Потенциальная энергия механической системы

Потенциальная энергия — урок. Физика, 7 класс

Потенциальная энергия механической системы

Энергия характеризует способность тела совершать работу. Натянутая тетива лука, сжатая пружина, поднятый с земли камень, сжатый газ при определённых условиях могут совершать работу.

Потенциальной энергией обладают: 
 

1. Тела, поднятые над поверхностью земли (например, камень при падении с высоты образует на земле воронку).
 

2. Упруго деформированные тела (например, человек натягивает тетиву лука и выпускает стрелу).
 

3. Сжатые газы (расстояние между молекулами газа уменьшается, и увеличивается сила отталкивания между ними).
 

Слово «потенциальный» (potentia) на греческом языке означает «возможность».

Огромной потенциальной энергией обладают воды водопада. Потенциальная энергия воды совпадает с работой силы притяжения Земли.

Потенциальная энергия накапливается в водах рек. Сила притяжения Земли производит работу, заставляя реки течь в более низко расположенное место — в море. Человек научился полезно использовать потенциальную энергию рек. В древние времена строили водяные мельницы, а с \(20\) века — гидроэлектростанции (ГЭС).

Гидроэлектростанция в Итайпу, находящаяся на границе между Бразилией и Парагваем на реке Парана, на сегодня является крупнейшим действующим сооружением такого рода в мире. У её плотины (через которую протекает вода) имеются шлюзы, состоящие из \(14\) ворот, через которые за секунду проходит \(62200\) кубометров воды.

Потенциальную энергию тела, поднятого над опорой на высоту \(h\), рассчитывают по формуле:

Epot=mgh , где m — масса тела, а g — ускорение свободного падения у поверхности Земли.

Потенциальную энергию тела измеряют относительно некоторого условного уровня отсчёта, чаще всего относительно поверхности Земли. В таком случае принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

Обрати внимание!

Тело одновременно может обладать и потенциальной, и кинетической энергией, и они могут переходить одна в другую.

Человек, качающийся на качелях, обладает максимальной потенциальной энергией в наивысшей точке подъёма, в этой точке качели на мгновение замирают и, значит, в этот момент кинетическая энергия человека равна нулю.

При движении из состояния \(1\) в состояние \(2\), потенциальная энергия уменьшается, а кинетическая растёт (так как высота тела над уровнем земли уменьшается, а скорость движения тела возрастает).

Когда человек находится в самой нижней точке траектории движения \(2\), кинетическая энергия является наибольшей, так как в этот его момент скорость самая высокая. При движении из состояния \(2\) в состояние \(3\), увеличивается потенциальная энергия (так как увеличивается высота подъёма тела), а кинетическая энергия уменьшается (так как скорость движения тела уменьшается).

В замкнутой системе сумма кинетической и потенциальной энергии в любой момент времени остаётся неизменной.

Сумма потенциальной и кинетической энергии тела называется полной механической энергией тела.

Привязанный отвес на высоте \(h\) обладает максимальной потенциальной энергией, а кинетическая энергия (энергия движения) в это время равна \(0\).

Когда верёвку перерезают, отвес начинает свободно падать, высота уменьшается, а скорость увеличивается (с ускорением \(g\)), соответственно, потенциальная энергия уменьшается, а кинетическая энергия возрастает.

В каждый момент времени, до момента соударения, сумма потенциальной и кинетической энергии отвеса одинакова.

В момент соударения энергия отвеса не исчезает, она передаётся другому телу — гвоздю, который под воздействием этой энергии начинает движение, уходя глубже в брус. Некоторая часть энергии преобразуется во внутреннюю — тепловую энергию (так как отвес при соударении нагревается).

Любое тело обладает внутренней энергией, которая не связана с движением тела.

Внутреннюю энергию образует движение атомов и молекул тела.

Например, в результате удара частички начинают двигаться интенсивнее — это проявляется в виде нагрева тела. При сжатии пружины изменяется потенциальная энергия частиц.

Натянутая резинка обладает потенциальной энергией, причиной этого является взаимное притяжение молекул.

Закон сохранения энергии:энергия не исчезает и не возникает снова, она только преобразуется из одного вида энергии в другой вид энергии или переходит от одного тела к другому.

Полная энергия тела — это сумма его механической и внутренней энергии.

Полная энергия тела↗↖Механическая энергия                Внутренняя энергия↗↖↗↖Тела Eпот   Тела Eкин     Частиц Eпот   Частиц Eкин

Источник: https://www.yaklass.ru/p/fizika/7-klass/rabota-i-moshchnost-energiia-11875/energiia-12347/re-34eba070-fdda-465e-89a4-2692ae8c4608

Потенциальная энергия, ее определение, виды и формулы

Потенциальная энергия механической системы

Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией.

По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии.

А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии.

Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.

Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

Виды потенциальной энергии

Существуют различные виды потенциальной энергии.

К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия.

И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.

Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.

Знакомьтесь: наш мир. Физика всего на свете.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

Формулы потенциальной энергии

Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии.

При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается.

К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается.

Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.

А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:

А = F*s = mg*s = mg*(h1 — h2) = mgh1 — mgh2 = Eп1 — Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.

Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.

Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков.

Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.

Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.

Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):

А = –Fупр(ср.)*s,

Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.

Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:

Fупр(ср.) = (Fупр(нач.) + Fупр(конеч.))/2

И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:

А = —kх*s/2

Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.

В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.

Методические советы учителям

1) Обязательно обратите внимание учащихся на связь энергии и работы.

2) Не давайте учащимся формулы потенциальной энергии без вывода.

3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.

4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.

5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/potentsialnaya-energiya/

Потенциальная и кинетическая энергия. Понятие «механическая работа»

Потенциальная энергия механической системы

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении – это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F • S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается.

Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия – это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения. Кроме того, энергия – это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии:

• потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

• кинетическая поступательного движения;

• кинетическая вращательного движения;

• потенциальная деформации элементов системы;

• тепловая;

• обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина – на шарик, натянутая тетива – на стрелу.

Потенциальная энергия – это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела.

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m • g • h

Потенциальная энергия упругих тел: , где k – жёсткость пружины; х – её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна: , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов.

Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу.

Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол – полная механическая энергия системы; Ек – кинетическая энергия системы; Епот – потенциальная энергия системы; U – внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении.

При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению.

Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет иметь вид: , где mi – масса i-го звена; ĝ – ускорение свободного падения; hi – высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); — скорость поступательного движения центра масс; Ji – момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; ω – мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.

), тем большая часть работ затрачивается не на полезный результат — перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ.

Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Раздел статьи: Биомеханика

Источник: http://opace.ru/article?id=323

Потенциальная энергия механической системы

Потенциальная энергия механической системы

Определение 1

Потенциальной энергией называют вид механической энергии системы тел, которая определена силами взаимодействия между телами и их взаиморасположением.

Допустим, что взаимодействие тел реализуется посредством потенциальных полей.

Замечание 1

Свойства потенциальности поля означают, что:

  1. работа сил данного поля при перемещении вдоль любого замкнутого контура равна нулю;
  2. условием необходимости и достаточности потенциальности поля является выполнение условия, отраженного в первом пункте.

Работа в потенциальном поле

Далее мы будем использовать следующую теорему:

Теорема 1

Если $F_x; F_y; F_z$ — это составляющие потенциальной силы, тогда имеется функция $U(x,y,z)$ связанная с этими компонентами при помощи частных производных:

$F_x=-\frac{\partial U}{\partial x}; F_y=-\frac{\partial U}{\partial y}; F_z=-\frac{\partial U}{\partial z} (1).$

Мы знаем, что работу силы можно вычислить, в соответствии с формулой:

$\Delta E_k= \int_12 \vec F d\vec s =A(2),$

где $\Delta E_k$ — изменение кинетической энергии материальной точки; $\vec F$ — потенциальная сила, которая заставляет точку совершать перемещение $d\vec s$.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Получим работу силы с помощью функции $U$. Запишем бесконечно малую работу, принимая во внимание то, что составляющими перемещения по осям декартовой системы координат это величины: $dx, dy, dz$, тогда:

$dA=\vec F d\vec s=F_x dx+F_y dy+F_z dz (3).$

Учитывая теорему (1), формулу (3) представим как:

$dA =-\frac{\partial U}{\partial x}dx-\frac{\partial U}{\partial y}dy-\frac{\partial U}{\partial z}dz (4).$

Из теории функции мы знаем, что дифференциал функции равен:

$df=-\frac{\partial f}{\partial x}dx$,

по аналогии имеем:

$dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy+\frac{\partial U}{\partial z}dz (5)$.

Выражение (5) означает, что при смещении на величину $ds$ полное приращение функции $U$ — это сумма приращений $\frac{\partial U}{\partial x}dx, \frac{\partial U}{\partial y}dy, \frac{\partial U}{\partial z}dz,$ которые вызваны смещениями по осям $X,Y,Z$ является полным дифференциалом $U$.

Тогда формула элементарной работы будет записана как:

$dA=-dU (6)$.

Если формулу (6) проинтегрировать, то получится работа, при перемещении материальной точки из положения 1 в положение 2:

$A_{12}=\int_12 dU=U_1-U_2 (7).$

Формула (7) указывает на то, что работа в нашем случае (случае консервативных сил) зависит только от начальной и конечной точек траектории и не зависит от вида траектории.

Сравнивая выражения (2) и (7), получаем:

$\Delta E_k=-\Delta U (8).$

Кинетическая энергия между точками 1 и 2 изменилась на такую же величину, как и $U$, но с противоположным знаком при перемещении между теми же точками.

Выражение (8) удобно записать в виде:

$E_k+U=const (9).$

Сумма кинетической и потенциальной энергии остается неизменной величиной при движении материальной точки в потенциальном поле.

Величина $U$ называется потенциальной энергией материальной точки. Выражение (9) – это закон сохранения и превращения энергии, так как он описывает взаимные превращения кинетической и потенциальной энергий.

Нормирование потенциальной энергии

Выше потенциальная энергия определена нами как функция, частные производные которой по координатам, берущиеся со знаками минус, равны соответствующим составляющим силы (формулы 1).

Если вместо потенциальной энергии $U$ взять величину, равную:

$U_1=U+B (10),$

где $B$ — некоторая постоянная величина, то составляющие силы (и сама сила) в формулах (1) не изменятся. Получается, что потенциальная энергия определена с точностью до аддитивной постоянной величины.

Если рассмотреть какую-либо пространственную точку, то можно предположить, что потенциальная энергия в этой точке есть заданная величина. Следовательно, физическим смыслом обладает не сама величина потенциальной энергии, а ее изменение при переходе от одной точки к другой.

Используя произвол в выборе потенциальной энергии, можно задать ей любое значение в некоторой пространственной точке. В этом случае для всех остальных точек величина потенциальной энергии станет фиксированным однозначно. Данную процедуру придания потенциальной энергии однозначности назвали нормировкой.

Потенциальная энергия тела, поднятого над земной поверхностью

Рассмотрим материальную точку массы $m$, которая находится на некоторой высоте над поверхностью Земли. На это тело действует сила тяжести. Направим ось $Z$ вертикально, ее начало будет находиться у земной поверхности (рис.1).

Рисунок 1. Потенциальная энергия тела, поднятого над земной поверхностью. Автор24 — интернет-биржа студенческих работ

Запишем составляющие силы, которая действует на нашу материальную точку (рис.1):

$F_x=0; F_y=0; F_z=-mg (11),$

Тогда потенциальную энергию в соответствии с формулой (1) запишем как:

$U(z)=mgz+B$, где $B$ — постоянная величина. Условимся считать, что на земной поверхности (при $z=0$) потенциальная энергия равна нулю, то постоянная $B=0$, в этом случае получим:

$U=mgz (12).$

При этом говорят, что выражение (12) — это потенциальная энергия при нормировке ее значение на нуль на поверхности Земли. Можно принять другие условия нормировки.

Энергия взаимодействия

Наличие потенциальной энергии у тела вызвано его взаимодействием с другими телами. При отсутствии взаимодействия, потенциальная энергия равна нулю.

Силу тяготения можно считать неизменной только недалеко от поверхности Земли.

  • Если тело удалять на значительные расстояния, то следует учитывать, что сила тяготения уменьшается обратно пропорционально квадрату расстояния от тела до центра Земли.
  • Расположим начало координат $O$ в центре нашей планеты. При этом сила тяготения направлена по радиусу $r$ к точке $O$.
  • Компоненты силы тяготения нормальные к радиусу равны нулю. Величина силы зависит только от расстояния до центра Земли. Сила гравитации является потенциальной силой.
  • Потенциальная энергия материальной точки, которая находится на расстоянии $r$ от центра Земли равна:

$U=-G\frac {Mm}{r}+B (13),$

где $G$ — гравитационная постоянная; $M$ — масса Земли.

Для нормировки потенциальной энергии в рассматриваемом случае принимают во внимание то, что при удалении тела на бесконечно большое расстояние от Земли взаимодействия тела и Земли не будет, следовательно, на бесконечности потенциальная энергия (13) должна обращаться в ноль. Соответственно, постоянная $B$ равна нулю

$B=0$.

Итак, потенциальная энергия материальной точки массы $m$ в поле тяготения Земли равна:

$U (r)=-G\frac {Mm}{r} (14).$

Источник: https://spravochnick.ru/fizika/potencialnaya_energiya_mehanicheskoy_sistemy/

Кинетическая энергия. Потенциальная энергия. Примеры решения задач. урок. Физика 9 Класс

Потенциальная энергия механической системы

Данный видеоурок поможет пользователям получить представление о теме «Кинетическая энергия. Потенциальная энергия. Примеры решения задач». Вначале повторим определение энергии. Затем более подробно обсудим два известных ее вида: потенциальную и кинетическую. Рассмотрим уравнения для них и величины их измерения. Приведем несколько примеров решения задач на изученный материал.

Тема урока посвящена энергии. Итак, что это такое? 

Энергия – это универсальная количественная мера, характеризующая движение и взаимодействие тел. Энергия в механике может быть двух видов – потенциальная и кинетическая.

Потенциальная энергия – это энергия взаимодействия. Потенциальная энергия тела, поднятого над землей, определяется массой тела, ускорением свободного падения и расположением тела относительно земли:

,

где масса тела, ; высота тела над землей, ;  – ускорение свободного падения, .

Потенциальная энергия в общем случае зависит от выбранной системы отсчета. Ведь высоту мы можем отсчитывать не только от поверхности Земли, но и от условно выбранной какой-то точки или какого-либо уровня.

Рис. 1. Потенциальная энергия зависит от выбора системы отсчета

Дополнительная задача 1

Условие

Самолет массой 50 т летит на высоте 10 км со скоростью . Необходимо определить его полную механическую энергию.

Рис. 2. Иллюстрация к условию задачи

Решение

В первую очередь необходимо перевести исходные данные задачи в СИ. Тогда масса самолета будет , скорость – , а высота – .

Когда мы говорим об энергии, нужно помнить, что самолет обладает и потенциальной энергией, поскольку находится на некоторой высоте относительно Земли, и кинетической, так как он обладает еще и скоростью: , где потенциальная энергия , а кинетическая энергия . Тогда полная механическая энергия:

Подставив в формулу все необходимые значения, получим . Обычно ответ записывают сокращенно: , где .

Ответ: в рассмотренной системе отсчета полная механическая энергия равна .

Пример оформления решения

Дано:СИРешение:
Ответ:

Если рассматривать движение самолета на высоте 10 км и считать, что 10 км – это нулевой уровень, самолет будет обладать только кинетической энергией .

Рис. 3. Решение задачи в другой системе отсчета

Кинетическая энергия – энергия движения тела. Она определяет запас энергии тела, которое обладает скоростью.

,

где масса тела, ;  – скорость тела, .

Так как скорость тела зависит от выбранной системы отсчета, то кинетическая энергия тоже зависит от того, в какой системе отсчета происходит движение тел.

Полученная формула для кинетической энергии справедлива лишь для скоростей, много меньших скорости света в вакууме (). При скоростях, близких к световой, в дело вступает теория относительности, созданная Эйнштейном, о чем мы поговорим в старших классах.

Поговорим о потенциальной энергии упруго деформированного тела. Когда мы деформируем тело, т. е. меняем его форму или объем, этому телу мы сообщаем некоторую энергию. Пример: мы растягиваем пружину или, наоборот, сжимаем, тем самым изменяя расстояние между атомами и молекулами, и создаем запас потенциальной энергии.

Рис. 4. Удлинение пружины

Для того чтобы вычислить потенциальную энергию деформированного тела, используют следующую формулу:

где жесткость пружины, ;  – изменение длины пружины .

Рис. 5. Удлинение пружины под действием грузика,

Изменение длины пружины , где  – это начальная длина пружины, длина пружины после растяжения.

Энергия деформированной пружины будет всегда положительной, так  входит в формулу потенциальной энергии в квадрате. Даже если  (при сжатии пружины), потенциальная энергия все равно останется положительной.

Рис. 6. Сжатие пружины,

Дополнительная задача 2

Условие

На гладкой поверхности располагается пружина, прикрепленная к стене. К пружине прикреплено некоторое тело. Под действием силы в 80 Н пружина растягивается. Жесткость пружины . Определить энергию, запасенную в пружине.

Рис. 6.1. Иллюстрация к задаче

Решение

Так как по условию сказано, что поверхность гладкая, это означает, что сила трения равна 0. Раз сила трения отсутствует, то нет потерь энергии. Когда под действием силы мы деформируем пружину, вся энергия сосредоточена именно в ней. Энергия пружины найдем по формуле:

Сила упругости определяется как произведение жесткости на изменение длины пружины . Тогда деформация пружины .

Подставим теперь выражение для деформации пружины в формулу вычисления энергии:

Подставив все необходимые значения в формулу, получим:

Ответ: энергия, запасенная в пружине равна 8 Дж.

Пример оформления решения

Дано:Решение:
Ответ:

Когда мы говорим об энергии, нужно помнить, что тело обладает несколькими видами энергий одновременно. Например, если мы рассмотрим летящий на большой высоте самолет, то можно говорить, что самолет обладает и потенциальной энергией, поскольку находится на некоторой высоте относительно Земли, и кинетической, когда он обладает еще и скоростью.

Рис. 7. Самолет обладает кинетической и потенциальной энергией

Это справедливо в такой системе отсчета, в которой уровень нулевой энергии – поверхность Земли. В других системах отсчета может быть другая энергия самолета (рис. 8).

Рис. 8 Зависимость потенциальной энергии от выбора системы отсчета

Качели обладают и кинетической, и потенциальной энергией. Так, в момент максимального отклонения качелей от положения равновесия: а , так как .

Рис. 9. В момент максимального отклонения качелей от положения равновесия потенциальная энергия качели будет максимальной, а кинетическая энергия будет равна 0

Когда качели будут проходить положение равновесия (рис. 10), то , так как скорость качелей в данный момент будет наибольшая, а , так как высота над землей будет минимальной.

Рис. 10. При прохождении положения равновесия , а

Если сложить два вида энергии, то мы получим т. н. полную механическую энергию тела.

Список литературы

  1. А так ли хорошо знакомо вам понятие энергия? // Квант. – 1985. – № 4. – С. 35 Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. – М.: Просвещение, 1990. – С. 119–141.
  2. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  3. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. Учреждений/А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300 с.

Домашнее задание

  1. Груз на упругой пружине совершает вертикальные колебания. Определите, какова полная энергия колебаний груза, если коэффициент упругости пружины равен . Амплитуда колебаний равна 5 см.
  2. Человек качается на качели. Амплитуда ее колебаний 1 м, а за 1 минуту человек совершает 20 колебаний. Найдите кинетическую и потенциальную энергию через 1/12 периода от начала колебаний. Трением пренебречь.
  3. Ускорение гармонических колебаний – это первая и вторая производная по времени от каких величин?

Источник: https://interneturok.ru/lesson/physics/9-klass/mehanicheskie-kolebaniya-i-volny/kineticheskaya-energiya-potentsialnaya-energiya-primery-resheniya-zadach

Кинетическая и потенциальная энергии

Потенциальная энергия механической системы

Энергия — важнейшее понятие в механике. Что такое энергия. Существует множество определений, и вот одно из них.

Что такое энергия?

Энергия — это способность тела совершать работу. 

Кинетическая энергия

Рассмотрим тело, которое двигалось под действием каких-то сил  изменило свою скорость с v1→ до v2→. В этом случае силы, действующие на тело, совершили определенную работу A. 

Работа всех сил, действующих на тело, равна работе равнодействующей силы. 

Fр→=F1→+F2→

A=F1·s·cosα1+F2·s·cosα2=Fрcosα.

Установим связь между изменением скорости тела и работой, совершенной действующими на тело силами. Для простоты будем считать, что на тело действует одна сила F→, направленная вдоль прямой линии. Под действием этой силы тело движется равноускоренно и прямолинейно. В этом случае векторы F→, v→, a→, s→ совпадают по направлению и их можно рассматривать как алгебраические величины. 

Работа силы F→ равна A=Fs. Перемещение тела выражается формулой s=v22-v122a. Отсюда:

A=Fs=F·v22-v122a=ma·v22-v122a

A=mv22-mv122=mv222-mv122.

Как видим, работа, совершенная силой, пропорционально изменению квадрата скорости тела. 

Определение. Кинетическая энергия

Кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости. 

EK=mv22.

Кинетическая энергия — энергия движения тела. При нулевой скорости она равна нулю.

Теорема о кинетической энергии

Вновь обратимся к рассмотренному примеру и сформулируем теорему о кинетической энергии тела.

Теорема о кинетической энергии

Работа приложенной к телу силы равна изменению кинетической энергии тела. Данное утверждение справедливо и тогда, когда тело движется под действием изменяющейся по модулю и направлению силы. 

A=EK2-EK1.

Таким образом, кинетическая энергия тела массы m, движущегося со скоростью v→, равна работе, которую сила должна совершить, чтобы разогнать тело до этой скорости.

A=mv22=EK.

Чтобы остановить тело, нужно совершить работу 

A=-mv22=-EK

Потенциальная энергия

Кинетическая энергия — это энергия движения. Наряду с кинетической энергией есть еще потенциальная энергия, то есть энергия взаимодействия тел, которая зависит от их положения.

Например, тело поднято над поверхностью земли. Чем выше оно поднято, тем больше будет потенциальная энергия. Когда тело падает вниз под действием силы тяжести, эта сила совершает работу. Причем работа силы тяжести определяется только вертикальным перемещением тела и не зависит от траектории.

Важно!

Вообще о потенциальной энергии можно говорить только в контексте тех сил, работа которых не зависит от формы траектории тела. Такие силы называются консервативными.

Примеры консервативных сил: сила тяжести, сила упругости.

Когда тело движется вертикально вверх, сила тяжести совершает отрицательную работу. 

Рассмотрим пример, когда шар переместился из точки с высотой h1 в точку с высотой h2. 

При этом сила тяжести совершила работу, равную 

A=-mg(h2-h1)=-(mgh2-mgh1).

Эта работа равна изменению величины mgh, взятому с противоположным знаком. 

Величина ЕП=mgh — потенциальна энергия в поле силы тяжести. На нулевом уровне (на земле) потенциальная энергия тела равна нулю.

Определение. Потенциальная энергия

Потенциальная энергия — часть полной механической энергии системы, находящейся в поле консервативных сил. Потенциальная энергия зависит от положения точек, составляющих систему.

Можно говорить о потенциальной энергии в поле силы тяжести, потенциальной энергии сжатой пружины и т.д. 

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

A=-(EП2-EП1).

Ясно, что потенциальная энергия зависит от выбора нулевого уровня (начала координат оси OY). Подчеркнем, что физический смысл имеет изменение потенциальной энергии при перемещении тел друг относительно друга. При любом выборе нулевого уровня изменение потенциальной энергии будет одинаковым.

При расчете движения тел в поле гравитации Земли, но на значительных расстояниях от нее, во внимание нужно принимать закон всемирного тяготения (зависимость силы тяготения от расстояния до цента Земли). Приведем формулу, выражающую зависимость потенциальной энергии тела.

EП=-GmMr.

Здесь G — гравитационная постоянная, M — масса Земли.

Потенциальная энергия пружины

Представим, что в первом случае мы взяли пружину и удлинили ее на величину x. Во втором случае мы сначала удлинили пружину на 2x, а затем уменьшили на x. В обоих случаях пружина оказалась растянута на x, но это было сделано разными способами. 

При этом работа силы упругости при изменении длины пружины на x в обоих случаях была одинакова и равна

Aупр=-A=-kx22.

Величина Eупр=kx22 называется потенциальной энергией сжатой пружины. Она равна работе силы упругости при переходе из данного состояния тела в состояние с нулевой деформацией.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/zakony-sohranenija-v-mehanike/kineticheskaja-i-potentsialnaja-energii/

Booksm
Добавить комментарий