Основные формулы релятивистской механики

Основные формулы релятивистской механики

Основные формулы релятивистской механики

Определение 1

Релятивистская механика – это раздел механики, в который превращаются законы Ньютона в случае, если материальное тело движется со скоростью, максимально близкой к скорости света.

Рисунок 1. Релятивистская механика материальной точки. Автор24 — интернет-биржа студенческих работ

На таких сверхвысоких скоростях с физическими вещами начинают происходить совершенно неожиданные и волшебные процессы, такие как замедления времени и релятивистское сокращение длины.

В пределах исследования релятивистской механики меняются формулировки некоторых устоявшихся в физике физических величин.

Данная формула, которую знает практически каждый человек, показывает, что масса является абсолютной мерой энергии тела, а также демонстрирует принципиальную вероятность перехода энергетического потенциала вещества в энергию излучения.

Основной закон релятивистской механики в виде материальной точки записывается так же, как и второй закон Ньютона: $F=\frac{dp}{dT}$.

Принцип относительности в релятивистской механике

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Рисунок 2. Постулаты теории относительности Эйнштейна. Автор24 — интернет-биржа студенческих работ

Принцип относительности Эйнштейна подразумевает инвариантность всех существующих законов природы по отношению к постепенному переходу от одной инерциальной концепции отсчета к другой. Это означает, что все описывающие природные законы формулы должны быть полностью инвариантны относительно преобразований Лоренца.

К моменту возникновения СТО теория, удовлетворяющая данному условию, уже была представлена классическая электродинамика Максвелла.

Однако все уравнения ньютоновской механики оказались абсолютно неинвариантными относительно других научных постулатов, и поэтому СТО требовала пересмотра и уточнения механических закономерностей.

В основу такого важного пересмотра Эйнштейн озвучил требования выполнимости закона сохранения импульса и внутренней энергии, которые находятся в замкнутых системах. Для того, чтобы принципы нового учения выполнялся во всех инерциальных концепциях отсчета, оказалось важным и первостепенным изменить определение самого импульса физического тела.

Если принять и использовать такое определение, то закон сохранения конечного импульса взаимодействующих активных частиц (например, при внезапных соударениях) начнет выполняться во всех инерциальных системах, непосредственно связанных преобразованиями Лоренца.

При $β → 0$ релятивистский внутренний импульс автоматически переходит в классический.

Масса $m$, входящая в основное выражение для импульса, является фундаментальная характеристика мельчайшей частицы, не зависящая от дальнейшего выбора концепции отсчета, а, следовательно, и от коэффициента ее движения.

Релятивистский импульс

Рисунок 3. Релятивистский импульс. Автор24 — интернет-биржа студенческих работ

Релятивистский импульс не пропорционален начальной скорости частицы, а его изменения не зависят от возможного ускорения взаимодействующих в инерциальной системе отчета элементов.

Поэтому постоянная по направлению и модулю сила не вызывает прямолинейного равноускоренного движения.

Например, в случае одномерного и плавного движения вдоль центральной оси x ускорение всех частицы под воздействием постоянной силы оказывается равным:

$a= \frac{F}{m}(1-\frac{v2}{c2})\frac{3}{2}$

Если скорость определенной классической частицы беспредельно увеличивается под действием стабильной силы, то скорость релятивистского вещества не может в итог превысить скорость света в абсолютной пустоте.

В релятивистской механике, так же, как и в законах Ньютона, выполняется и реализуется закон сохранения энергии. Кинетическая энергия материального тела $Ek$ определяется через внешнюю работу силы, необходимую для сообщения в будущем заданной скорости.

Чтобы разогнать элементарную частицу массы m из состояния покоя до скорости под влиянием постоянного параметра $F$, эта сила обязана совершить работу.

Чрезвычайно важный и полезный вывод релятивистской механики состоит в том, что находящаяся в постоянном покое масса $m$ содержит невероятный запас энергии.

Это утверждение имеет различные практические применения, включая сферу ядерной энергии.

Если масса любой частицы или системы элементов уменьшилась в несколько раз, то при этом должна выделиться энергия, равная $\Delta E = \Delta m • c2. $

Многочисленные прямые исследования предоставляют убедительные факты существования энергии покоя. Первое экспериментальное доказательства правильности соотношения Эйнштейна, которое связывает объем и массу, было получено при сравнении внутренней энергии, высвобождающейся при мгновенном радиоактивном распаде, с разностью коэффициентов конечных продуктов и исходного ядра.

Масса и энергия в релятивистской механике

Рисунок 4. Импульс и энергия в релятивистской механике. Автор24 — интернет-биржа студенческих работ

В классической механике масса тела не зависит от скорости движения. А в релятивистской она растёт с увеличением скорости. Это видно из формулы: $m=\frac{m_0}{√1-\frac{v2}{c2}}$.

Здесь:

  • $m_0$– масса материального тела в спокойном состоянии;
  • $m$ – масса физического тела в той инерциальной концепции отсчёта, относительно которой оно движется со скоростью $v$;
  • $с$ – скорость света в вакууме.

Отличие масс становится видным только при больших скоростях, приближающихся к скорости света.

Кинетическая энергия при конкретных скоростях, приближающихся к световой скорости, исчисляется как некая разность между кинетической энергией движущегося тела и кинетической энергией тела, находящегося в состоянии покоя:

$T=\frac{mc2}{√1-\frac{v2}{c2}}$.

При скоростях, значительно меньших скорости света, это выражение переходит в формулу кинетической энергии классической механики: $T=\frac{1}{2mv2}$.

Скорость света является всегда граничным значением. Быстрее света в принципе не может двигаться ни одно физическое тело.

Многие задачи и проблемы смогло бы решить человечество, если бы ученым удалось разработать универсальные аппараты, способные передвигаться со скоростью, приближающейся к скорости света. Пока же люди могут о таком чуде только мечтать. Но когда-нибудь полёт в космос или на другие планеты с релятивистской скоростью станет не вымыслом, а реальностью.

Источник: https://spravochnick.ru/fizika/mehanika/osnovnye_formuly_relyativistskoy_mehaniki/

Основы релятивистской механики

Основные формулы релятивистской механики

1. Уравнение динамики

Уравнение второго закона Ньютона в классической механике инвариантно, не изменяет вида, при переходе от одной инерциальной системы отсчета к другой.

Действительно, стоит в уравнение второго закона подставить преобразования Галилея , при постоянной скорости V0, при t=t′, как получим инвариантное уравнение . (Здесь введен индекс «ноль» для обозначения массы тела при малой скорости движения).

Но в релятивистской механике преобразования Галилея неверны, следовательно, уравнение второго закона Ньютона следует преобразовать.

Если в классическом определении импульса заменить время собственным временем частицы, получим, что релятивистский импульс определяется соотношением

. (13.7)

Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона , но только под понимается релятивистский импульс частицы (13.7). Следовательно, основное уравнение динамики принимает вид

. (13.8)

Так как релятивистский импульс не пропорционален скорости частицы, то ускорение и сила оказываются не пропорциональными друг другу, не коллинеарными векторами.

Лоренц, при изучении движения электрона с учетом создаваемого им электромагнитного поля, получил, что его масса возрастает с увеличением скорости

. (13.9)

Причиной этого являлось увеличение инертности электрона из-за возникающего электромагнитного поля, которое по правилу Ленца тормозит движение электрона. Уравнение (13.

9) проверено экспериментально по отклонению релятивистских электронов в поперечных электрических и магнитных полях, применяется при расчетах движения заряженных частиц в синхрофазотроне.

При приближении скорости частиц к скорости света их масса беспредельно возрастает. Превысить скорость света невозможно.

2. Релятивистское выражение для энергии

В релятивистской механике обязан выполняться закон сохранения энергии.

Получим формулу кинетической энергии. Кинетическая энергия тела определяется через работу внешней силы Т=A, необходимую для сообщения телу заданной скорости. Чтобы разогнать частицу массы m0из состояния покоя до скорости V под действием постоянной силы F , эта сила должна совершить работу

. (13.10)

Здесь . Под знаком интеграла стоят две переменные: масса и скорость. Исключим скорость по уравнению зависимости массы от скорости (13.

9), возведя его во вторую степень и затем, дифференцируя квадрат скорости, . Подставим преобразования под знак интеграла кинетической энергии . Видно, что два последних члена сокращаются.

После интегрирования в пределах от массы покоя до релятивистской массы , получим

. (13.11)

Эйнштейн интерпретировал первый член этого выражения как полную энергию Е движущейся частицы . Неподвижная частица обладает энергией , которая называется энергией покоя. Она представляет собой внутреннюю энергию частицы.

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами.

Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии.

Пропорциональность массы и энергии является выражением внутренней сущности материи. Формула Эйнштейна

(13.12)

выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии.

Закон экспериментально подтвержден для ядерных реакций, в которых происходит значительное выделение энергии , так что изменение массы можно измерить с высокой точностью.

В реакции аннигиляции электрона и его античастицы позитрона с образованием фотонов происходит не только превращения энергии одного вида (энергия покоя) в другой (энергия движения), но и изменяется форма существования материи: вещество превращается в электромагнитное поле.

Обратная реакция распада γ-фотона в электрон-позитронную пару происходит только при энергии фотона не менее 1,02 МэВ, равной энергии покоя частиц.

Найдем выражение для полной энергии через импульс частицы. Для этого из выражения для импульса (13.6) и полной энергии (13.8) исключим скорость V . В результате получим

(13.13)

Полученное соотношение (13.13) показывает, что частица может иметь энергию и импульс, но не иметь массы (m=0). Для таких частиц связь между энергией и импульсом выражается простым соотношением Е=рс.

К частицам без массы покоя относятся фотоны и, возможно, нейтрино. Фотон – это электромагнитная волна, излученная атомом и, естественно, что волна не может покоиться.

Во всех инерциальных системах отсчета они движутся с предельной скоростью с.

Источник: https://studopedia.su/5_52829_osnovi-relyativistskoy-mehaniki.html

Booksm
Добавить комментарий