Полярные диэлектрики

ПОИСК

Полярные диэлектрики
, определен- [c.249]

    Следовательно, между tg б и д (объемным удельным сопротивлением) существует определенная зависимость, пользуясь которой, зная одну из величин, можно определить другую.

Если измерить экспериментально tgбиQ, а затем вычислить tg б по д и, наоборот, р нotgб, то значения, вычисленные и определенные экспериментально, должны совпасть в том случае, если tg б обусловлен сквозной омической проводимостью.

Несовпадение экспериментальных и вычисленных величин указывает на присутствие в диэлектрике полярных молекул, [c.58]

    Toporo не обращаются в нуль и в центросимметричных кристаллах. Квадратичным электроонтическим эффектом могут обладать все кристаллы диэлектриков кроме того, он наблюдается и в аморфных диэлектриках, полярных жидкостях и газах, где носит название эффекта Керра. [c.276]

    При попадании нефтяной эмульсии в переменное электрическое поле частицы воды, заряженные отрицательно, начинают передвигаться внутри элементарной капли, придавая ей грушевидную форму, острый конец которой обращен к положительно заряженному электроду.

При перемене полярности электродов капля претерпевает новое изменение формы, вытягиваясь острым концом в противоположную сторону. Подобные изменения конфигурации капля претерпевает столь часто, сколь велика частота электрического поля.

Под воздействием сил притяжения отдельные капли, стремясь передвигаться в электрическом поле по направлению к положительному электроду, сталкиваются друг с другом и при достаточно высоком потенциале заряда наступает пробой оболочки диэлектрика, в результате чего мелкие капли воды укрупняются, что и облегчает их осаждение в электродегидраторе. Обезвоженная нефть поднимается и выводится сверху электродегидра тора. [c.183]

    Электропроводность является одним из важных эксплуатационных свойств топлив, от которого зависит безопасность обращения с ним и его применения в двигателях.

Углеводороды топлив являются хорошими диэлектриками и практически электрический ток не проводят однако товарные топлива содержат, кроме углеводородов, примеси полярных веществ в виде продуктов окисления серо- и азотсодержащих соединений, солей металлов и др.

, которые способны в различной степени образовывать в углеводородных растворах положительные и отрицательные ионы и заряженные частицы [100]. При движении топлива (перекачка, фильтрация) равновеоие этих иоиов и частиц нарушается (различная адсорбция, неодинаковое поверхностное натяжение и другие причины).

В результате ионы и частицы одного знака накапливаются па стенках аппаратуры (трубопроводов, фильтров, насосов), а противоположного — остаются в топливе и могут аккумулироваться в емкостях. [c.129]

    Поляризуемость численно равна наведенному дипольному моменту при напряженности поля, равной единице. Уравнение Клаузиуса — Моссотти (1, 131) выведено в предположении однородности поля внутри диэлектрика и справедливо лишь для неполярных молекул газов и жидкостей и полярных молекул газов. Согласно электромагнитной теории света Максвелла [c.54]

    При смещении зарядов диэлектрика (или повороте полярных молекул) в электрическом поле каждый элемент объема ди электрика, в пределах которого произошло смещение, приобре тает дииольный момент, направленный вдоль внешнего поля Размеры этих областей — диполей зависят от расстояний, на ко торые с.местились заряды. Они могут быть различными от моле кулярных раз.меров (что встречается чаще) до макроскопических [c.130]

    Напротив, при физической адсорбции па ионных диэлектриках условия являются иными. Как уже отмечалось выше, на поверхности этих веществ действуют поля, обусловленные определенными силами, которые зависят от знака заряда ионов, приближающихся к центрам поверхностных элементарных ячеек (см. разделы V, 4 и 5).

Поэтому многие молекулы, обладающие диполями (как периферическими, так и непериферическими) или квадруполями, обнаруживают тенденцию к ориентации на поверхности и к потере своего вращательного движения.

Как было указано в разделе VI, 2, Дрэйн и Моррисон [37] приняли, что молекулы азота вследствие наличия у них квадрупольных моментов располагакзтся плоско при адсорбции на поверхности рутила.

Экспериментальные значения размеров молекулярных площадок, занимаемых другими молекулами при адсорбции на полярных веществах, также указывают на то, что ЕЮ многих случаях адсорбированные молекулы плоско ориентированы на пове])хности. [c.91]

    Электрическая прочность. Как и во всех диэлектриках, при достижении некоторой напряженности электрического поля в полимерах возникает пробой, т. е. происходит электрический разряд через материал.

Природа его мало отличается от природы пробоя в других диэлектриках он сопровождается образованием разветвленных каналов, по которым идет разряд. Пробою в полимерных диэлектриках предшествует микроориентация материала, связанная с его «сильной» поляризацией.

Полярные полимеры имеют большую электрическую прочность, чем неполярные. Электрическая прочность резко уменьшается при переходе из застеклованного в высокоэластическое состояние. Введение наполнителя также резко уменьшает электрическую прочность.

Знание величины электрической прочности в зависимости от толщины, формы и других параметров образца — обязательное условие успешного применения резин в качестве электро- [c.73]

    Поведение диэлектрика в переменном электрическом поле обусловлено его поляризацией, величина и направление которой изменяются вслед за изменением напряженности электрического поля.

Поскольку величина диэлектрической постоянной обусловлена поляризацией полимера в электрическом поле, большие ее значения характерны для полярных полимеров, к числу которых из эластомеров относят полихлоропрены, бутадиен-нитрильные и фторкауг[уки. [c.74]

    Простейшее уравнение Дебая устанавливает связь между макро- и микросвойствами полярных диэлектриков в виде [c.233]

    Физические свойства электретов существенно зависят как от особенностей диэлектриков (их полярности и электропроводности), так и от режима изготовления (например, напряженности поля, температуры и времени поляризации).

В зависимости от напряженности электрического поля можно получать из одного и того же вещества и гомо- и гетероэлектреты (совпадающие и несовпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов.

Гетерозаряд обусловлен, прежде всего, ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводимостью диэлектрика. Образование гомозаряда связано с тем, что при высоких напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера.

Электретный эффект в твердых диэлектриках имеет объемный характер. В так называемом незакороченном состоянии электрет все время находится в электрическом поле, в результате чего происходит рассасывание объемного заряда. При плотном закорачивании электрета его внутреннее поле равно нулю [58, гл. I].

Время жизни электрета зависит от электропроводности как его самого, так и среды, а также от качества закорачивания. Поскольку возникновение электретного состояния связано с поляризацией и ориентацией, ему должно сопутствовать существенное увеличение оптической анизотропии.

При кратковременной поляризации полимеров (в частности, ПММА) их оптическая анизотропия практически не проявляется. После резкого возрастания оптической анизотропии в интервале времен от 3 до 6 ч дальнейшее увеличение времени поляризации практически не повышает анизотропию, что свидетельствует о завершении ориентации. [c.253]

    Различают изотропные (к которым могут быть отнесены многие неполярные и полярные полимеры) и анизотропные (к ним относятся некоторые многокомпонентные гетерогенные смеси твердых вещее, о, а также многослойные конструкционные системы) диэлектрики.

Смещение положительных зарядов в изотропных полимерных диэлектриках происходит в направлении электрического поля.

При этом оказывается справедливым соотношение Р = кагоЕ, где / а —скалярная величина, называемая абсолютной диэлектрической восприимчивостью] Е —вектор напряженности электрического поля ео = 8,85-10- 2 Ф ш электрическая постоянная. Вектор Р на- [c.173]

    Дебаем [7.1] предложено уравнение, устанавливающее связь между макро- и микросвойствами полярных диэлектриков  [c.175]

    В зависимости от напряженности электрического поля можно получать из одного и того же вещества гомо- и гетероэлектреты (совпадающие и не совпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов.

Гетерозаряд обусловлен прежде всего ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводностью диэлектрика.

Образование гомозаряда связано с тем, что при любых напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. [c.193]

    Единицей дипольного момента является дебай (Д) 1 Д = 3,33564X Кл-м (1-10 эл.-ст. ед.-см). Дипольный момент многоатомной молекулы приближенно равен векторной сумме дипольных моментов связей или атомных групп в молекуле с учетом валентных углов.

Полярные и неполярные молекулы, попадая во внешнее статическое электрическое поле, создаваемое между заряженными обкладками конденсатора, ведут себя неодпнаково. Полярная молекула стремится ориентироваться в поле по направлению его линий так, чтобы центр тяжести положительных зарядов был направлен к отрицательному, а отрицательных — к положительному полюсу поля.

Такое положение молекулы отвечает минимуму потенциальной энергии и наибольшей устойчивости. Неполярная молекула в электрическом поле не ориентируется. Под воздействием электрического поля центры тяжести зарядов молекул любого вещества смещаются друг относительно друга на некоторое расстояние.

Смещение зарядов полярной молекулы несколько увеличивает постоянный дипольный момент и способствует превращению неполярной молекулы в электрический диполь с наведе[)ным (индуцированным) дипольным моментом Ципд- Принимают, что под действием не слишком больших полей индуцированный дипольный момент прямо пропорционален напряженности Е эффективного электрического поля внутри диэлектрика.

Величина Е равна разности напряженности поля зарядов на обкладках конденсатора Eq и напряженности поля поверхностных зарядов индуцированных диполей , так как эти поля имеют противоположные направления. Величина р,ннд определяется уравнением [c.5]

    Для полярных молекул ориентационный вклад в энергию межмолекулярного взаимодействия жидкостей можно оценить, не зная конктретных расстояний между молекулами. В полярном диэлектрике на молекулу действует эффективное поле, создаваемое всеми остальными молекулами эфф.Понижение энергии для одного моля частиц при этом [c.256]

    Удельное поверхностное электрическое сопротивление (рз) — сопротивление между противоположными сторонами поверхности квадрата площадью 1 м току, проходящему по поверхности через две противоположные стороны этого квадрата оно измеряется в Ом (или кратные единицы ТОм, ГОм и др.).

Величина р зависит от состояния поверхности диэлектрика, наличия на ней примесей. Полимеры могут адсорбировать на своей поверхности влагу, поскольку полярные группы, входящие в макромолекулу, имеют гид-)офильный характер и способны притягивать молекулы воды.

Чолимеры, содержащие способные к ионизации минеральные наполнители, также адсорбируют воду. На поглощение влаги и образование поверхностных слоев влияет температура, поэтому поверхностное сопротивление сильно зависит от температуры.

При повышенных температурах в сухой атмосфере и в отсутствие случайных поверхностных загрязнений значение рв полимерного диэлектрика намного превышает значение р . [c.136]

    Полярность веществ сильно сказывается на их д и э л е к т р и-ческой проницаемост и— одной из важных характеристик диэлектриков. Чтобы уяснить связь между диэлектрической проницаемостью и структурой вещества, необходимо разобраться [c.60]

Источник: https://www.chem21.info/info/717911/

Полярные диэлектрики

Полярные диэлектрики

В целом молекулы и атомы всех веществ являются нейтральными, не смотря на то, что в них входят заряженные электроны и протоны.

Поляризация диэлектрика

Существуют диэлектрики, в которых молекулы имеют дипольный момент в отсутствии электрического поля (полярные молекулы). Если поле отсутствует, то полярные молекулы участвуют в тепловом движении, ориентированы беспорядочно. При внесении диэлектрика в поле, молекулы ориентируются в основном в направлении поля. Следовательно, диэлектрик поляризуется.

У симметричных молекул, например, $O_2,\ N_2,$ при отсутствии поля центры тяжести отрицательных и положительных зарядов совпадают, вследствие, чего собственного дипольного момента у молекул нет (неполярные молекулы).

У несимметричных молекул (${например,\ H}_2O,\ CO$) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и называются полярными.

https://www.youtube.com/watch?v=BcN-08nLOXs

Постоянный дипольный момент у большинства молекул диэлектриков имеет порядок ${10}{-29}-{10}{-30}Кл\cdot м.\ $ Так, например, у KCl он равен 3,5$\cdot {10}{-29}Кл\cdot м$, $SO_2-5,3\cdot {10}{-30}Кл\cdot м.\ $ Дипольные моменты большинства веществ измерены и их можно отыскать в справочниках.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Установление равновесия

Дипольный момент $\overrightarrow{p}$, молекулы, которая находится в электрическом поле с напряженностью $\overrightarrow{E,}\ $имеет потенциальную энергию, которая вычисляется по формуле:

Величина $W$ достигает минимального значения в том случае, когда $\overrightarrow{p}\uparrow \uparrow \overrightarrow{E.

}$ Так как устойчивым состоянием системы является состояние с минимумом потенциальной энергии, то моменты диполей стремятся повернуться до совпадения с направлением напряженности поля.

Этот поворот осуществляет пара сил, которые действуют на диполь в электрическом поле. Тепловое движение, в свою очередь, мешает упорядочивающему действию электрического поля. В результате устанавливается равновесие.

С увеличением напряженности поля дипольные моменты интенсивнее ориентируются вдоль напряженности поля при $\overrightarrow{p}\cdot \overrightarrow{E}\gg kT$, то есть при $\beta \gg 1$, можно считать, что все дипольные моменты параллельны между собой и параллельны полю. Тогда дипольный момент можно записать, используя одну только координатную проекцию, допустим, что поле направлено вдоль оси Z, тогда:

При выполнении условия (2) достигается максимальная поляризованность и если увеличивать напряженность приложенного к диэлектрику поля, то поляризованность не увеличивается. Напряжённость, при которой достигается максимальная поляризованность, называется напряженностью поля насыщения.

Поляризация разреженного газа

Если полярный диэлектрик — это разреженный газ, то можно считать, что напряженность локального поля $(\overrightarrow{E'})$ равна напряженности внешнего поля ($\overrightarrow{E}$), то есть $\overrightarrow{E'}=\overrightarrow{E}$. Тогда поляризованность диэлектрика ($\overrightarrow{P}$) равна:

где $n$ — концентрация молекул, $k=1,38\cdot {10}{-23}\frac{Дж}{К}$ — постоянная Больцмана, $T$ — абсолютная термодинамическая температура. Диэлектрическая проницаемость будет равна:

Из уравнения (4) мы видим, что диэлектрическая проницаемость полярных диэлектриков зависит от температуры и при нагревании уменьшается.

Вместе с поляризованностью вследствие переориентирования диполей в полярных диэлектриках возникает поляризованность, которая обусловлена индуцированными дипольными моментами.

Однако ее вклад примерно в сто раз меньше, чем от постоянных дипольных моментов, поэтому ей часто пренебрегают.

Надо отметить, что в квантовой теории, когда рассматривают переориентацию дипольных моментов, еще рассматривают вращение молекул.

Для плотных газов, а тем более жидкостей нельзя считать, что локальное поле равно внешнему ($\overrightarrow{E'}e \overrightarrow{E}$). Необходимость учитывать локальное поле существенно усложняет расчет. Можно записать, что вектор поляризации ($\overrightarrow{P}$) равен:

Необходимо помнить, что напряженность $\overrightarrow{E'}$ нельзя легко выразить через напряженность внешнего поля. Надо применят всяческие специальные методы (самый простой метод Лоренца). Иногда по аналогии с неполярными диэлектриками, сравнивая формы записи их векторов поляризации, используют формулу Моссотти — Клаузиуса:

считают, что в полярных молекулах роль поляризуемости молекулы ($\beta $) играет величина $\frac{p2}{3kT{\varepsilon }_0}$ тогда формулу (6) записывают в виде:

Формула (7) применима только в том случае, если локальное поле можно представить как:

например, для кристаллов с кубической решеткой. В жидкостях с полярными молекулами эта формула оправдывается плохо. Для газообразных полярных диэлектриков, у которых можно считать, что локальное поле равно среднему полю, формулу (7) применить можно, если положить, что $\varepsilon +2\approx 3.$

Если существует необходимость учитывать деформацию молекул под воздействием электрического поля, то диэлектрическая проницаемость газа может быть определена как:

В формуле (9) второе слагаемое описывает электронную поляризацию смещения, а третье слагаемое — ориентационную поляризацию.

Существуют диэлектрические кристаллы (ионные кристаллы), которые строятся из ионов противоположного знака.

Подобный кристалл состоит из двух кристаллических решеток, положительной и отрицательной, вдвинутых одна в другую. Кристалл в целом можно уподобить гигантской молекуле.

При наложении электрического поля происходит сдвиг одной решетки относительно другой, так происходит поляризация ионных кристаллов.

Существуют кристаллы, которые поляризованы и без поля. При дальнейшем изучении поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет.

Существенным является лишь то, что поляризация диэлектрика проявляется через возникновение некомпенсированных макроскопических зарядов. Когда диэлектрик не поляризован, объемная плотность его зарядов ($\rho $) и поверхностная плотность ($\sigma $) равны нулю.

В результате поляризации $\sigma e 0$, а иногда и $\rho e 0.$ Поляризация сопровождается возникновением в тонком поверхностном слое диэлектрика избытка связанных зарядов одного знака.

В том случае, если перпендикулярная составляющая напряженности поля $\overrightarrow{E_n}e 0$ на выделенном участке, то под действием поля заряды одного знака уходят внутрь, а другого выходят наружу.

Пример 1

Задание: Какими типами поляризации могут обладать следующие атомы и молекулы:

\[Н,\ He,\ O_2,\ H_2O,\ HCl,CO.\]

Решение:

Прежде чем дать ответ, вспомним что:

  • Ориентационная поляризация может наблюдаться у полярных диэлектриков. Она состоит в повороте осей жесткого диполя вдоль направления линий напряженности поля.
  • Электронная поляризация свойственна неполярным диэлектрикам. Состоит в возникновении у каждой молекулы индуцированного электрического момента.
  • Атомная поляризация происходит в твердых диэлектриках, которые имеют ионные кристаллические решетки. Состоит в смещении положительных ионов решетки по полю, а отрицательных в противоположную сторону.

Для того, чтобы определить тип молекулярной или атомарной поляризации необходимо установить в каком агрегатном состоянии может находиться вещество и является оно полярным или неполярным диэлектриком.

Пример 2

Задание: Дипольный момент молекулы $HF$ равен $p=6,4\cdot 10{-30}Кл\cdot м.$ Расстояние между ядрами атомов составляет около $l=9,2\cdot {10}{-11}м.\ $ Каков заряд диполя? Сравните его с элементарным зарядом, объясните полученный результат.

Решение:

За основу примем формулу для дипольного момента:

\[p=ql\ \left(2.1\right).\]

Выразим из (2.1) искомый заряд, получим:

\[q=\frac{p}{l}\left(2.2\right).\]

Произведем вычисление величины заряда:

\[q=\frac{6,4\cdot 10{-30}}{9,2\cdot {10}{-11}}=0,696\cdot {10}{-19}\left(Кл\right).\]

Элементарный заряд (заряд электрона) равен $e=1,6\cdot {10}{-19}Кл.$ $HF$- полярный диэлектрик, который обладает постоянным дипольным моментом. Мы получили существенную разницу в величине заряда. Это можно объяснить тем, что электронное облако, которое находится рядом с протоном, частично смещается к ядру атома фтора, таким образом, оно не целиком участвует в образовании дипольного момента.

Ответ: $q=0,696\cdot {10}{-19}\left(Кл\right).$

Источник: https://spravochnick.ru/fizika/elektrostatika/polyarnye_dielektriki/

Booksm
Добавить комментарий