Плавление и кристаллизация

Плавление и кристаллизация

Плавление и кристаллизация

Кристаллизация – это переход вещества в кристаллическое состояние из жидкого, или газообразного, или аморфного состояния.

Кристаллизация является фазовым переходом, происходит с выделением тепла, но при постоянной температуре. Примеры кристаллизации: замерзание воды (переход из жидкой фазы в кристаллическую), образование инея (переход из газообразной фазы в кристаллическую).

Плавление кристаллического вещества – это переход из кристаллической фазы в жидкую.

Процесс плавления кристаллического вещества происходит с поглощением тепла, но температура остается постоянной, пока плавление не завершится. Пример плавления кристаллического вещества – таяние льда. Смесь снега и льда сохраняет температуру 0° С, пока весь лед не растает.

Фазовые переходы на диаграмме температуры и давления

Лед, вода, пар – классический пример трех агрегатных состояний вещества. Не всегда вещества демонстрируют такие же «правильные» фазовые переходы. Например, углекислый газ замерзает и переходит в кристаллическую фазу при температуре -56,6°С, минуя жидкую фазу.

При нагревании твердый диоксид углерода не плавится, а испаряется, переходя сразу в газообразное состояние. Но при более высоких температурах и высоком давлении возможен переход диоксида углерода в жидкое состояние, а при дальнейшем охлаждении жидкой фазы происходит кристаллизация.

Фазовые переходы между агрегатными состояниями того или иного вещества изображаются на p-t диаграмме (по оси абсцисс откладывается температура, по оси ординат – давление).

Диаграмма фазовых переходов лед-вода-пар  показана для условий, когда лед находится не в воздушной среде, а в замкнутом объеме, где из газов присутствует только водяной пар.

По диаграммам можно проследить, что при повышении давления вода замерзает при более низких температурах; диоксид углерода, наоборот, имеет прямую зависимость температуры кристаллизации от давления.

Кристаллизация и затвердевание: в чем разница?

Твердые вещества могут не быть кристаллическими. Например, стекло и стеклоподобные аморфные вещества постепенно затвердевают при остывании; у них нет явно выраженной точки фазового перехода.

Плавление стекла тоже происходит в некотором диапазоне температур, зависящем от химического состава и наличия примесей.

Отличие кристаллизации от затвердевания – в наличии фазового перехода, во время которого сохраняется постоянная температура:

  • если тепло не подводить, то жидкая и твердая фазы будут оставаться в равновесии;
  • если тепло поступает, то кристаллы будут плавиться, при сохранении температуры фазового перехода;
  • если тепло отводить, то происходит рост кристаллов, температура фазового перехода сохраняется, пока вся жидкая фаза не перейдет в кристаллическую.

Например, смесь воды со льдом в жаркий день сохраняет нулевую температуру, пока весь лед не растает. Поступающее тепло увеличивает внутреннюю энергию за счет приобретения молекулами дополнительных степеней свободы, но температура сохраняется прежняя до того, как лед полностью растает.

Фазовый переход в твердом веществе между двумя кристаллическими состояниями

Иначе ведет себя углерод. У него несколько фазовых переходов. Из жидкой формы, при отводе тепла, он переходит в кристаллическую фазу – графит; при высоком давлении более 120 000 атм. жидкий углерод кристаллизуется в алмаз.
Кроме того, есть фазовый переход между двумя твердыми кристаллическими фазами: графитом и алмазом.

На рисунке красной линией показана диаграмма фазового перехода между алмазом и графитом.

Температура фазового перехода зависит от давления, процессы, происходящие в твердом теле, аналогичны кристаллизации воды: если тепло подводить, то алмаз переходит в графит; если тепло отводить при соответствующем высоком давлении, то происходит переход, кристаллизация графита в алмаз.

Можно видеть, что переходы между алмазом и графитом совершаются при высоких температурах и давлениях, а при нормальном давлении и температуре алмаза вроде бы и не должно быть. Действительно, при низком давлении графит нельзя превратить в алмаз.

Но если алмаз образовался под воздействием высокого давления, при охлаждении и уменьшении давления он сохраняет свою структуру: это метастабильное состояние. Действительно, из всех кристаллов алмаз самый нестойкий: при нагревании до 1400°С он превращается в графит – устойчивую при нормальном давлении фазу.

Кристаллизация жидких кристаллов

Есть вещества, имеющие несколько кристаллических фаз в твердом состоянии; но есть целый класс веществ, имеющих несколько фазовых переходов в жидком состоянии: это вещества, раствор или расплав которых образует жидкие кристаллы.
Жидкие кристаллы имеют для нас важнейшее значение.

Живые ткани построены из органических молекул, частично упорядоченных; то есть все живые существа состоят из жидких кристаллов.
Жидкие кристаллы – это частично упорядоченные двумерные или одномерные структуры. Они стабильны в узком диапазоне температур, являются промежуточным состоянием между кристаллической и жидкой фазами.

Переход от трехмерной кристаллической решетки к двумерной или одномерной структуре происходит при температуре фазового перехода; после того, как весь образец  перейдет в жидкокристаллическое состояние, температура начинает повышаться, и повышается до значения, соответствующего следующему фазовому переходу.

В конце концов частично упорядоченная структура переходит в жидкую фазу, при температуре соответствующего фазового перехода.

Источник: http://fizikatyt.ru/2016/10/02/%D0%BF%D0%BB%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8-%D0%BA%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F/

Плавление и отвердевание кристаллических тел. График плавления и отвердевания. урок. Физика 8 Класс

Плавление и кристаллизация

Тема: Агрегатные состояния вещества

Урок: Плавление и отвердевание кристаллических тел. График плавления и отвердевания

На этом уроке мы начинаем новую большую тему: «Агрегатные состояния вещества». В течение нескольких уроков мы будем обсуждать, что такое агрегатные состояния, какими они бывают, чем характеризуются и каким образом осуществляются переходы между ними.

Слово агрегатный произошло от латинского слова aggrego (связываю, соединяю). Рассматривать основные агрегатные состояния веществ удобно на примере воды, которая в наших естественных земных диапазонах температур может находиться в трех состояниях (рис. 1): жидком (вода), твердом (лед или снег), газообразном (пар).

Рис. 1. Агрегатные состояния воды: лед, вода, пар

Отличия между агрегатными состояниями воды состоят в том, что частицы (молекулы) по-разному расположены друг относительно друга: на различных расстояниях и взаимодействуют по-разному.

Кроме того, они еще с различной активностью двигаются: или свободно перемещаются, или частично связаны, или находятся в строго определенных положениях и колеблются относительно них.

В результате указанного можно сделать вывод о таком понятии, как агрегатное состояние вещества.

Агрегатное состояние – это состояние одного и того же вещества, отличающееся взаимным расположением и характером движения частиц (атомов, молекул и т. д.) При этом, молекулы одного и того же вещества одинаковы в различных его агрегатных состояниях и не изменяются по своей структуре.

Уметь различать агрегатные состояния веществ и описывать их очень важно, т. к. от того, в каком из состояний находится одно и то же вещество, зависят его физические свойства.

Рассмотрим более детально свойства агрегатных состояний веществ.

Твердые тела – тела, молекулы которых расположены упорядоченно и их движение колебательное. Важнейшее свойство: сохраняют объем и форму при отсутствии внешних воздействий.

Принципиально твердые тела делятся на два типа: кристаллические и аморфные.

Тела с кристаллической структурой – тела, в которых атомы или молекулы расположены строго упорядоченно и образуют кристаллическую решетку. Такой тип расположения частиц называют дальним порядком. При этом свойства таких тел зависят от конкретного устройства их кристаллической решетки. Примеры строения кристаллических решеток можно увидеть на рисунке 2.

Кристалл графита

Кристалл алмаза

Кристалл поваренной соли (Источник)

Рис. 2.

Аморфные тела – тела, в которых атомы и молекулы упорядочены определенным образом только вблизи рассматриваемого участка. Такой тип расположения частиц называют ближним порядком.

Жидкости – вещества без упорядоченной структуры расположения частиц, молекулы в жидкостях движутся свободнее, а межмолекулярные силы слабее, чем у твердых тел. Важнейшее свойство: сохраняют объем, легко меняют форму и принимают из-за свойства текучести форму сосуда, в котором находятся (рис. 3).

Рис. 3. Жидкость принимает форму колбы (Источник)

Газы – вещества, молекулы которых слабо взаимодействуют между собой и движутся хаотически, часто сталкиваясь друг с другом. Важнейшее свойство: не сохраняют объем и форму и занимают весь объем сосуда, в котором находятся.

Важно знать и понимать, каким образом осуществляются переходы между агрегатными состояниями веществ. Схему таких переходов изобразим на рисунке 4.

Рис. 4.

1 – плавление;

2 – отвердевание (кристаллизация);

3 – парообразование: испарение или кипение;

4 – конденсация;

5 – сублимация (возгонка) – переход из твердого состояния в газообразное, минуя жидкое;

6 – десублимация – переход из газообразного состояния в твердое, минуя жидкое.

На сегодняшнем уроке мы уделим внимание таким процессам, как плавление и отвердевание кристаллических тел. Начать рассмотрение таких процессов удобно на примере наиболее часто встречающихся в природе плавления и кристаллизации льда.

Если поместить лед в колбу и начать его нагревать с помощью горелки (рис. 5), то можно будет заметить, что его температура начнет повышаться, пока не достигнет температуры плавления (0oC), затем начнется процесс плавления, но при этом температура льда повышаться не будет, и только после окончания процесса плавления всего льда температура образовавшейся воды начнет повышаться.

Рис. 5. Плавление льда.

Определение.Плавление – процесс перехода из твердого состояния в жидкое. Этот процесс происходит при постоянной температуре.

Температура, при которой происходит плавление вещества, называется температурой плавления и является измеренной величиной для многих твердых веществ, а потому табличной величиной. Например, температура плавления льда равна 0oC, а температура плавления золота 1100oC.

Обратный плавлению процесс – процесс кристаллизации – также удобно рассматривать на примере замерзания воды и превращения ее в лед.

Если взять пробирку с водой и начать ее охлаждать, то сначала будет наблюдаться уменьшение температуры воды, пока она не достигнет 0oC, а затем ее замерзание при постоянной температуре (рис.

 6), и уже после полного замерзания дальнейшее охлаждение образовавшегося льда.

Рис. 6. Замерзание воды.

Если описанные процессы рассматривать с точки зрения внутренней энергии тела, то при плавлении вся полученная телом энергия расходуется на разрушение кристаллической решетки и ослабление межмолекулярных связей, таким образом, энергия расходуется не на изменение температуры, а на изменение структуры вещества и взаимодействия его частиц. В процессе же кристаллизации обмен энергиями происходит в обратном направлении: тело отдает тепло окружающей среде, а его внутренняя энергия уменьшается, что приводит к уменьшению подвижности частиц, увеличению взаимодействия между ними и отвердеванию тела.

Полезно уметь графически изобразить процессы плавления и кристаллизации вещества на графике (рис. 7).

Рис. 7.

По осям графика расположены: ось абсцисс – время, ось ординат – температура вещества. В качестве исследуемого вещества примем лед при отрицательной температуре, т. е. такой, который при получении тепла не начнет сразу плавиться, а будет нагревать до температуры плавления. Опишем участки на графике, которые представляют собой отдельные тепловые процессы:

Начальное состояние – a: нагревание льда до температуры плавления 0oC;

a – b: процесс плавления при постоянной температуре 0oC;

b – точка с некоторой температурой: нагревание образовавшейся из льда воды до некоторой температуры;

Точка с некоторой температурой – c: охлаждение воды до температуры замерзания 0oC;

c – d: процесс замерзания воды при постоянной температуре 0oC;

d – конечное состояние: остывание льда до некоторой отрицательной температуры.

Сегодня мы рассмотрели различные агрегатные состояния вещества и уделили внимание таким процессам, как плавление и кристаллизация. На следующем уроке мы обсудим главную характеристику процесса плавления и отвердевания веществ – удельную теплоту плавления.

Список рекомендованной литературы

1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. /Под ред. Орлова В. А., Ройзена И. И. Физика 8. – М.: Мнемозина.

2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.

3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

Рекомендованные ссылки на интернет-ресурсы

1. Словари и энциклопедии на Академике (Источник).

2. Курс лекций «Молекулярная физика и термодинамика» (Источник).

3. Региональная коллекция Тверской области (Источник).

Рекомендованное домашнее задание

1. Стр. 31: вопросы №1–4; стр. 32: вопросы №1–3; стр. 33: упражнения №1–5; стр. 34: вопросы №1–3. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.

2. В кастрюле с водой плавает кусок льда. При каком условии он не будет таять?

3. При плавлении температура кристаллического тела остается неизменной. А что происходит со внутренней энергией тела?

4.Опытные садовники в случае весенних ночных заморозков во время цветения плодовых деревьев вечером обильно поливают ветки водой. Почему это значительно уменьшает риск потери будущего урожая?

Источник: https://interneturok.ru/lesson/physics/8-klass/bagregatnye-sostoyaniya-vewestvab/plavlenie-i-otverdevanie-kristallicheskih-tel-grafik-plavleniya-i-otverdevaniya?trainers

Твердое тело

Плавление и кристаллизация

Нет такого твердого тела, которое сколько угодно долго противостояло бы повышению температуры. Рано или поздно твердый кусочек превращается в жидкость. Почему?

По мере возрастания температуры молекулы движутся все интенсивнее.

При нагревании возрастает не только молекулярно-кинетическая энергия тела, но и потенциальная энергия взаимодействия его атомов, поскольку при увеличении амплитуды колебаний атомы отходят друг от друга на большее расстояние и сближаются на меньшее расстояние, благодаря чему энергия взаимодействия их электрических зарядов возрастает.

С повышением температуры наступает, наконец, такой момент, когда поддержание порядка среди сильно раскачивающихся атомов становится невозможным, и с этого момента начинается разрушение кристаллической решетки, в результате чего исчезает и дальний порядок. Твердое тело плавится. Ниже приводятся температуры плавления некоторых веществ (таблица 5.3).

Таблица 5.3

ВеществоТочка плавления, °СВеществоТочка плавления, °С
Лед0
Вольфрам3380Цинк419
Золото1063Свинец327
Железо1535Олово232
Медь1083Ртуть–39

Пока плавление не началось, температура тела при нагревании растет.

Как только температура плавления будет достигнута, начинается плавление, повышение температуры прекращается, и температура остается неизменной, пока процесс плавления не закончится полностью.

При дальнейшем повышении температуры расплав нагревается как однородная жидкость. Описанные изменения температуры в процессе нагревания тела в зависимости от времени представлены на рис. 5.8.

Рис. 5.8

Как и при превращении жидкости в пар, превращение твердого тела в жидкость требует тепла. Количество теплоты, необходимое для перехода единицы массы кристалла в расплав той же температуры, называется теплотой плавления. Например, плавление одного килограмма льда требует 3,33 · 105 Дж (80 ккал).

Лед относится к числу тел, обладающих большой теплотой плавления. Плавление льда требует в 10 раз больше энергии, чем плавление той же массы свинца (имеется в виду расход энергии именно на плавление, а не нагревание до точки плавления).

Из-за большой теплоты плавления льда замедляется таяние снега весной, что и спасает от разрушительных последствий весенних паводков.

Обратный переход вещества в твердое состояние возможен как из жидкого, так и из газообразного состояния.

И в том и в другом случае такой переход осуществляется из состояния, лишенного симметрии, в состояние, в котором симметрия существует (это относится к дальнему порядку, который имеет место в кристаллах и которого нет ни в жидкостях, ни в газах).

Поэтому переход в твердое состояние должен происходить скачком при определенной температуре, в отличие от перехода жидкость–пар, который может происходить непрерывно.

Процесс образования твердого тела при охлаждении жидкости есть процесс образования кристалла (кристаллизация) и происходит он при определенной температуре – температуре кристаллизации. Так как при таком превращении энергия системы уменьшается, то такой переход должен сопровождаться выделением энергии в виде теплоты кристаллизации. Из закона сохранения энергии следует, что теплота плавления и теплота кристаллизации должны быть равны друг другу.

Процесс образования кристалла иллюстрируется на рис. 5.8 (кривая а). Участок 1 кривой а соответствует понижению температуры жидкости при отводе от нее тепла в процессе охлаждения.

Горизонтальный участок 2 показывает, что при определенном значении температуры ее понижение прекращается, несмотря на то, что отвод тепла продолжается. Спустя некоторое время температура вновь начинает понижаться. Температура, соответствующая участку 2, и есть температура кристаллизации.

Выделяющееся при кристаллизации тепло компенсирует отвод тепла от вещества, в результате чего понижение его температуры в процессе кристаллизации прекращается. После окончания процесса кристаллизации температура, теперь уже твердого тела, вновь начинает понижаться.

Отметим еще, что для начала процесса кристаллизации большую роль играет присутствие в жидкой фазе центров кристаллизации.

Возможно образование кристалла непосредственно из пара. Такая возможность реализуется и в природе, когда мы любуемся деревьями, украшенными изморозью. При этом также выделяется скрытая теплота перехода, которая, однако, всегда больше скрытой теплоты плавления.

Проделайте опыт

Источник: https://ido.tsu.ru/schools/physmat/data/res/molek/uchpos/text/m5_03.htm

Плавление

При низких температурах все вещества замерзают и превращаются в твёрдые тела, атомы и молекулы в которых упакованы так плотно, что силы их взаимного притяжения позволяют им совершать только колебательные движения около положения равновесия. Поэтому при обычных условиях твёрдые тела сохраняют объём и форму.

Процесс перехода вещества из твёрдого состояния в жидкое называют плавлением. Это процесс происходит при повышении температуры.

Весной, когда пригревает солнышко, начинают таять снежные сугробы. Мельчайшие кристаллики льда, из которых состоит снег, превращаются в воду.

Но, несмотря на то, что воздух прогревается, и его температура становится выше нуля, температура тающего снега, и температура талой воды остаются равными 00С до тех пор, пока снег не растает совсем. Всё дело в том, что плавление происходит постепенно.

Вещество при плавлении поглощает тепло, которое получает извне, и некоторое время одновременно находится и в твёрдом, и в жидком состоянии. И его температура не меняется, пока всё оно не расплавится и не станет жидким.

Что происходит при нагревании твёрдого вещества? При повышении температуры скорость колебаний частиц внутри вещества увеличивается. Следовательно, увеличивается и его внутренняя энергия.

При определённой температуре, которую называют температурой плавления, кристаллическая решётка твёрдого тела начинает разрушаться. Молекулы получают большую свободу.

Они могут перескакивать и занимать другие положения. Вещество превращается в жидкость.

Чтобы твёрдое вещество начало плавиться, его необходимо нагреть до температуры плавления. Когда оно начинает получать тепло извне, некоторое время его температура будет расти прямо пропорционально времени нагревания.

Так будет до тех пор, пока оно не начнёт плавиться. Но как только его температура станет равной температуре плавления, она перестанет изменяться и будет постоянной, пока всё вещество не превратится в жидкость.

После этого температура жидкости снова начнёт повышаться.

Но если жидкость перестанет получать тепло, она начнёт остывать. И как только её температура снизится до значения, равного температуре плавления, начинается процесс кристаллизации.

Каждое вещество имеет свою температуру плавления. При нормальном давлении (760 мм рт.ст.) лёд начинает плавиться при 0оС. Самую высокую температуру плавления среди металлов имеет вольфрам — 3422 °C. Простое вещество углерод плавится при температуре 3500 — 4500 °C. А температура плавления спирта — минус 114оС.

Кристаллизация

Когда температура жидкости понижается, её молекулы становятся менее подвижными. А силы притяжения, которые удерживают молекулы в определённом строгом порядке, характерном для твёрдого тела, увеличиваются.

Если жидкое вещество охладить до определённой температуры, то оно затвердеет. Процесс фазового перехода из жидкого состояния к твёрдому называется кристаллизацией. В отличие от плавления, когда вещество получает тепло, при кристаллизации оно его отдаёт, а его температура снижается.

Температура, при которой происходит этот процесс, называется температурой кристаллизации. Для чистого вещества температура плавления равна температуре кристаллизации.

Как и плавление, кристаллизация также происходит постепенно. Точно так же жидкость и твёрдое вещество будут иметь одинаковую температуру до тех пор, пока не затвердеет всё вещество.

Расплавленное паяльником жидкое олово застывает и становится твёрдым, кода мы убираем паяльник. Расплавленный жидкий металл, разлитый в формы, отвердевает при снижении температуры.

Кристаллизацию в природе мы наблюдаем ежегодно, когда при низкой температуре замерзает вода в водоёмах, на землю вместо капелек дождя падают снежинки.

График изменения агрегатного состояния вещества

Процессы плавления и кристаллизации хорошо видны на графике, показывающем, как меняется агрегатное состояние вещества в зависимости от температуры.

Измерим температуру куска льда. Термометр показывает -20оС. Положим лёд в ведро и занесём в помещение. Постепенно он начнёт таять, а его температура — повышаться. Когда на термометре будет 0оС, дальнейшего повышения температуры не произойдёт, пока не растает весь лёд. Когда же он весь превратится в воду, вода в ведре начнёт нагреваться, пока не достигнет комнатной температуры.

Вынесем ведро с водой на мороз. Вода продолжит остывать. Когда её температура опустится до 0оС, она начнёт превращаться в лёд. А температура не будет изменяться, пока не затвердеет вся вода. И только после этого она снова начнёт постепенно понижаться до значения, равного температуре воздуха.

С помощью подобного графика можно отобразить изменения агрегатного состояния любого вещества.

Источник: http://ency.info/materiya-i-dvigenie/molekulyarno-kineticheskaya-teoriya/356-plavlenie-i-kristallizatsiya

Молекулярная физика. Плавление и кристаллизация

Плавление и кристаллизация

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением. Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристаллизацией. Температура, при которой вещество кристаллизуется, называется температурой кристаллизации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени tнач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ).

Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает го­реть и тепло, следовательно, подводится.

Процессу плавления соответствует горизонтальный учас­ток графика ВС. Только после того как весь лед расплавится и превратится в воду, температура снова начинает подниматься (участок CD). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е.

тепло отводят (для этого можно сосуд с водой по­местить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится.

Это идет процесс кристаллизации воды — образования льда (гори­зонтальный участок EF). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK).

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается.

На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким.

Средняя кинетическая энергия моле­кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD) означает увеличение кинетической энер­гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку.

Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер­девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре­вращаясь в жидкость (участок ВС). Внутренняя энергия у жидкости больше, чем у твердого тела.

При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром, молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С. Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается.

Это хорошо известно многим птицам. Неда­ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера.

Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Плавление аморфных веществ

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются.

При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит.

Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно.

Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения.

Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое.

 Теплота плавления равна тому количеству теплоты, которое выделяется при кристалли­зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер­гии его молекул.

Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

Q = km.

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч­ное топливо (уголь, нефть, бензин) содержит углерод.

При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц.

Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:

Q = qm.

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Источник: https://www.calc.ru/Molekulyarnaya-Fizika-Plavleniye-I-Kristallizatsiya.html

Плавление и кристаллизация – FIZI4KA

Плавление и кристаллизация

ОГЭ 2018 по физике ›

1.Плавлением называется процесс превращения вещества из твёрдого состояния в жидкое.

Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру -10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.

Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления. Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.

2. В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул.

Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул.

Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.

Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.

3.Процесс перехода вещества из жидкого состояния в твёрдое состояние называют кристаллизацией. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул.

При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние.

Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.

На рисунке 76 приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления (АБ), плавления (БВ), нагревания вещества в жидком состоянии (ВГ), охлаждения жидкого вещества (ГД), кристаллизации (ДЕ) и последующего охлаждения вещества в твёрдом состоянии (ЕЖ).

4. Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.

Количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления, называют удельной теплотой плавления.

Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.

Удельную теплоту плавления обозначают буквой ​\( \lambda \)​. Единица удельной теплоты плавления — ​\( [\lambda] \)​ = 1 Дж/кг.

Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9·105 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9·105 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.

Чтобы вычислить количество теплоты ​\( Q \)​, необходимое для плавления вещества массой ​\( m \)​, взятого при температуре плавления, следует удельную теплоту плавления ​\( \lambda \)​ умножить на массу вещества: ​\( Q=\lambda m \)​.

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.

  • Примеры заданий
  • Ответы

Часть 1

1. В процессе плавления кристаллическое твёрдое тело становится жидкостью. При этом

1) уменьшается внутренняя энергия тела 2) увеличивается средняя кинетическая энергия молекул 3) увеличивается внутренняя энергия тела

4) уменьшается средняя кинетическая энергия молекул

2. В одном сосуде находится лёд при температуре 0 °С, в другом — такая же масса воды при температуре 0 °С. Внутренняя энергия льда

1) равна внутренней энергии воды 2) больше внутренней энергии воды 3) меньше внутренней энергии воды

4) равна нулю

3. На рисунке представлен график зависимости температуры от времени для процесса нагревания льда. Процессу плавления льда соответствует участок графика

1) AB 2) BC 3) CD

4) DE

4. На рисунке приведён график зависимости температуры некоторого вещества от времени. Первоначально вещество находилось в жидком состоянии. Какая точка графика соответствует началу процесса отвердевания вещества?

1) А 2) Б 3) В

4) Г

5. На рисунке приведён график зависимости температуры некоторого вещества от времени. Первоначально вещество находилось в жидком состоянии. Какая точка графика соответствует окончанию процесса отвердевания вещества?

1) А 2) Б 3) В

4) Г

6. На рисунке изображён график зависимости температуры тела от времени. Первоначально тело находилось в жидком состоянии. Какой процесс характеризует отрезок БВ?

1) нагревание 2) охлаждение 3) плавление

4) кристаллизацию

7. На рисунке представлен график зависимости температуры ​\( t \)​ от времени ​\( \tau \)​ при непрерывном нагревании и последующем непрерывном охлаждении вещества, первоначально находящегося в твёрдом состоянии. В каком состоянии находится вещество в точке Е?

1) только в жидком 2) только в твёрдом 3) только в газообразном

4) часть — в жидком, часть — в твёрдом

8. Удельную теплоту плавления можно рассчитать по формуле

1) ​\( \frac{Q}{m(t_2-t_1)} \)​
2) \( \frac{Q}{m} \)
3) \( \frac{Q}{(t_2-t_1)} \)
4) ​\( \lambda m \)​

9. Чему равно количество теплоты, которое необходимо затратить на полное превращение 2 кг свинца в жидкое состояние, если его начальная температура 27 °С?

1) 50 кДж 2) 78 кДж 3) 128 кДж

4) 15000 кДж

10. Какое количество теплоты выделяется при превращении 500 г воды, взятой при 0 °С, в лёд при температуре -10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

1) 10500 Дж 2) 175 500 Дж 3) 165 000 Дж

4) 10500 Дж

11. На рисунке представлен график зависимости температуры некоторого вещества от полученного количества теплоты. Первоначально вещество находилось в твёрдом состоянии.

Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Удельная теплоёмкость вещества в твёрдом состоянии равна удельной теплоёмкости вещества в жидком состоянии. 2) Температура кипения вещества равна tx. 3) В точке В вещество находится в твёрдом состоянии. 4) В процессе перехода из состояния Б в состояние В внутренняя энергия вещества увеличивается.

5) Участок графика ГД соответствует процессу плавления вещества.

12. На рисунке представлены графики зависимости температуры от полученного количества теплоты для двух веществ одинаковой массы. Первоначально каждое из веществ находилось в твёрдом состоянии.

Используя данные графиков, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Удельная теплоёмкость первого вещества в твёрдом состоянии меньше удельной теплоёмкости второго вещества в твёрдом состоянии.

2) В процессе плавления первого вещества было израсходовано большее количество теплоты, чем в процессе плавления второго вещества. 3) Представленные графики не позволяют сравнить температуры кипения двух веществ.

4) Температура плавления второго вещества выше.

5) Удельная теплота плавления у второго вещества больше.

Часть 2

13. Зависимость температуры 1 л воды от времени при непрерывном охлаждении представлена на графике. Какое количество теплоты выделилось при кристаллизации воды и охлаждении льда?

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/plavlenie-i-kristallizacija.html

Booksm
Добавить комментарий