Получение ароматических углеводородов

Содержание
  1. Ароматические углеводороды (Арены)
  2. Строение
  3. Изомеры
  4. Физические
  5. Химические
  6. Получение
  7. Применение
  8. Распределение по фракциям нефти
  9. Гибридные соединения
  10. Cодержание аренов в нефтях России
  11. Производство и применение ароматических углеводородов
  12. Ароматические углеводороды. Строение, физические свойства, номенклатура. урок. Химия 10 Класс
  13. 4.1.7. Основные способы получения углеводородов
  14. Крекинг алканов с изначально большей длиной цепи
  15. Газификация каменного угля
  16. Процесс Фишера-Тропша
  17. Реакция Вюрца
  18. Декарбоксилирование солей карбоновых кислот
  19. Гидролиз карбида алюминия
  20. Крекинг алканов
  21. Дегидрогалогенирование галогеналканов
  22. Дегидратация спиртов
  23. Дегалогенирование вицинальных дигалогеналканов
  24. Дегидрирование алканов
  25. Дегидрирование бутана и бутена-1
  26. Метод Лебедева
  27. Дегидрогалогенирование дигалогензамещенных алканов
  28. Пиролиз метана
  29. Гидролиз карбидов щелочных и щелочноземельных металлов
  30. Декарбоксилирование солей ароматических карбоновых кислот
  31. Тримеризация ацетилена
  32. Дегидрирование гомологов циклогексана
  33. Дегидроциклизация
  34. Алкилирование
  35. Подготовка к ЕГЭ по химии. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ

Ароматические углеводороды (Арены)

Получение ароматических углеводородов

АРЕНЫ (АрУ)– карбоциклические соединения, содержащие в молекуле специфическую систему чередующихся двойных и одинарных связей (сопряженных π-связей).

Общая формула CnH2n-6

Ароматические углеводороды (Арены) являются ненасыщенными циклическими соединениями и представлены в нефтях следующими углеводородами:

  1. моноциклическими (бензольными) – СnНn;
  2. бициклическими (нафталиновыми) – СnНn-2;
  3. трициклическими (антраценовыми) – СnНn-4
  4. тетрациклическими (пиреновыми) – СnНn-6.

В основном все они представлены алкилпроизводными изомерами и содержатся во фракциях нефти в соответствии с их температурами кипения.

В среднем для нефтей характерно следующее соотношение этих групп  углеводородов: 

  • бензольные – 67%, 
  • нафталиновые – 18%,
  • фенантреновые – 8%,
  • пиреновые – 5%,
  • прочие – 2%.

Строение

Основой названия ароматического углеводорода с небольшим заместителем является бензол. Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему по кратчайшему пути.

Строение аренонов представлено бензолом и его гомологами – продуктами замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Гомологи – вещества, относящиеся к одному классу соединений, имеющие сходные химические свойства и отличающиеся на одну или несколько СН2 групп.

Арены: бензол и его гомологи

Существуют также соединения, молекулы которых содержат несколько циклических структур:

Циклические молекулы

Изомеры

Для гомологов бензола характерна изомерия положения нескольких заместителей.

Изомеры

Физические

К характерным свойствам следует отнести:

  1. высокую плотность (880 – 900 кг/м3),
  2. большой показатель преломления (1,5 – 1,55)
  3. минимальное соотношение Н:С (5 – 8 %), т.е. низкие энергетические свойства.

Кстати, прочтите эту статью тоже:  Из чего состоит нефть

Физические свойства ароматических углеводородов существенно зависят от числа, места и молекулярной массы боковых заместителей и числа циклов. Такое резкое отличие их свойств часто используют для разделения этих углеводородов физическими методами.

Бензол и его простейшие гомологи в обычных условиях – токсичные жидкости с характерным запахом. Они плохо растворяются в воде, но хорошо  в органических растворителях.

Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) – бесцветные жидкости со специфическим запахом. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ.

Все арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Химические

Для аренов наиболее характерны реакции электрофильного замещения –

  • галогенирование,
  • нитрование,
  • сульфирование,
  • алкилирование (получение хлорбензола, нитробензола, этилбензола др. соединений).

При высоких парциальных давлениях водорода в присутствии катализаторов арены насыщаются до нафтенов.

Получение

Ароматические углеводороды нефтяного происхождения (содержащиеся в природной нефти и образующиеся во вторичных процессах термокаталитической переработки фракций нефти) являются основным исходным сырьем для огромного числа нефтехимических производств получения ценных продуктов.

Из общего производства аренов в мире 29 млн. т/г. (2005-е годы) 87-92% вырабатывалось из нефти.

Применение

Бензол в основном идет на производство этилбензола, из которого каталитическим дегидрированием при 600 °С получают стирол – исходный мономер для производства каучуков и ценных полимеров:

Для производства других ценных продуктов – фенола и ацетона пользуют кумол (изопропилбензол), который окисляют в пероксид, разложением которого кислотой получают фенол и ацетон.

Из кумола каталитическим дегидрированием получают такой ценный мономер для производства каучуков, как α-метилстирол.

Кстати, прочтите эту статью тоже:  Себестоимость добычи нефти

Значение АрУ в нефтепродуктах различно. Так, в бензинах присутствие (до 30% масс.) желательно и необходимо, так как придает бензинам хорошие моторные свойства – повышает детонационную стойкость. С этой целью в товарные бензины часто добавляют толуол или ксилолы.

В авиационных керосинах содержание АрУ ограничивают (в зависимости от марки топлива) 10-20% масс. из-за их низкой теплоты сгорания и способности давать нагар в двигателе сгорании. Допустимое количество АрУ обусловлено необходимостью иметь авиакеросины с повышенной плотностью.

В дизельных топливах содержание АрУ ограничивают из-за их нагарообразующих свойств и плохой воспламеняемости является очень важной характеристикой этих топлив.

В маслах высокомолекулярные и алкилсодержащие  АрУ с боковыми цепями изомерного строения –  нежелательный  компонент,  так  как они  ухудшают вязкостно-температурную характеристику масел (индекс вязкости) и обусловливают образование лаково-смолистых отложений на трущихся поверхностях. АрУ удаляют из масел в процессе очистки масляных дистиллятов и деасфальтизатов.

Остаются в маслах лишь АрУ с длинными боковыми цепями и “гибридные” полициклические углеводороды, в которых преобладают   насыщенные циклы, поскольку свойства углеводородов приближаются соответственно к свойствам алканов и цикланов.

Распределение по фракциям нефти

Распределение АрУ по фракциям нефтей зависит от степени ароматизированности нефти, выражающейся в ее плотности.

  • В легких нефтях, богатых алканами, АрУ представлены в основном легкими моно- и бициклическими, и их общее содержание максимально в начальных фракциях и снижается к более высококипящим. 
  • В нефтях средней плотности, богатых нафтеновыми углеводородами, распределение АрУ более равномерно, а в тяжелых смолистых нефтях картина обратная: содержание АрУ в низкокипящих фракциях невелико и нарастает в высококипящих.
  • В бензиновых фракциях нефти (30-200 °С) содержатся в основном бензольные АрУ (С6-C9).
  • В керосиновых фракциях (150-300 °С) кроме бензольных присутствуют нафталиновые АрУ (С10-С16), а в тяжелых дистиллятных фракциях (350-500 °С) – главным образом нафталиновые и антраценовые.
  • В остатках нефти (выше 500 °С) концентрируются полицик­лические АрУ с числом циклов от трех до семи, причем “чистые” АрУ здесь уступают место “гибридным”, сочетающим в себе насыщенные и ненасыщенные циклы.

Кстати, прочтите эту статью тоже:  Условная вязкость

Простейшие из них (индан, тетралин, флуорен и другие би- и трициклические соединения) содержатся в керосино-газойлевых фракциях нефти (150 – 350оС).  

Гибридные соединения

В «гибридных» соединениях ароматические циклы имеют обычно метильные заместители, а нафтеновые – более длинные боковые цепи.

В остальных фракциях нефти (выше 500оС) и особенно в составе смол и асфальтенов концентрируются полициклические АрУ с числом циклов 4 и более, такие как пирен, хризен, бенз-α-пирен и другие, являющиеся канцерогенными веществами.

Cодержание аренов в нефтях России

Общее содержание аренов в нефтях России (с учетом «гибридных») составляет 35 – 40 % – для тяжелых нафтено – ароматических нефтей и около 20 % – для высокопарафинистых.

Источник: https://pronpz.ru/neft/areny.html

Производство и применение ароматических углеводородов

Получение ароматических углеводородов

Современное промышленное производство ароматических углеводородов основано на процессах переработки нефтяных фракций и в меньшей степени на процессах коксования каменных углей.

Современное промышленное производство ароматических углеводородов основано на процессах переработки нефтяных фракций и в меньшей степени на процессах коксования каменных углей.

Выход ароматических углеводородов при коксовании угля составляет 0,8 -1,5 % от сухой шихты..

В нефтеперерабатывающей промышленности ароматические углеводороды — бензол, толуол, изомеры С8 , триметилбензолы и другие выделяются из продуктов каталитического риформинга бензиновых фракций, а также пиролиза газообразных и жидких углеводородов.

Кроме ароматических углеводородов образуются другие топливные и нефтехимические продукты:

— на процессах риформинга — углеводородные газы, бензин, технический водород,

— при пиролизе — этилен, пропилен, бутилены.

Рост потребности химической промышленности в ароматических углеводородах привел к разработке специальных технологических процессов: выделения ароматических углеводородов из их смесей с парафиновыми, нафтеновыми углеводородами, азеотропной, экстрактивной ректификации, экстракции, разделения пара-, орто-, метаксилолов и этилбензола кристаллизацией, ректификацией, адсорбцией и экстракцией.

Наибольшее применение в органическом синтезе находит бензол.

Для увеличения его выработки разработаны специальные методы его производства — деалкилирование ароматических углеводородов и диспропорционирование толуола.

В США 20% толуола используется на производство бензола, 20% — для химического синтеза, остальной толуол — как высокооктановая добавка к бензину.

Нефтяной ксилол — смесь 4х изомеров С8 используется в основном (75%) для получения изомеров, остальное количество — как растворитель и компонент бензина. Наиболее применимы из изомеров С8 орто- и параксилол, другие изомеры С8 превращаются в орто- и параксилол путем каталитической изомеризации.

Большая часть ароматики С9 используются как компонент автобензина, возможно использование для получения смол. Ароматика С10 используется в производстве полиамидов, смол, лаков, пластификаторов.

Применение ароматических углеводородов становится все разнообразнее, так как они обладают высокой реакционной способностью в реакциях замещения.

Это позволяет получать на их основе различные технически ценные производные: синтетические материалы с повышенной термической стабильностью и механической прочностью, высокими диэлектрическими характеристиками, широкий ассортимент физиологически активных веществ и красителей, разнообразные стабилизаторы.

Среди новых направлений — быстро растущее производство технического углерода, графита, графитового волокна из смесей полициклических ароматических углеводородов.

Основные типы процессов производства ароматических углеводородов

Сырьем для производства ароматических углеводородов через процесс каталитического риформинга служат бензиновые фракции прямой перегонки нефти с различными интервалами кипения:

— для получения бензола фракция 62-85 °C (60-85 °C)

— для получения толуола фракция 85-105 °C (85-110 °C)

— для получения ксилолов фракция 105-140 °C (120-140 °C)

При риформинге широкой фракции 62-140 °C получают смесь различных ароматических углеводородов.

На алюмомолибденовых катализаторах выход ароматики составляет 25-30 %.

Платиновые катализаторы (0,4-0,65 % Pt) на алюмооксидных носителях бифункциональны.

Окись алюминия Аl2O3 вследствие амфотерности способствует реакции гидрогенизации и гидрокрекинга, а платина — реакции дегидрирования.

Поэтому выход ароматики поднялся до 35-40%.

Российские катализаторы риформинга АП-64, АП-56 промотированы фтором и хлором для поддержания активности.

Использование платиновых катализаторов требует тщательной подготовки сырья, так как наличие в нем примесей кислород-, серу- и азотсодержащих соединений приводит к быстрой потере активности и селективности катализатора.

Жидкие продукты каталитического риформинга содержат смесь ароматических углеводородов с парафиновыми и нафтеновыми.

Для выделения из них ароматики используют процессы экстракции гликолями, сульфоланом, N — метилпирролидоном, что позволяет получить продукты высокой чистоты — выше 95% от их потенциала в сырье экстракции.

Для увеличения выхода бензола целесообразно подвергать риформингу прямогонную бензиновую фракцию 62-140 °C, а получающийся толуол деметилировать.

Для увеличения выхода ксилолов комбинируют установки риформинга с процессом трансалкилирования толуола и ароматики С9.

Дальнейшее увеличение выхода ароматики можно достигнуть дегидроциклизацией нормальных парафиновых углеводородов С6 — С8, выделенных из бензина прямой перегонки или рафинатов каталитического риформинга.

Быстрый рост производства пластмасс и синтетических волокон вызвал необходимость развития крупнотоннажных производств орто- и параксилолов.

Для увеличения их выработки разработан процесс изомеризации этилбензола и метаксилола, идущий в среде водорода.

Ортоксилол затем выделяют ректификацией, а для выделения параксилола используют низкотемпературную кристаллизацию и адсорбцию.

Современное производство ароматических углеводородов основано на бензинах прямой перегонки.

Рациональное распределение бензиновых фракций и развитие различных процессов производства ароматики позволяет выпускать требуемое количество ее, не снижая качества других продуктов нефтепереработки.

Ароматические соединения — циклические органические соединения, которые имеют в своем составе ароматическую систему.

Основными отличительными свойствами являются повышенная устойчивость ароматической системы и склонность к реакциям замещения, а не присоединения.

Различают бензоидные (арены и структурные производные аренов, содержат бензольные ядра) и небензоидные (все остальные) ароматические соединения.

Среди небензоидных ароматических соединений хорошо известны азулен, аннулены, гетарены (пиридин, пиррол, фуран, тиофен), ферроцен.

Известны и неорганические ароматические соединения, например боразол («неорганический бензол»).

Большое практическое значение имеют бензоидные ароматические углеводороды (арены), содержащие кроме бензольных колец и другие углеводородные группы (алифатические, нафтеновые, полициклические).

Основным источником получения ароматических углеводородов служат каменноугольная смола, нефть и нефтепродукты, а также синтетические технологии.

Наиболее важными аренами являются: бензол С6Н6 и его гомологи (толуол С6Н5СНз, ксилолы С6Н4(СНз)2, дурол, мезитилен, этилбензол), кумол, нафталин C10H8, антрацен С14Н10 и их производные.

Ароматические углеводороды — исходное сырье для промышленного получения кетонов, альдегидов и кислот ароматического ряда, и других веществ.

Источник: https://neftegaz.ru/science/petrochemistry/331666-proizvodstvo-i-primenenie-aromaticheskikh-uglevodorodov/

Ароматические углеводороды. Строение, физические свойства, номенклатура. урок. Химия 10 Класс

Получение ароматических углеводородов

Урок предназначается для самостоятельного прохождения темы «Ароматические углеводороды. Строение, физические свойства, номенклатура». Вы сможете получить новые знания об ароматических углеводородах. Узнаете о номенклатуре, физических свойствах и строении ароматических углеводородов.

Родоначальник ароматических углеводородов – бензол – был выделен Майклом Фарадеем в 1825 года из конденсата светильного газа. Немецкий химик Эйльхард Мичерлих (1794–1863), нагревая бензойную кислоту с негашёной известью (СаО), получил жидкость со специфическим неприятным запахом, которая оказалась тождественной «двууглеродистому водороду» Фарадея.

Мичерлих правильно определил формулу углеводорода – С6Н6 – и окрестил его бензином (benzin). Либих счёл это название неудачным, так как суффикс -ин имелся в названиях многих азотсодержащих соединений – органических (среди них много алкалоидов, например стрихнин, кофеин, хинин) и неорганических (гидразин).

Исходя из маслянистого характера жидкости, Либих предложил своё название, с суффиксом -ол (от лат. oleum – «масло»). Вряд ли оно было удачнее: этот суффикс обычно указывает на принадлежность соединения к спиртам (этанол, бутанол и т. д.). Однако слово «бензол» прижилось – правда, только в немецком и русском языках.

Англичане и американцы, например, называют этот углеводород «бензин» (benzene).

Долгое время химики бились над структурой этого простого, казалась бы, соединения. Лишь через 40 лет Фридрих Кекуле (Рис. 1) предложил структурную формулу бензола.

Это был шестичленный цикл с чередующимися двойными и одинарными связями.

Рис. 1. Фридрих Август Кекуле

При этом сразу же обнаружились как доводы «за» так и «против» данной структуры.

«За»

Доводы «за» говорили о том, что бензол, как и все непредельные углеводороды, подвергается гидрированию.

Кроме того, хорошо объяснялась реакция Берло – Зелинского, при которой происходит тримеризация ацетилена.

«Против»

Доводами «против» служило то, что бензол хоть и содержит двойные связи, но не проявляет реакций, характерных для непредельных соединений. Не реагирует с бромной водой:

Не реагирует с водным раствором перманганата калия.

При этом, исходя из структуры двойной связи, должно существовать 2 дизамещённых бензола:

Однако получить удалось лишь одно соединение.

Окончательно вопрос о структуре бензола был решен лишь в начале XX века знаменитым химиком, дважды Нобелевским лауреатом Лаймсом Полингом.

Он предложил следующее: все атомы углерода находятся в состоянии sp2-гибридизации. Рис. 2. Шесть π-электронов образуют общее электронное облако, которое принадлежит всем шести атомам углерода:

Рис. 2. Образование связей в молекуле бензола

Атомы углерода в молекуле бензола составляют плоский правильный шестиугольник; связи между всеми атомами углерода имеют равную длину – 0,14 нм, которая больше, чем длина двойной связи (0,132 нм), но меньше, чем длина простой связи (0,154 нм). Рис. 3.

Рис. 3. Шаростержневая молекула бензола

Полинг ввел структуру бензола с кружком в середине.

 или

Соединения, обладающие подобной структурой, стали называть ароматическими.

На основе квантовомеханических расчетов Э. Хюккель сформулировал

 критерии ароматичности:

1. Молекула (или ее часть) должна быть циклической и плоской.

2. Она должна содержать сопряженные p-электроны. Это могут быть электроны двойных связей или неподеленных электронных пар атомов.

3. Число p-электронов должно быть равным 4n+2, где n = 0,1,2… (правило Хюккеля)

Ароматическими являются все циклические сопряженные полиеновые системы, содержащие 4n+2 , где n неотрицательное целое число, делокализованных π- электронов.

Бензол подходит под это правило с n =1.

Арены похожи на остальные углеводороды – они нерастворимы в воде и легче ее. Бензол при комнатной температуре – бесцветная прозрачная жидкость со своеобразным запахом. Тпл = 5,5оС, Ткип = 80оС.

Бензол токсичен и легко воспламеняется.

Номенклатура аренов

Согласно номенклатуре ИЮПАК, арены с одним бензольным кольцом рассматривают как производные бензола. В качестве главной цепи выбирают бензольное кольцо. Многие арены имеют свои исторические названия.

Например: 

Метилбензол(толуол)Изопропилбензол(кумол)Винилбензол(стирол)

Нумерацию начинают с одного из заместителей так, чтобы сумма номеров заместителей была минимальна.

Если соединение содержит два заместителя у бензольного кольца, то располагаться они могут тремя разными способами друг относительно друга. Часто вместо нумерации для 1,2-дизамещенных бензолов используют обозначение орто-, для 1,3-замещенных – мета-, а для 1,4-замещенных – пара-.

1,2-диметилбензол орто-диметилбензол (о-ксилол)1,3-диметилбензол мета-диметилбензол (м-ксилол)1,4-диметилбензол пара-диметилбензол (п-ксилол)

Диметилбензолы изомерны друг другу. Изомерные три метилбензолы:

1,2,3-триметилбензол1,2,4-триметилбензол1,3,5-триметилбензол

Им изомерны также метил этилбензолы (приведем в пример один из них), а также пропил- и изопропилбензолы:

м-метилэтилбензолпропилбензолизопропилбензол

У аренов есть и межклассовые изомеры – соединения с несколькими двойными и тройными связями, циклы и т.п.

Подведение итога урока

На уроке была рассмотрена тема «Ароматические углеводороды. Строение, физические свойства, номенклатура». Вы смогли получить новые знания об ароматических углеводородах. Узнали о номенклатуре, физических свойствах и строении ароматических углеводородов.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. – 14-е издание. – М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. – М.: Дрофа, 2008. – 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. – М.: Дрофа, 2010. – 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. – 4-е изд. – М.: РИА «Новая волна»: Издатель Умеренков, 2012. – 278 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Interneturok.ru (Источник).

2. Органическая химия (Источник).

3. Химик (Источник).

4. База знаний Murzim (Источник).

Домашнее задание

1. №№ 1, 2 (с. 62) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. – 14-е издание. – М.: Просвещение, 2012.

2. Почему при изображении структурной формулы бензола не следует указывать двойные связи?

3. Как образуются химические связи в молекуле бензола?

Источник: https://interneturok.ru/lesson/chemistry/10-klass/aromaticheskie-uglevodorody/aromaticheskie-uglevodorody-stroenie-fizicheskie-svoystva-nomenklatura

4.1.7. Основные способы получения углеводородов

Получение ароматических углеводородов

Углеводороды разных классов (алканы, алкены, алкины, алкадиены, арены) можно получать различными способами.

Крекинг алканов с изначально большей длиной цепи

Процесс, используемый в промышленности, протекает в интервале температур 450-500oC в присутствии катализатора и при температуре 500-700oC в отсутствие катализатора:

Важность промышленного процесса крекинга заключается в том, что он позволяет повысить выход бензина из тяжелых фракций нефти, которые не представляют существенной ценности сами по себе.

Газификация каменного угля

в присутствии никелевого катализатора при повышенных температуре и давлении может быть использована для получения метана:

Процесс Фишера-Тропша

С помощью данного метода могут быть получены предельные углеводороды нормального строения, т.е. алканы. Синтез алканов осуществляют, используя синтез-газ (смеси угарного газа CO и водорода H2), который пропускают через катализаторы при высоких температуре и давлении:

Реакция Вюрца

С помощью данной реакции могут быть получены углеводороды с большим числом атомов углерода в цепи, чем в исходных углеводородах. Реакция протекает при действии на галогеналканы металлического натрия:

Декарбоксилирование солей карбоновых кислот

Сплавление твердых солей карбоновых кислот со щелочами приводит к реакции декарбоксилирования, при этом образуются углеводород с меньшим числом атомов углерода и карбонат металла (реакция Дюма):

Гидролиз карбида алюминия

Взаимодействие карбида алюминия с водой, а также кислотами-неокислителями приводит к образованию метана:

Al4C3 + 12H2O = 4Al(OH)3 + 3CH4↑

Al4C3 + 12HCl = 4AlCl3 + 3CH4↑

Крекинг алканов

Реакция в общем виде уже была рассмотрена выше (получение алканов). Пример реакции крекинга:

Дегидрогалогенирование галогеналканов

Дегидрогалогенирование галогеналканов протекает при действии на них спиртового раствора щелочи:

Дегидратация спиртов

Данный процесс протекает в присутствии концентрированной серной кислоты и нагревании до температуры более 140оС:

Обратите внимание, что и в случае дегидратации, и в случае дегидрогалогенирования отщепление низкомолекулярного продукта (воды или галогеноводорода) происходит по правилу Зайцева: водород отщепляется от менее гидрированного атома углерода.

Дегалогенирование вицинальных дигалогеналканов

Вицинальными дигалогеналканами называют такие производные углеводородов, у которых атомы хлора прикреплены к соседним атомам углеродной цепи.

Дегидрогалогенирование вицинальных галогеналканов можно осуществить, используя цинк или магний:

Дегидрирование алканов

Пропускание алканов над катализатором (Ni, Pt, Pd, Al2O3 или Cr2O3) при высокой температуре (400-600оС) приводит к образованию соответствующих алкенов:

Дегидрирование бутана и бутена-1

В настоящий момент основным методом производства бутадиена-1,3 (дивинила)  является каталитическое дегидрирование бутана, а также бутена-1, содержащихся в газах вторичной переработки нефти. Процесс проводят в присутствии катализатора на основе оксида хрома (III) при 500—650°С:

Действием высоких температур в присутствии катализаторов на изопентан (2-метилбутан) получают промышленно важный продукт – изопрен (исходное вещество для получения так называемого «натурального» каучука):

Метод Лебедева

Ранее (в Советском Союзе) бутадиен-1,3 получали по методу Лебедева из этанола:

Дегидрогалогенирование дигалогензамещенных алканов

Осуществляется действием на галогенпроизводные спиртового раствора щелочи:

Пиролиз метана

При нагревании до температуры 1200-1500оС метан подвергается реакции дегидрирования с одновременным удваиванием углеродной цепи – образуются ацетилен и водород:

Гидролиз карбидов щелочных и щелочноземельных металлов

Действием на карбиды щелочных и щелочно-земельных металлов воды или кислот-неокислителей в лаборатории получают ацетилен. Наиболее дешев и, как следствие, наиболее доступен для использования карбид кальция:

Декарбоксилирование солей ароматических карбоновых кислот

Сплавлением солей ароматических карбоновых кислот со щелочами удается получить ароматические углеводороды с меньшим числом атомов углерода в молекуле по сравнению с исходной солью:

Тримеризация ацетилена

При пропускании ацетилена при температуре 400°C над активированным углем с хорошим выходом образуется бензол:

Аналогичным способом можно получать симметричные триалкилзамещенные бензолы из гомологов ацетилена. Например:

Дегидрирование гомологов циклогексана

При действии на циклоалканы с 6-ю атомами углерода в цикле высокой температуры в присутствии платины происходит дегидрирование с образованием соответствующего ароматического углеводорода:

Дегидроциклизация

Также возможно получение ароматических углеводородов из углеводородов нециклического строения при наличии углеродной цепи с длиной в 6 или более атомов углерода (дегидроциклизация). Процесс осуществляют при высоких температурах в присутствии платины или любого другого катализатора гидрирования-дегидрирования (Pd, Ni):

Алкилирование

Получение гомологов бензола алкилированием ароматических углеводородов хлорпроизоводными алканов, алкенами или спиртами:

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/uglevodorody-sposoby-poluchenija

Подготовка к ЕГЭ по химии. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ

Получение ароматических углеводородов

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ.

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

Бензол С6Н6 – родоначальник ароматических углеводородов. Впервые выделен Фарадеем в 1825г из светильного газа.

Каждый из шести атомов углерода в его молекуле находится в состоянии sp2-гибридизации и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 1200.

Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.

р-Электроны всех атомов углерода образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между одинарной и двойной.

Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы).

Общая формула гомологического ряда бензола CnH2n-6 (n ≥ 6).

Вещество

Название по номенклатуре

Историческое название

С6Н5-СН3

метилбензол

Толуол

С6Н5-СН2-СН3

этилбензол

СН3-С6Н4-СН3

диметилбензол

ксилол

С6Н5-СН(СН3)2

изопропилбензол

кумол

Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Кольцо нумерют так, чтобы номера радикалов были наименьшими.

Для дизамещенных бензолов

R-C6H4-R'

используется также другой способ построения названий:

 орто— (о-) заместители у соседних атомов углерода кольца, 1,2-;
 мета— (м-) заместители через один атом углерода (1,3-);
пара-(п-) заместители на противоположных сторонах кольца(1,4-).

Изомерия у аренов.

Определяется числом заместителей, их расположением в бензольном кольце и возможностью изомерии углеродного скелета в заместителях, содержащих более трёх атомов углерода.

Для ароматического углеводорода С8Н10 существуют 4 изомера: орто-, мета- и пара-ксилолы и этилбензол.

ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

1. Дегидрирование циклоалканов

2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора

3.Тримеризация ацетилена над активированным углем (реакция Зелинского):

4.Алкилирование бензола галогеналканами в присутствии безводного хлорида алюминия или алкенами:

ФИЗИЧЕСКИЕ СВОЙСТВА.

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. Огнеопасны. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях. Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

Высшие арены – твердые вещества.

ХИМИЧЕСКИЕ СВОЙСТВА.

Из-за наличия делокализованой -системы арены мало характерны реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции электрофильного замещенияатомов водорода, связанных с циклом — SЕ.

1. РЕАКЦИИ ПРИСОЕДИНЕНИЯ К АРЕНАМ

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

а.Гидрирование. Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

б. Радикальное хлорирование. При радикальном хлорировании бензола получается гексахлорциклогексан — «гексахлоран» (средство борьбы с вредными насекомыми).

2. РЕАКЦИИ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В БОКОВОЙ ЦЕПИ:

В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция радикального замещения в боковой цепи:

3. Реакции окисления аренов

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

В отличие от бензола его гомологи окисляются довольно легко. При действии раствора KMnO4 в кислой среде и нагревании в гомологах бензола окислению подвергаются только боковые цепи, при этом от боковой цепи остаётся карбоксильная группа, а остальное – переходит в углекислый газ:

5С6Н5-СН3 +6КМnO4+9H2SO4 5C6H5-COOH +6MnSO4+3K2SO4+14H2O

5С6Н5-CH2CH3 +12КМnO4+18H2SO45C6H5-COOH +5СО2+12MnSO4+6K2SO4+28H2O

Если окисление идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты и карбонат калия:

С6Н5-СН2СН3+4KMnO4C6H5 – COOK+K2CO3+4MnO2+KOH+2H2O

4.РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ

1. Галогенирование

Замещение атома водорода в бензольном кольце на галоген происходит в присутствии катализаторов AlCl3, AlBr3, FeCl3 и т.п.:

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование) происходит под действием алкилгалогенидов в присутствии катализаторов AlCl3, FeBr3или алкенов в присутствии фосфорной кислоты:

ЗАМЕЩЕНИЕ В АЛКИЛБЕНЗОЛАХ

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом. Например, при нитровании толуола С6Н5-CH3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола, причём в орто- и пара- положениях:

ОРИЕНТИРУЮЩЕЕ ДЕЙСТВИЕ ЗАМЕСТИТЕЛЕЙ

В БЕНЗОЛЬНОМ КОЛЬЦЕ.

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные (первого рода) и электроноакцепторные (второго рода).

ЭЛЕКТРОНОДОНОРНЫЕ ЗАМЕСТИТЕЛИ проявляют повышают электронную плотность в сопряженной системе.

К ним относятся гидроксильная группа —ОН и аминогруппа —NН2. Неподеленная пара электронов в этих группах вступает в общее сопряжение с p -электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредоточивается в орто- и пара-положениях:

Алкильные группы не могут участвовать в сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p -электронной плотности.

Заместители, обладающие +I-эффектом или +М-эффектом, способствуют электрофильному замещению в орто- и пара— положениях бензольного кольца и называются заместителями (ориентантами) первого рода:

Так, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто-положения:

ЭЛЕКТРОНОАКЦЕПТОРНЫЕ ЗАМЕСТИТЕЛИ снижают электронную плотность в сопряженной системе.

К ним относятся нитрогрупла —NO2, сульфогруппа —SO3Н, альдегидная —СНО и карбоксильная —СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, но меньше всего она уменьшается в мета-положениях:

Полностью галогенизированные алкильные радикалы (например, —ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

Заместители, обладающие -I-эффектом или -М-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (ориентантами) второго рода:

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

СТИРОЛ (винилбензол) С8Н8

– производное бензола, которое имеет в своём составе двойную связь в боковом заместителе, поэтому он НЕ относится к гомологическому ряду аренов.

Получение стирола:

  1. Дегидрирование этилбензола: С6Н5-СН2-СН3 -(t,кат) C6H5-CH=CH2 + H2

  2. Дегидрогалогенирование фенилбромэтана:

C6H5-CH-CH3 +KOH –(спирт)  C6H5-CH=CH2 +KBr +H2O

Br

Свойства стирола:

Стирол проявляет свойства, характерные для алкенов – реакции присоединения, окисления, полимеризации.

Реакции присоединения к стиролу: протекают в соответствии с правилом Марковникова.

С6Н5-СН=СН2 +Н2О  С6Н5-СН-СН3

ОН

Мягкое окисление стирола:

3С6Н5-СН=СН2 +2 KMnO4 + 4Н2О 3 С6Н5-СН-СН2 + 2MnO2 + 2KOH

│ │

OHOH фенилэтиленгликоль

Жесткое окисление стирола:

С6Н5-СН=СН2 + 2KMnO4 + 3Н2SO4  С6Н5OOН + CO2 + 2MnSO4 + K2SO4 + 4H2O

бензойная кислота

3С6Н5-СН=СН2 + 10KMnO4 -to 3С6Н5OOК + 3К2CO3 + 10MnO2 + KOH+ 4Н2О

бензоат калия

Полимеризация стирола: в результате получают полистирол.

Источник: https://infourok.ru/podgotovka_k_ege_po_himii._aromaticheskie_uglevodorody.-282356.htm

Booksm
Добавить комментарий