Основные геодезические приборы

ГЕОДЕЗИ́ЧЕСКИЕ ИНСТРУМЕ́НТЫ

Основные геодезические приборы

Авторы: Х. К. Ямбаев

ГЕОДЕЗИ́ЧЕСКИЕ ИНСТРУМЕ́НТЫ, при­бо­ры для ре­ше­ния на­уч­ных, ин­же­нер­но-тех­нич. и про­из­вод­ст­вен­ных за­дач в гео­де­зии. Г. и.

при­ме­ня­ют­ся для из­ме­рения рас­стоя­ний, уг­лов, пре­вы­ше­ний; для вер­ти­каль­но­го и на­клон­но­го про­ек­ти­ро­ва­ния; для оп­ре­де­ле­ния со­ос­но­сти, створ­но­сти, за­да­ния на­прав­ле­ний и др. Г. и.

ис­поль­зу­ют так­же в ка­че­ст­ве кон­троль­но-из­ме­рит. при­бо­ров при вы­пус­ке, экс­плуа­та­ции и ис­пы­та­ни­ях др. тех­нич. средств.

Г. и. при­ме­ня­лись ещё в 13–12 вв. до н. э. при строи­тель­ст­ве оро­си­тель­ных ка­на­лов в Ва­ви­ло­не, Егип­те и Ки­тае. Ге­рон Алек­сан­д­рий­ский (1 в. до н. э.

) пред­ло­жил уг­ло­мер­ный при­бор с ди­оп­тра­ми и по­во­рот­ной ли­ней­кой; Гип­парх соз­дал ас­т­ро­ля­бию, ко­то­рая по пра­ву счи­та­ет­ся про­об­ра­зом тео­до­ли­та. Ко 3–2 вв. до н. э.

от­но­сят­ся пер­вые ин­ст­ру­мен­таль­ные оп­ре­де­ле­ния ок­руж­но­сти Зем­ли, вы­пол­нен­ные Эра­то­с­фе­ном при по­мо­щи гно­мо­на.

В 1576 И. Га­бер­мель (Гер­ма­ния) раз­ра­бо­тал уг­ло­мер­ный при­бор, снаб­жён­ный бус­со­лью и дей­ст­во­вав­ший по прин­ци­пу тео­до­ли­та. В 1609 Г. Га­ли­лей соз­дал зри­тель­ную тру­бу, со­дер­жа­щую стек­лян­ные лин­зы. В 1611 И. Ке­п­лер пред­ло­жил два ва­ри­ан­та зри­тель­ной тру­бы с сет­кой ни­тей: с пря­мым (зем­ная тру­ба) и об­рат­ным (ас­тро­но­мич.

тру­ба) изо­бра­же­ни­ем. В 1631 П. Вер­нье (Фран­ция) из­го­то­вил вер­нь­ер. В сер. 18 в. Дж. Рам­сден (Ве­ли­кобри­та­ния) изо­брёл от­счёт­ный мик­ро­скоп с вин­то­вым мик­ро­мет­ром для сня­тия от­счё­тов по лим­бу. В 1810 нем. оп­тик-ме­ха­ник Г. Рей­хен­бах ввёл в зри­тель­ную тру­бу Г. и.

даль­но­мер­ные ни­ти для оп­ре­де­ле­ния на­клон­ных рас­стоя­ний по вер­ти­каль­ной рей­ке. В нач. 19 в. поя­ви­лись оп­тич. даль­но­ме­ры с ба­зи­сом у при­бо­ра (без­ре­еч­но­го ти­па), ра­бо­таю­щие на ос­но­ве прин­ци­па двой­но­го изо­бра­же­ния. В соз­да­ние но­вых Г. и. боль­шой вклад вне­сли рос. учё­ные, ин­же­неры, изо­бре­та­те­ли: М. В. Ло­мо­но­сов, В. Я.

Стру­ве (см.Стру­ве), В. Ф. Гербст, Д. Д. Ге­део­нов, К. И. Тен­нер и др.

В ос­но­ву клас­си­фи­ка­ции совр. Г. и. по­ло­же­ны сле­дую­щие при­зна­ки: функ­цио­наль­ное на­зна­че­ние, об­ласть при­ме­не­ния, фи­зич. при­ро­да но­си­те­лей ин­фор­ма­ции, ус­той­чи­вость к транс­пор­ти­ро­ва­нию, кон­ст­рук­тив­ные осо­бен­но­сти. По точ­но­сти из­ме­ре­ний Г. и. раз­де­ля­ют на пре­ци­зи­он­ные (вы­со­ко­точ­ные), точ­ные и тех­ни­че­ские.

Ра­бо­та с Г. и. мо­жет вы­пол­нять­ся при ус­та­нов­ке их на шта­тив, сто­лик гео­де­зи­че­ско­го зна­ка, столб (тур). Для не­ко­то­рых Г. и. не­об­хо­ди­мо при­ме­не­ние эк­ра­на, за­щи­щаю­ще­го от пря­мо­го воз­дей­ст­вия сол­неч­ной ра­диа­ции и ат­мо­сфер­ных осад­ков.

Осн. тре­бо­ва­ния, предъ­яв­ляе­мые к Г. и., сво­дят­ся к обес­пе­че­нию за­дан­ной точ­но­сти и ско­ро­сти из­ме­ре­ний, ста­биль­но­сти ре­зуль­та­тов из­ме­ре­ний в разл. усло­ви­ях, про­сто­те и удоб­ст­ву в об­ра­ще­нии, ком­пакт­но­сти, оп­ти­маль­ной ма­те­риа­ло- и энер­го­ём­ко­сти, транс­пор­та­бель­но­сти, при­год­но­сти к ре­мон­ту, эс­те­тич­но­сти и эр­го­но­мич­но­сти.

При­бо­ры для из­ме­ре­ния рас­стоя­ний наи­бо­лее мно­го­чис­лен­ны и раз­но­об­раз­ны по кон­ст­рук­ции. К ним от­но­сят­ся мер­ные при­бо­ры, ос­но­ван­ные на прин­ци­пе от­кла­ды­ва­ния ра­бо­чей ме­ры (про­во­ло­ки, лен­ты, ру­лет­ки, жез­лы, нут­ро­ме­ры, мет­рш­то­ки), оп­ти­ко-ме­ха­нич.

дально­ме­ры ви­зу­аль­но­го ти­па (оп­ти­че­ские и двой­но­го изо­бра­же­ния), све­то­даль­но­ме­ры, ра­дио­даль­но­ме­ры. Оп­ре­де­лять рас­стоя­ния мож­но пу­тём гео­мет­рич. по­строе­ний на ме­ст­но­сти (напр., три­ан­гу­ля­ции), ко­гда из­ме­ря­ют од­ну или не­сколь­ко из сто­рон гео­мет­рич.

по­строе­ния, уг­лы ме­ж­ду все­ми сто­ро­на­ми, а за­тем вы­чис­ля­ют все ос­таль­ные сто­ро­ны, оп­ре­де­ляя та­ким об­ра­зом рас­стоя­ния до не­дос­туп­ных объ­ек­тов. Оп­тич.

даль­но­ме­ры ис­поль­зу­ют ре­ше­ние вы­тя­ну­то­го тре­уголь­ни­ка, с из­вест­ным ко­рот­ким ба­зи­сом и из­ме­рен­ным ма­лым па­рал­лак­ти­че­ским уг­лом.

Прин­цип дей­ст­вия све­то­даль­но­ме­ров сво­дит­ся к из­ме­ре­нию вре­ме­ни про­хо­ж­де­ния све­то­во­го им­пуль­са до от­ра­жа­те­ля и об­рат­но и вы­чис­ле­нию рас­стоя­ний с учё­том зна­ния ско­ро­сти све­та в ре­аль­ной сре­де. В ка­че­ст­ве ис­точ­ни­ка све­та ис­поль­зу­ют­ся по­лу­про­вод­ни­ко­вые ла­зе­ры.

К та­ким при­бо­рам от­но­сят­ся оп­тич. ни­ве­ли­ры с уров­нем и са­мо­ус­та­нав­ли­ваю­щей­ся ви­зир­ной ли­ни­ей, элек­трон­ные ни­ве­ли­ры, ба­до­мет­рич. ни­ве­ли­ры, гид­ро­ста­тич. и гид­ро­ди­на­мич. ни­ве­ли­ры, мик­ро­ни­ве­ли­ры и др.

Скон­ст­руи­ро­ва­ны ла­зер­ные ни­ве­ли­ры, в ко­то­рых ви­зир­ная ли­ния за­да­ёт­ся пуч­ком ла­зер­но­го из­лу­че­ния, и ни­ве­ли­ры ти­па «ла­зер­ная плос­кость» с ав­то­ма­тич. раз­вёрт­кой лу­ча в го­ри­зон­таль­ной или вер­ти­каль­ной плос­ко­сти. В со­че­та­нии с элек­трон­ны­ми дат­чи­ка­ми на рей­ках или др.

ви­зир­ных уст­рой­ст­вах эти при­бо­ры обес­пе­чи­ва­ют вы­со­кую эф­фек­тив­ность гео­де­зич. из­ме­ре­ний.

Гид­ро­ста­тич. ни­ве­ли­ры ста­цио­нар­но­го и пе­ре­нос­но­го ти­пов ис­поль­зу­ют­ся при на­блю­де­нии за по­ло­же­ни­ем тех­но­ло­гич. обо­ру­до­ва­ния и стро­итель­ных кон­ст­рук­ций в пе­ри­од на­лад­ки и экс­плуа­та­ции со­ору­же­ний.

Вы­пус­ка­ют­ся элек­трон­ные (циф­ро­вые) ни­ве­ли­ры с ко­до­вы­ми рей­ка­ми, по­зво­ляю­щие све­сти к ми­ни­му­му субъ­ек­тив­ные по­греш­но­сти на­блю­да­те­ля, на­ка­п­ли­вать ре­зуль­та­ты по­ле­вых из­ме­ре­ний в па­мя­ти при­бо­ра и пе­ре­да­вать их в ком­пь­ю­тер.

При­бо­ры для из­ме­ре­ния уг­лов вклю­ча­ют в се­бя оп­ти­че­ские, элек­трон­ные и ги­ро­ско­пич. тео­до­ли­ты, та­хео­мет­ры, эке­ры, эк­ли­мет­ры, бус­соль­ные при­бо­ры и го­нио­мет­ры. Тео­до­ли­ты по­зво­ля­ют оп­ре­де­лять на­прав­ле­ния, го­ри­зон­таль­ные и вер­ти­каль­ные уг­лы.

При этом исполь­зу­ет­ся ра­бо­чая ме­ра – го­ри­зон­таль­ный и вер­ти­каль­ный лим­бы с гра­дус­ны­ми (360°) или де­ци­маль­ны­ми (гра­до­вы­ми) (400g) де­ле­ния­ми.

Cозданы элек­трон­ные та­хео­мет­ры и ла­зер­ные ру­лет­ки, с по­мо­щью ко­то­рых в по­ле­вых ус­ло­ви­ях мож­но из­ме­рять го­ри­зон­таль­ные и вер­ти­каль­ные уг­лы и рас­стоя­ния, ав­то­ма­ти­че­ски вы­пол­нять не­об­хо­ди­мые вы­чис­ле­ния по пла­но­во­му и вы­сот­но­му по­ло­же­нию оп­ре­де­ляе­мых то­чек ме­ст­но­сти.

Рас­ши­ре­ние объ­ё­мов ра­бот в при­клад­ной гео­де­зии при­ве­ло к соз­да­нию ря­да спе­циа­ли­зир. при­бо­ров. Так, для гео­де­зич. обес­пе­че­ния строи­тель­ст­ва и экс­плуа­та­ции инж.

со­ору­же­ний раз­ра­бо­та­ны при­бо­ры вер­ти­каль­но­го про­ек­ти­ро­ва­ния то­чек с од­но­го го­ри­зон­та на дру­гой, ис­поль­зуе­мые при мно­го­этаж­ном строи­тель­ст­ве и мон­та­же тех­но­ло­гич.

обо­ру­до­ва­ния.

Прин­цип дей­ст­вия створ­ных при­бо­ров (али­нио­мет­ров) и при­бо­ров для кон­тро­ля пря­мо­ли­ней­но­сти и со­ос­но­сти ос­но­ван на за­ко­не пря­мо­ли­ней­но­го рас­про­стра­не­ния све­та.

Ре­фе­рент­ной пря­мой яв­ля­ет­ся ви­зир­ная ось зри­тель­ной тру­бы, ось сим­мет­рии ла­зер­но­го пуч­ка све­та или вер­ти­каль­ная плос­кость, в кото­рой рас­по­ла­га­ет­ся ось на­тя­ну­той стру­ны.

Аль­тер­на­тив­ный под­ход к вы­пол­не­нию гео­де­зических из­ме­ре­ний со­сто­ит в ис­поль­зо­ва­нии про­стран­ст­вен­ных ме­то­дов из­ме­ре­ний с при­ме­не­ни­ем в ка­че­ст­ве опор­ных то­чек мгно­вен­ных по­ло­же­ний ис­кус­ст­вен­ных спут­ни­ков Зем­ли. Из­ме­рительные ком­плек­сы, ба­зи­рую­щие­ся на этих прин­ци­пах, на­зы­ва­ют спут­ни­ко­вы­ми сис­те­ма­ми по­зи­цио­ни­ро­ва­ния (GPS и др.).

Источник: https://bigenc.ru/physics/text/2351687

Современные геодезические приборы

Основные геодезические приборы

12.1. Электронные тахеометры. Современный парк геодезических приборов состоит, помимо традиционных оптических инструментов, из электронных тахеометров, цифровых нивелиров, лазерных дальномеров, лазерных уровней, лазерных сканеров.

Электронный тахеометр представляет собой кодовый теодолит с дальномером и мини-ЭВМ.

Электронный тахеометр обеспечивает цифровую индикацию измеряемых величин: горизонтальных и вертикальных углов, наклонных расстояний, горизонтальных расстояний, превышений, отметок, высот, приращений координат, координат, вывод результатов на дисплей и автоматическую обработку результатов измерений по заложенным в мини ЭВМ программам.

Увеличение числа программ расширяет диапазон работы прибора и область его применения, повышает оперативность и безошибочность работы. Основными производителями электронных тахеометров являются Sokkia, Topcon, Nikon, Pentax (Япония), Leica (Швейцария), Spectra Precision (Швеция/Германия).

Современные тахеометры, предлагаемые потребителю, сильно разнятся по количеству функций, что позволяет выбирать приборы, наиболее подходящие для тех или иных видов работ.

Точность современных тахеометров, как правило, не ниже 5-6˝, иногда заявляемая производителями точность менее 1˝, как правило, не достижима в реальных условиях из-за влияния внешней среды и различных ошибок (центрирования, редуцирования и т.д.).

Основным неудобством является, как правило, маленькая клавиатура с небольшим набором клавиш, каждая из которых выполняет несколько функций. Однако в последнее время появились модели с активным экраном, позволяющим управлять тахеометром без клавиатуры.

При создании обоснования тахеометрических съёмок при помощи электронных тахеометров расстояния между точками могут быть значительно увеличены. Это связано с возможностью определять значительные расстояния с малой погрешностью, а также с высокой точностью измерения горизонтальных и вертикальных углов. При работе на каждой точке выполняют следующие операции:

  • центрируют тахеометр,
  • при помощи цилиндрического уровня приводят прибор в рабочее положение,
  • устанавливают опорное вертикальное направление (ориентируя прибор на одну и ту же точку при двух положениях круга, нажимая кнопки «Z» и «Отсчёт»),
  • устанавливают опорное горизонтальное направление (ориентируют прибор, при двух положениях круга нажимая кнопки «β» и «Отсчёт»),
  • вводят в память тахеометра высоту съёмочной точки, плановые координаты точки, дирекционный угол опорного направления, температуру и давление,
  • высоту отражателя телескопической вехи.

Приведём характеристики некоторых электронных тахеометров.

Sokkia SET2X: точность измерения углов — 2˝ (отсчёты берутся по диаметрально противоположным сторонам вертикального и горизонтального кодовых дисков), увеличение — 30˟, компенсатор двухосевой, дальность измерения расстояния без отражателя/с отражателем – 500/5000 м, точность измерения расстояния без отражателя/с отражателем – (3+2×10-6D)/(2+2×10-6D), клавиатура – 32 клавиши + цветной сенсорный дисплей.

Рис. 44. Электронный тахеометр Sokkia SET2X.

SET630RK3-33: точность измерения углов — 6˝ (отсчёты берутся по диаметрально противоположным сторонам вертикального и горизонтального кодовых дисков), увеличение — 26˟, компенсатор двухосевой, дальность измерения расстояния без отражателя/с отражателем – 350/5000 м, точность измерения расстояния без отражателя/с отражателем – (3+2×10-6D)/(2+2×10-6D), клавиатура – 27 клавиш на каждой стороне (SET630RK— односторонний) + двусторонний дисплей.

Рис. 45. SET630RK3-33.

SRX5: точность измерения углов — 5˝ (отсчёты берутся по диаметрально противоположным сторонам вертикального и горизонтального кодовых дисков), увеличение — 30˟, дальность измерения расстояния без отражателя/с отражателем – 500/5000 м, точность измерения расстояния без отражателя/с отражателем – (3+2×10-6D)/(2+2×10-6D), клавиатура – 32 клавиши + цветной сенсорный дисплей.

Рис. 46. SRX5.

12.2. Цифровые нивелиры. Отличием цифровых нивелиров от обычных оптических является наличие электронного устройства, снимающего отсчёты по рейке со специальным штрих-кодом. Современные цифровые нивелиры могут быть использованы при нивелировании любой точности.

При нивелировании II класса используют кодовые рейки с инварной полосой. Нивелирование производят в прямом и обратном направлениях. При нивелировании в прямом направлении порядок наблюдений на станции следующий. На нечётной станции: первый приём – отсчёт по задней рейке, отсчёт по передней; второй приём – отсчёт по передней, отсчёт по задней.

На чётной станции: первый приём – отсчёт по передней рейке, отсчёт по задней; второй – отсчёт по задней, отсчёт по передней. Между 1-м и 2-м приемами измерений рекомендуется изменять горизонт прибора на высоту не менее 3 см. Максимальная длина луча визирования – 40 м. Высота визирного луча над подстилающей поверхностью должна быть не менее 0,5 м.

В отдельных случаях при длине луча визирования до 30 м разрешается выполнять наблюдения при высоте луча визирования более 0,3 м. Неравенство расстояний от нивелира до реек на станции допускают не более 1 м. Накопление этих неравенств по секции (части хода, на которой проводятся измерения) разрешается не более 2 м.

При каждом наведении на рейку отсчеты по средней нити снимаются дважды. Расхождения между превышениями в приемах не должны превышать 0,7 мм. При нивелировании III класса используют кодовые рейки с инварной полосой или кодовые складные рейки.

Порядок наблюдения на станции: первый приём – отсчёт по задней рейке, отсчёт по передней; второй приём – отсчёт по передней, отсчёт по задней. Между 1-м и 2-м приемами измерений рекомендуется изменять горизонт прибора на высоту не менее 3 см. Максимальная длина луча визирования – 70 м. Высота визирного луча над подстилающей поверхностью должна быть не менее 0,3 м.

Неравенство расстояний от нивелира до реек на станции допускают не более 2 м. Накопление этих неравенств по секции разрешается не более 5 м. при каждом наведении на рейку отсчёт снимается один раз. Расхождения между превышениями в приемах не должны превышать 3 мм.

Требования к нивелирам, предназначенным для нивелирования того или иного класса определяются «Инструкцией по нивелированию I, II, III и IV классов»

Наименование характеристики Единицы измерений Нормы по классам
I II III IV
Увеличение зрительной трубы, не менее крат 20-22
Коэффициент нитяного дальномера 100±1
Диапазон работы компенсатора, не менее угл. мин ±8 ±15
СКП установки линии визирования, не более угл. сек 0,2 0,5
Инструментальная СКП измерения превышения на 1 км хода, не более мм 0,5 1,5 3,0 6,0

Общие требования к нивелирам, предназначенным для нивелирования I, II, III, IV классов.

Рис. 47. Цифровой нивелир SDL30.

В качестве примера рассмотрим параметры цифрового нивелира SDL30. Точность измерения превышений (на 1 км двойного хода) – 1 мм, увеличение зрительной трубы – 32˟, точность измерения расстояний – 10-20 мм, диапазон измерений – от 1,6 до 100 м, клавиатура – 8 клавиш, диапазон работы компенсатора – 15˝, изображение прямое, память на 2000 измерений.

12.3 Приборы вертикального проектирования. В настоящее время используются как оптические, так и лазерные приборы вертикального проектирования. Наиболее распространённым оптическим прибором является FG-L100 – современный аналог выпускавшегося фирмой «Карл Цейсс» прибора PZL.

Тщательно отцентрированный, он позволяет осуществлять передачу точек на монтажный горизонт с погрешностью 1 мм на 100 м. Его характеристики: увеличение зрительной трубы – 31,5˟, диапазон работы компенсатора — ±10˝, предел фокусирования оптического центрира – 0,5 м, точность центрирования на высоту 1,5 м – 0,5 мм, цена деления цилиндрического уровня – 10˝, угол поля зрения – 1,3°.

Для сравнения: лазерный прибор вертикального проектирования LV1 фирмы Sokkia даёт погрешность 2,5 мм на 100 м.

Его характеристики: длина волны лазера 635 нм; класс лазера -2 (IEC 82501 1993), II (CFR21); диаметр лазерного пятна на расстоянии 100м (в зенит) – 7 мм; диаметр лазерного пятна на расстоянии 5м (в надир) – 2 мм; диапазон работы компенсатора – ±10˝; предел измерений в зенит – 100 м; предел измерений в надир – 5 м; точность установки отвесной линии в зенит — ±5˝; точность установки отвесной линии в надир — ±1˝.

Рис. 48. Прибор вертикального проектирования FG-L100.

Рис. 49. Прибор вертикального проектирования LV1.

12.4 Лазерные дальномеры. Повсеместное применение получили лазерные рулетки, привлекательные простотой использования, доступной ценой и высокой точностью.

Большинство из них отличаются только дальностью измерений (с отражателем или без) и наличием некоторых дополнительных опций – например, датчика угла наклона или интерфейса. В качестве стандартной лазерной рулетки можно привести пример DISTO D3 или D5 фирмы Leica.

Их точность — ±1 мм, дальность измерения – от 0,05 до 100 м (у D5 – до 200 м), память на 20 измерений, датчик угла наклона.

Рис. 50. Лазерный дальномер DISTO D3 (габариты 125x45x24 мм).

Рис. 51. Лазерный дальномер DISTO D5 (габариты 143.5x55x30 мм).

12.5 Лазерные сканирующие системы. Не так давно появившиеся лазерные сканирующие системы произвели подлинный переворот в процессе геодезических измерений. Главные достоинства наземного лазерного сканирования – высокая скорость и низкие трудозатраты. Достаточно сказать, что при реконструкции Манежа в г.

Москва после пожара все внутренние обмеры были произведены за один рабочий день с двух постановок прибора. Принцип, положенный в основу лазерного сканирования, заключается в определении пространственных координат точек местности. Он реализуется измерением расстояний до точек местности с помощью лазерного безотражательного дальномера.

Луч лазера проходит через некоторые определённые точки, называемые узлами сканирующей матрицы. Определяется расстояние до точки по данному направлению и определяется её координата в условной системе координат сканера. Измерения производятся с очень большой скоростью – до нескольких тысяч точек в секунду.

В результате измерений формируется набор точек с вычисленными координатами – облако точек, или скан. Несколько различных сканов требуют «сшивки», которую осуществляют, размещая на снимаемом объекте мишени, координаты которых определяются во внешней (например, местной) системе координат, и которые попадают одновременно в соседние сканы.

Для перерасчёта координат точек из внутренней во внешнюю требуется наличие как минимум трёх мишеней с известными координатами.

Учитывая весьма высокую стоимость оборудования, основным в работе с лазерными сканерами является тщательное планирование работ, позволяющее избежать простоя дорогостоящего оборудования. Так, при рекогносцировке необходимо определить места стояния прибора, стремясь свести их количество к минимуму, составить схему расположения мишеней.

Одной из последних моделей лазерных сканеров является Topcon GLS-1000. Это импульсный лазерный сканер, созданный для автономной работы (он не требует использования компьютера, внешних аккумуляторов и проводов).

Измеряемое расстояние – до 330 м (при отражающей способности цели 90%), точность измерения расстояний – 4 мм/ 150м, угловая точность – 6˝, скорость сканирования – 3000 точек в секунду, плотность сканирования – 1 мм между точками на 100 м.

Рис. 52. Лазерный сканер Topcon GLS-1000.

[1] Юстировка по возможности должна проводиться в мастерской.

[2] Среднее из этих отсчётов (КП+КЛ/2) свободно от влияния этой погрешности.

[3] В настоящее время практически не применяется.

[4] вертикаль – это линия пересечения плоскости снимка с плоскостью, проходящей через центр проекции перпендикулярно к плоскости снимка и горизонтальному участку земной поверхности.

Предыдущая12345678910Следующая

Дата добавления: 2015-12-26; просмотров: 11027; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/6-29154.html

Приборы, используемые в геодезии

Основные геодезические приборы

Когда люди проходят мимо геодезистов, работающих на улицах, стройках, на садовых участках, многие задаются вопросом- а что это за «тренога» такая, куда посмотреть в прибор, а что я там увижу? Как называется этот прибор, и зачем он здесь стоит? Часто-это праздное любопытство. Иногда просто пытаются вникнуть и понять, как это действует и что меряет. Некоторые просто  работают в смежных отраслях и хотят расширить свой кругозор.

Существуют очень сложные системы и сверхточные приборы, которые редко используются, и в обычной жизни инженера Вы с ними не встретитесь.  Попробуем вкратце рассказать про приборы, которые, в основном, используют геодезисты в прикладной геодезии. Про те штативы и «палочки», с которыми ходят геодезисты.

»   Что измеряют геодезические приборы?

»   Краткое описание приборов:

         »   Трубо-кабелеискатель

Небольшой исторический очерк
Известный российский профессор-геодезист, который жил и работал на рубеже XIX и XX столетий, генерал-лейтенант Василий Васильевич Витковский свою специальность называл одной из самых полезных областей знания. По его мнению, изучать форму и поверхность Земли человечеству необходимо настолько же, насколько каждому из нас — в подробностях узнать собственный дом.Неудивительно, что геодезия всё время развивается и уже давно нацелилась не только на нашу отдельную планету, а и на всю Солнечную систему и даже галактику в перспективе. Вместе с развитием цивилизации эта наука очень усложнилась, разделилась на несколько дисциплин — и, естественно, начала ставить перед собой и решать всё более сложные задачи. Причём как теоретические по причине роста количества и масштабов исследований, так и практические — из-за увеличения числа уникальных инженерных конструкций и сооружений. Это не могло не привести, с одной стороны к повышению требований к точности измерений, а с другой — к усложнению оборудования. Особенно сильно это стало заметно в последние 10-20 лет в связи со стремительным развитием электроники и началом широкого применения лазеров.Подробнее про геодезию, как науку можно узнать в специальной статье, посвященной этой познавательной теме.

Измерение расстояний

Самая простая геодезическая задача — это измерение длины линии. Ленты и рулетки, длинномеры и геометрического типа дальномеры — это приборы, с помощью которых измеряют короткие линии со сравнительно невысокой точностью.

А вот если речь идёт об измерениях высокоточных или базисных, а также о значительных расстояниях, понадобится уже дальномер — световой, электромагнитный, радиоволновый или лазерный.

Особенно распространены такие приборы в космической и морской геодезии.

Измерение превышений

Для измерения высот и их разницы используются нивелиры и профилографы. Нивелиры используют вместе со специальными нивелирными рейками. Существуют оптические, цифровые и лазерные нивелиры. Причём последние нельзя путать с просто лазерными уровнями, которые отличаются не только конструктивно, но и  по обеспечению точности.

Измерение углов

Измерение углов очень долго обеспечивалось с помощью довольно простых инструментов  — транспортиров, экеров и эклиметров.

Более сложным прибором является буссоль — подвид компаса, которым можно измерить магнитный азимут, то есть угол, на который линия отклоняется от направления на север магнитного меридиана.

Основной современный прибор для измерения углов — это теодолит, довольно сложный оптический прибор, позволяющий добиваться очень высокой точности измерений.

Определение местоположения

В стародавние времена определение местоположения больше всего волновало моряков — спросить не у кого, да и сухопутных ориентиров практически нет.

Было создано много специфических приборов для навигации и определения широты своего местоположения -астролябия, секстант, квадрант и другие раритеты. В настоящее время никого не удивишь «навигаторами» на различных электронных устройствах.

Это стало возможно с появлением специальных навигационных спутников, которые дают возможность определения непосредственно местоположения объекта на местности.

Давно не секрет — прогресс не стоит на месте. Время, когда измеряли все эти величины по отдельности, да еще и «дедовскими» приборами, ушло безвозвратно в прошлое. В рамках этой статьи не будем рассматривать буссоли, кипрегели и стальные рулетки- только актуальное и наиболее распространенное геодезическое оборудование.

-Тахеометр

Понятное дело, измерять углы, длины и высоты разными приборами — не слишком удобно и довольно долго к тому же. Поэтому для тех случаев, когда нужно проводить несколько типов измерений, существуют приборы комбинированные, такие как тахеометр. Это наиболее современный электронно-оптический прибор, который позволяет измерять любые длины, разницы высот и горизонтальные углы.

В большинстве случаев этого прибора достаточно для фиксации всех необходимых измерений на объекте, при условии, что точность прибора соответствует виду работ.

Именно подобные приборы, в большинстве своем, Вы можете видеть на стройплощадках, на участках соседей и вдоль дорог нашей страны.

Тахеометры на данном этапе развития технологий являются наиболее востребованными и универсальными приборами для проведения геодезических измерений.

Во многих случаях нет необходимости в более громоздких и намного более дорогих и сложных в использовании тахеометрах. В строительстве зданий, дорог и других сооружений после планового определения местоположения объекта нужно лишь контролировать высоту, уровень и вертикальность поверхностей.

С этими функциями легко справляется нивелир. Его основная задача — измерять превышения между объектами. Бывают нивелиры электронные, оптические, лазерные, с автоустановкой и прочие.

Во многих случаях нивелиры использовать удобнее и целесообразнее —например, при наблюдении за осадками зданий и сооружений используются высокоточные нивелиры с автоустановкой, нежели тахеометры- опять же из-за дороговизны последних.

Подводя некую черту по использованию нивелиров, можно сказать, что чаще всего они используются непосредственно в процессе строительства из- за простоты использования и относительной дешевизны.

GPS модули или приемники сопутствуют нам в повседневной жизни в наших телефонах, навигаторах, планшетах и т.д. Они призваны помочь нам сориентироваться на местности и не потеряться в городских джунглях. Однако они имеют мало общего с  геодезическим GPS оборудованием.

Геодезистам эти приборы нужны не для ориентирования на местности, а для точного определения местоположения «тарелки» (обычно такой формы придерживаются производители GPS приемников). Погрешность обычно составляет 0,5-2 сантиметра относительно ближайшего пункта Государственной Геодезической Сети (ГГС).

В то время, как обычные навигаторы дают ошибку местоположения около 10-20 метров, что в работе геодезиста недопустимо. Но есть множество факторов, которые весьма часто негативно влияют на величину погрешности геодезических измерений при помощи GPS оборудования.

Поэтому недостаточно просто приобрести дорогостоящую «тарелку», и начать определять местоположение соседних заборов, например, как обычным навигатором. Без должной калибровки и последующей обработки измерений ничего  не выйдет.

В общем, если увидите геодезиста с «тарелкой» на вешке, знайте- он определяет точное местоположение точки, над которой стоит приемник.

Очень простой инструмент геодезиста. Многие сталкивались со штативами при съемках фотографий или фильмов с использованием профессионального оборудования. Геодезисты также пользуются специальным оборудованием, которое без штативов обойтись не может.

От остальных геодезические отличаются в основном простотой конструкции, неприхотливостью в использовании и «неубиваемостью». Ведь работать приходится совсем не в идеальных условиях. Основная задача геодезического штатива- неподвижно зафиксировать прибор, который на него устанавливается.

На штатив сначала ставится трегер- специальное устройство для центрирования над определенной точкой при необходимости и горизонтирования прибора. Потом уже ставится прибор-тахеометр, нивелир и т.д. Различают деревянные, металлические и штативы из композитных материалов.

В последнее время самыми «продвинутыми» являются штативы из фибергласса. Они очень легкие, прочные..но пока что неоправданно дорогие.

Тоже достаточно простой геодезический инструмент. Выглядит как круглая палка высотой около 1.8м. Однако многие вешки раздвигаются и могут иметь высоту до 6 метров.

у может находиться как отражатель, так и GPS приемник. Отражатель может быть разной формы и конструкции. его задача- отражать сигнал, посланный дальномером.

Его особенностью является то, что луч/сигнал, приходящий с прибора-измерителя отражается точно обратно.

В конечном итоге-там где находится отражатель или приемник на геодезической вешке происходит определение местоположения измеряемой точки.

Появилась относительно недавно в геодезических бригадах, так как раньше была довольно дорога и сложна в использовании. И по сей день не является единственным прибором для измерения непосредственно расстояний на объекте.

Удобно использовать на коротких расстояниях и в помещениях. В уличных условиях применяется не часто, так как необходимо иметь поверхность, на которую можно навести лазерный луч.

Также минус многих моделей без оптического визира- плохая видимость лазерной точки на ярко освещенных поверхностях.

Ввиду этого, сейчас все еще достаточно часто приходится использовать стальные рулетки длиной до 50м. Большей длины не выпускают, поэтому расстояния более 50 метров являются источниками ошибок из-за нескольких этапов измерений. Измерения нужно проводить вдвоем, да и провис ленты доставляет некоторую ошибку в измерения.

В итоге лазерные рулетки используются повсеместно кадастровыми инженерами и геодезистами в тех случаях, когда это целесообразно и возможно.  В остальных случаях выручает старая-добрая стальная рулетка.

Прибор, сопутствующий инженерно-геодезическим изысканиям для нанесения подземных коммуникаций на план. Часто в комплект входит генератор, который устанавливается на коммуникацию в ее видимой части.

Он генерирует вибрации, которые фиксирует приемник. После обнаружения поворотных точек коммуникации- их наносят на геоподоснову или топографический план.

Кабелеискатель также может измерить глубину залегания коммуникации с точностью до 0.05м.

Мы рассказали Вам вкратце о геодезических приборах и инструментах, необходимых в прикладной геодезии. Надеемся, что помогли разобраться в тонкостях штативов и «палочек» с которыми работают люди , именующие себя геодезистами.

Полезные статьи:

Источник: https://domzem.su/pribory-ispol-zuemy-e-v-geodezii.html

Приборы для проведения геодезических работ

Основные геодезические приборы

Геодезия как наука сегодня активно развивается в соответствии с требованиями современного строительства, сельского хозяйства, промышленности, когда критически важным стало обеспечить достаточную точность при проведении измерений, иметь возможность работать автономно в любых климатических условиях. Именно для такой работы и предназначены приборы, которые используются для проведения геодезических изысканий. С их помощью выполняется достаточно широкий спектр строительных, ремонтных, планировочных задач от проведения измерений до выноса в натуру отдельных точек по расстоянию и углу.

Основные группы приборов для геодезических работ

Все приборы, которые используются в данной отрасли можно условно разделить на несколько групп в зависимости от принципа их работы.

  1. GPS-техника позволит точно, быстро и достаточно легко определить координаты заданной точки на местности, измерить расстояние, разбить участки. Оборудование этой категории, как правило, многофункционально, поэтому способно заменить сразу несколько разнообразных устройств для проведения измерений более традиционным способом.
  2. Оптические приборы для определения расстояний, горизонтальных и вертикальных углов, превышений вертикальных точек. Их важным преимуществом является то, что они работают с высокой точностью вне зависимости от погодных условий на больших дистанциях. Отдельные устройства этой категории предназначены для наружных и внутренних работ. Самыми распространёнными примерами таких приборов являются
    1. нивелиры,
    2. теодолиты,
    3. тахеометры,
    4. лазерные уровни и рулетки.

Без использования геодезического оборудования не обходится и в современном ландшафтном дизайне, при проектировании ремонтных работ, отделки.

К примеру, лазерные приборы в современной конфигурации обеспечивают достаточно широкую функциональность и наглядность полученного результата.

Они позволяют с высокой точностью выполнять необходимые замеры одному человеку, что всегда повышает эффективность использования рабочего времени и увеличивает производительность труда.

GPS-техника

При формировании информации для построения карт в малоизученных или труднодоступных районах высокая точность и качество выполняемых работ обеспечивается с использованием специализированного GPS-оборудования.

с его помощью у пользователя появляется возможность получать необходимые координаты с точностью до 1 мм в любых погодных или климатических условиях, при любой видимости.

Кроме того, такие устройства управляются при помощи одной-двух кнопок, поэтому обучение оператора занимает минимум времени, не требуя специальной подготовки.

Важно и то, что обработка результатов проведенных измерений с помощью профильного программного обеспечения также фактически выполняется в автоматическом режиме. С использованием технологий GPS у предприятий, предоставляющих геодезические услуги, появляется возможность несколько сократить число специалистов, выезжающих на объект, тем самым снижая себестоимость предоставляемых услуг.

Электронный тахеометр

Этот прибор идеально подходит для ведения работ в полевых условиях и кодирования полученной информации.

Тахеометры используются при проведении съёмок местности после получения о ней всех базовых координат, изменений для каждой из точек геодезической сети.

Тахеометры позволяют не только измерять расстояния и углы, но и кодировать данные, выполняя своего рода «оцифровку» полученных сведений непосредственно в поле.

Технология выполнения работ с использованием этого прибора достаточно проста и автоматизирована: в специальную таблицу вносятся все объекты, которые подлежат исследованию, присваивая им индивидуальный идентификатор.

Программное обеспечение позволяет загрузить эти сведения в прибор, чтобы при выполнении работ оператор получил возможность просто выбирать на экране тахеометра необходимый объект и измерять его координаты.

В камеральных условиях данные выгружаются в компьютер, а геодезист получает всю информацию с привязкой к конкретному объекту. Это значительно облегчает работу и снижает до минимума вероятность ошибки.

Тахеометры также активно используются при проведении:

  • инженерных измерений,
  • туннельных работ,
  • измерений фасадов зданий,
  • мониторинга деформаций,
  • при проведении расчётов объёма земляных работ,
  • в процессе монтажа конструкций,
  • работ в труднодоступных местах.

Лазерные дальномеры

Это компактные портативные приборы, получившие широкое применение в работе архитекторов, строителей, дизайнеров, домашних мастеров. Лазерные дальномеры очень популярны и востребованы благодаря своей функциональности, удобству эксплуатации, невысокой стоимости.

Принцип работы такого инструмента заключается в измерении времени, за которое лазерный луч проходит расстояние от излучателя до заданного объекта и обратно.

Погрешность полученного результата ограничивается миллиметрами, а скорость выполнения замеров, их точность и возможность выполнения одним человеком без помощника стали определяющими при выборе оптимального оборудования для проведения подобных работ.

Лазерные нивелиры

Эти приборы, по сути, являются построителями плоскостей при помощи лазерных лучей. В результате их использования специалисту удаётся быстро и наглядно получить видимые линии, которые проецируются на заданную поверхность.

Все полученные плоскости всегда идеально выровнены по вертикали и горизонтали, что позволяет оперативно оценить качество выполненных строительных работ при наружной и внутренней отделке помещений.

Обработка полученных данных выполняется при помощи специализированного программного обеспечения.

Теодолиты и оптические нивелиры

Это профессиональное геодезическое оборудование, которое позволяет с высокой точностью определить расстояния, превышения точек по вертикали, горизонтальные и вертикальные углы.

Теодолиты и оптические нивелиры – неэлектронные устройства, которые могут использоваться специалистами вне зависимости от погодных условий.

Они особенно активно используются при устройстве фундаментов и возведении, в ходе строительства эстакад и мостов.

Сотрудники компании «ГеоСодружество» оснащены всем необходимым для проведения полного комплекса работ на объектах любого назначения, чтобы гарантировать неизменно высокую точность и качество выполняемых работ.

← Остались вопросы? Напишите в форму слева или позвоните по телефону +7 (495) 673-73-30.

Источник: http://www.GeoSod.ru/pribory-dlya-geodezicheskix-rabot

Основные геодезические приборы

Основные геодезические приборы

Геодезия формируется уже достаточно длительное время, поэтому ее методы и задачи направлены не только на нашу отдельную планету, а и на всю галактику в целом. Вместе с развитием современной культуры данная научная дисциплина весьма усложнилась, разделилась на несколько специальностей — и, естественно, начала ставить перед собой и решать всё более сложные инженерные задачи.

Причём как теоретические в связи с ростом количества и масштабов геодезических исследований, так и практические — из-за увеличения числа универсальных сооружений.

Это не могло не привести к повышению требований к максимальной точности измерений и усложнению технического оборудования.

Особенно сильно это наблюдается в последние 10-20 лет по причине интенсивного внедрения электроники и началом масштабного использования лазеров.

Рисунок 1. Геодезические инструменты. Автор24 — интернет-биржа студенческих работ

Геодезия – наука, которая находит широкое применение в масштабном строительстве и решает многие другие задачи.

Среди основных геодезических целей, можно выделить следующие:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

  • получение инженерных сведения на этапе проектирования объектов;
  • вынос в соответствии с планом и закрепление на территории главных границ сооружений;
  • предоставление правильных геометрических размеров и форм элементов здания на стадии строительных работ;
  • установление отклонений возведенных элементов сооружения от проектных.

Что измеряют геодезические приборы

В «сферу деятельности» геодезических приборов входит:

  1. Измерение точных расстояний. Самая простая инженерно- геодезическая задача — это замер длины линии. Рулетки и ленты, длинномеры и геометрического типа дальномеры — это устройства, посредством которых определяют короткие линии со сравнительно низкой точностью. Особенно распространены указанные приборы в морской и космической геодезии.
  2. Диагностирование превышений. Для установления высот и их разницы применяются нивелиры и профилографы. первые используют вместе со специальными рейками. Существуют цифровые, оптические и лазерные нивелиры. Причем данные элементы нельзя путать с простыми лазерными уровнями, отличающиеся конструктивно и по обеспечению максимальной точности.
  3. Определение основного местоположения. В стародавние времена вычисление расположения сооружений больше всего волновало моряков, так сухопутных ориентиров практически не было. Постепенно было разработано много уникальных приборов для навигации и вычисления широты-секстант, астролябия, квадрант и другие раритеты. На сегодняшний день мало кого удивишь «навигаторами» на разнообразных электронных устройствах. Это стало возможно с возникновением специальных навигационных спутников.

Замечание 1

Давно не секрет — технический прогресс не стоит на месте. Время измерения величин «дедовскими способами» ушло безвозвратно в прошлое. Поэтому рассматривать буссоли, кипрегели и стальные рулетки нет смысла, необходимо изучить только актуальное и наиболее востребованное геодезическое оборудование.

Геодезические приборы

Специалисты выделяют несколько устройств, необходимых для проведения инженерно-геодезических работ. Охарактеризуем основные из них.

Тахеометр. Понятное дело, измерять длины, углы и высоты различными устройствами — весьма неудобно и довольно длительно. Поэтому для тех случаев, когда необходимо проводить несколько видов измерений, существуют приборы комбинированные, такие как тахеометр.

Это современное электронно-оптическое оборудование, позволяющее определить любые параметры в геодезии. В большинстве случаев этого инструмента достаточно для фиксации всех важных замеров на объекте.

Тахеометры на сегодняшнем этапе развития технологий считаются наиболее универсальными приборами для осуществления геодезических исследований.

Нивелир. В строительстве дорог, зданий и других сооружений после планового установления местоположения объекте желательно систематически контролировать уровень, высоту и вертикальность поверхностей. С этими целями легко справляется нивелир.

Его ключевая задача — измерять возможные превышения между конструкциями. Бывают: оптические, электронные, лазерные и другие нивелиры.

Эти устройства удобно применять при наблюдении за осадками зданий и непосредственно в процессе возведения из- за относительной дешевизны и простоты использования.

GPS оборудование. Подобные приемники или модули сопутствуют людям в повседневной жизни в навигаторах, телефонах планшетах и других гаджетах. Такие приборы призваны помочь сориентироваться на незнакомой местности, но они имеют мало общего с геодезическими GPS системами.

Геодезистам это оборудование необходимо для точного определения местоположения «тарелки». В этом случае погрешность обычно достигает не более 0,5-2 сантиметра относительно ближайшего пункта Государственной Геодезической Сети.

Без должной калибровки и последующей обработки замеров ничего не выйдет.

Штатив. Достаточно простой инструмент геодезиста. Многие сталкивались с данными устройствами при съемках фотографий или фильмов с применением профессионального оборудования.

Инженеры также пользуются специальным прибором, которое без штативов обойтись не может. Основная цель геодезического штатива- прочно зафиксировать механизм, который на него устанавливается. Потом уже ставится тахеометр, нивелир и так далее.

Различают металлические, деревянные и штативы из композитных материалов.

Вешка. Тоже несложный геодезический прибор, имеющий вид круглой палки высотой примерно 1.8м. Однако многие вешки легко раздвигаются и могут достигать 6 метров. у находиться отражатель и GPS приемник. Эти элементы могут быть разной формы и конструкции. его задача- отражать посланный дальномером сигнал.

Лазерная рулетка. Это устройство появилось относительно недавно в геодезических бригадах, так как раньше была сложна в использовании и достаточно дорога. И в настоящее время не является единственным оборудованием для измерения непосредственно расстояний на самом объекте.

Удобно применять лазерную рулетку на коротких расстояниях и в зданиях. В уличных условиях используется не часто, так как нужно иметь поверхность, на которую возможно навести луч лазера.

Также недостаток многих моделей без встроенного оптического визира- низкая видимость лазерной точки на ярко освещенной местности.

Трубокабелеискатель. Прибор, который непременно сопутствует инженерно-геодезическим изысканиям для внесения на карту важных подземных коммуникаций.

Часто в комплект входит генератор, устанавливаемый на коммуникацию в самой видимой части. Он генерирует небольшие вибрации, которые фиксирует приемник.

После нахождения поворотных точек коммуникации- их переносят на топографический план.

Рисунок 2. Нивелир. Автор24 — интернет-биржа студенческих работ

Приборы вертикального проектирования

Рисунок 3. Оборудование вертикального проектирования. Автор24 — интернет-биржа студенческих работ

Замечание 2

При решении многих инженерных задач в геодезии зачастую используют оборудование вертикального проектирования (ПВП), что напрямую связано с ростом этажности массовой городской застройки, разработкой уникальных объектов ядерной энергетики, специальных и мощных технологических линий.

При этом увеличиваются требования к точности инженерно-геодезических мероприятий, усложняются измерительные условия. Приборы подобного типа позволяют эффективно передавать проектные координаты выше и ниже начальной точки, фиксировать вертикальность сооружений.

Замечание 3

Приборы вертикального проектирования обычно делят на: механические и оптические.

В механических устройства отвесная линия реализуется посредством струны с грузом или стержнем. В прямом отвесе инструмент устанавливается в вертикальное положение, помещенным в жидкость.

В обратном отвесе нижний конец проволоки закрепляют, а верхний постепенно натягивают динамометром при помощи двух перпендикулярных уровней.

Точность механических устройств зависит от их конструкции, метода фиксации отсчета и высоты дальнейшего проектирования.

Наибольшее распространение на сегодняшний день получили оптические центриры, которые по точности превосходят механические, более просты в использовании и стоят относительно недорого.

Источник: https://spravochnick.ru/geodeziya/osnovnye_geodezicheskie_pribory/

Booksm
Добавить комментарий