_{11}=Z_1+Z_2+Z_3(1.4),\ \] \[Z_{22}=Z_4+Z_5+Z_6+Z_2\left(1.5\right),\] \[Z_{33}=Z_3+Z_6+Z_2\left(1.6\right).\]

$Z_{12}$, $Z_{13}$… — взаимные импедансы контуров. Они равны импедансам участков контуров, причем их знак зависит от того в каком направлении проходит ток соответствующий участок по отношению к контурному току. В нашем случае:

\[Z_{12}=-Z_2,\ Z_{21}=-Z_2\ \left(1.7\right).\]

Количество уравнений, которые мы записали, равно количеству неизвестных токов. Решим нашу систему уравнений:

\[I_1=U\left(\frac{{\triangle }_{11}}{\triangle }\right),I_2=U\left(\frac{{\triangle }_{12}}{\triangle }\right),\ I_3=U\left(\frac{{\triangle }_{13}}{\triangle }\right)(1.8).\ \]

где определитель системы равен:

Рисунок 2.

${\triangle }_{11},{\triangle }_{12},{\triangle }_{13}$ — дополнения элементов $Z_{11},Z_{12},Z_{13}$ в определителе $\triangle $:

Рисунок 3.

Задача решена.

Пример 2

Задание: Цепь содержит конденсатор, емкость которого равна $C$, и активное сопротивление $R$ элементы соединены параллельно. Чему равен модуль импеданса? На какой угол напряжение опережает по фазе ток при таком соединении элементов?

Решение:

Заменим емкость $C$ на величину: $\frac{1}{i\omega C}$, учитывая, что соединение элементов параллельное, суммарный импеданс найдем как:

\[\frac{1}{Z}=i\omega C+\frac{1}{R}\to Z=\frac{1}{\frac{1}{R}+i\omega C}\left(2.1\right).\]

Приведем выражение для импеданса к виду:

\[Z=X+iY\ \left(2.2\right).\]

Для этого правую часть выражения (2.1) умножим и разделим на $\frac{1}{R}-i\omega C$, получим:

\[Z=\frac{\frac{1}{R}-i\omega C}{\frac{1}{R2}+{\omega }2C2}=\frac{R-i\omega R2C}{1+{\omega }2C2R2}\left(2.1\right).\]

Модуль импеданса равен:

\[\left|Z\right|=\sqrt{X2+Y2}=\frac{R}{\sqrt{1+{\omega }2C2R2}}.\] \[\varphi =arctg\left(\frac{Y}{X}\right)=-arc\left(\omega RC\right).\]

Ответ: $\left|Z\right|=\frac{R}{\sqrt{1+\omega2C2R2}},\varphi=-arc\left(\omega RC\right).$

Источник: https://spravochnick.ru/fizika/peremennyy_sinusoidalnyy_tok/pravila_kirhgofa_dlya_cepey_peremennogo_toka/

Применение законов Кирхгофа для расчета электрических цепей

Правила Кирхгофа для цепей переменного тока

Электрические цепи постоянного тока

Задание 1

Для заданной электрической схемы по заданным сопротивлениям и ЭДС (табл. 1.1) выполнить следующее:

1) составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;

2) найти токи во всех ветвях цепи, пользуясь методом контурных токов;

3) проверить правильность расчета токов в ветвях электрической цепи с помощью баланса мощностей;

Вари-ант Рис. Е1, В Е2, В Е3, В r01, Ом r02, Ом r03, Ом r1, Ом r2, Ом r3, Ом r4, Ом r5, Ом r6, Ом
1.53 0,6 1,2 0,1 3,4 3,8 4,3

Применение законов Кирхгофа для расчета электрических цепей

Для анализа и расчета электрических цепей пользуются законами Кирхгофа, которые устанавливают соотношения между токами ветвей, сходящихся в узлах, и напряжениями элементов, входящих в контуры. Для определения токов и напряжений необходимо составить уравнения цепи с помощью первого и второго законов Кирхгофа.

Первый закон Кирхгофа, вытекающий из закона сохранения заряда:

алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

ΣI=0. (1.1)

Алгебраическое суммирование осуществляется с учетом направления токов: токи, входящие в узел, считаем положительными, а токи, выходящие из узла — отрицательными.

Второй закон Кирхгофа вытекает из закона сохранения энергии:

алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме ЭДС в этом контуре:

ΣIR=ΣE. (1.2)

Суммирование падений напряжений и ЭДС производится с учетом их направлений и выбранного направления обхода контура. Если направление ЭДС и падение напряжения совпадают с направлением обхода контура, то они входят в уравнение (1.2) со знаком плюс, в противном случае – со знаком минус.

Метод анализа и расчета электрических цепей на основе первого и второго законов Кирхгофа выполняется в следующем порядке:

устанавливается число ветвей и узлов в расчетной цепи;

выбираются произвольно условно-положительные направления токов в ветвях и обозначаются на схеме;

выбираются произвольно положительные направления обхода контуров для составления уравнений по второму закону Кирхгофа (целесообразно для всех контуров направления обхода выбирать одинаковыми);

составляется система из m уравнений по первому и второму законам Кирхгофа, где m — количество неизвестных токов, равное количеству ветвей.

По первому закону Кирхгофа можно составить (n-1) независимых уравнений, где n — количество узлов цепи. Остальные [m-(n-1)] уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. контуров, отличающихся хотя бы одной новой ветвью, не вошедшей в предыдущие контуры.

Пример 1.1. В качестве примера составим систему уравнений для определения токов в электрической цепи, схема которой изображена на рисунке 1.1,а. Здесь известны сопротивления, величины и направления ЭДС.

Данная цепь имеет шесть ветвей (m=6) с неизвестными токами и четыре узла (n=4). Необходимо составить шесть уравнений.

Выбираем произвольно положительные направления токов в ветвях и положительные направления обхода независимых контуров (по часовой стрелке) (рис, 1.1, б).

Чтобы получить линейно независимые уравнения по первому закону Кирхгофа составим три уравнения (n-1=3), а остальные уравнения: m-(n-1)=3, по второму закону Кирхгофа.

По первому закону Кирхгофа:

— для узла 1 , (1.3)

— для узла 2 , (1.4)

— для узла 3 . (1.5)

По второму закону Кирхгофа:

— для контура I: , (1.6)

— для контура II: , (1.7)

— для контура III: . (1.8)

Полученная система уравнений (1.3 … 1.8) достаточна для определения токов в ветвях цепи, но ее порядок относительно высок. Понизить порядок системы уравнений, а, следовательно, упростить расчеты можно с помощью методов контурных токов и узловых напряжений (потенциалов).

Задание 1

1. Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа (здесь и далее схема развернута);

Это самостоятельно!

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/19_379995_primenenie-zakonov-kirhgofa-dlya-rascheta-elektricheskih-tsepey.html

Booksm
Добавить комментарий