Определение периода колебаний математического маятника

Содержание
  1. Математический маятник — определение, формулы и принцип действия
  2. Крутящий момент
  3. Сохранение механической энергии
  4. Колебательные движения
  5. Составной маятник
  6. Историческая хроника
  7. Исследования Галилея
  8. Маятниковые часы
  9. Математический маятник
  10. Что такое математический маятник (осциллятор)
  11. Колебания математического маятника
  12. Свойства маятника
  13. Период математического маятника
  14. Практическое применение математического маятника
  15. Математический маятник, видео
  16. Математический маятник: период, ускорение и формулы
  17. Общие сведения о механической системе
  18. Колебательные движения маятника
  19. Математический маятник (формулы для больших амплитуд)
  20. Движение маятника по сепаратрисе
  21. Закон Ньютона для малых колебаний маятника
  22. Вычисления на основе закона сохранения энергии
  23. Лабораторная работа «Исследование колебаний математического маятника» (Ерюткин Е. С.). урок. Физика 9 Класс

Математический маятник — определение, формулы и принцип действия

Определение периода колебаний математического маятника

Так называемый простой маятник — это всего лишь идеализированная математическая модель. Это груз на конце безмассового шнура, подвешенного на оси без трения. Если его толкнуть, он будет раскачиваться с постоянной амплитудой, но с некоторыми условиями:

  1. Стержень или нить, на котором качается отвес, не имеет массы и не может растягиваться.
  2. Груз — это точечная масса.
  3. Движение происходит только в двух измерениях, то есть отвес не может очертить эллипс, а только дугу.
  4. Энергия движения не расходуется на трение или сопротивление воздуха.
  5. Гравитационное поле однородно.
  6. Поддержка всей конструкции не двигается.

Дифференциальное уравнение, которое представляет движение простого маятника, выглядит следующим образом (где g — ускорение силы тяжести, ℓ — длина маятника, θ — угловое смещение): d² / dt² + g / ℓ sin θ = 0.

На графике 1 показаны силы, действующие на отвес. Стоит обратить внимание, что груз описывает дугу. Угол θ измеряется в радианах, и это имеет решающее значение для этой формулы. Синяя стрелка — гравитационная сила, которая действует на маятник, а фиолетовые векторы — это та же самая сила, только разложенная на компоненты, параллельные и перпендикулярные мгновенному движению груза.

График 1.

Направление мгновенной скорости всегда указывается вдоль красной оси, которая считается тангенциальной, поскольку её направление всегда касается окружности. И прежде чем вывести уравнение силы деривации, стоит вспомнить второй закон Ньютона: F = ma. За F принимают сумму сил, действующих на объект, m — масса, a — ускорение.

Поскольку интерес составляет только измерение скорости, а груз вынужден оставаться на круговой траектории, уравнение Ньютона применяется только к тангенциальной оси.

Короткая фиолетовая стрелка представляет компонент гравитационной силы, используя тригонометрию можно определить её величину.

Таким образом, получается (g — ускорение силы тяжести вблизи поверхности земли): F = — mg sin θ = ma; a = — g sin θ.

Отрицательный знак на правой стороне означает, что θ и отвес всегда указываются в противоположных направлениях. Это вполне логично, поскольку когда маятник качается сильнее влево, ожидается, что он ускорится при движении назад — вправо.

Это линейное ускорение, a вдоль красной оси может быть связано с изменением угла θ по формулам длины дуги (s): s = ℓθ; v = ds / dt = ℓdθ / dt; a = d²s / dt² = ℓd²θ / dt². Из этого следует: ℓd²θ/dt² = — gsin θ, d²θ / dt² + d / ℓ sin θ = 0.

Крутящий момент

Для начала нужно определить этот показатель на маятниковом шарнире, используя силу, вызванную гравитацией (Fg): T = ℓ x Fg, где ℓ — векторы длины маятника.

Здесь самое время рассмотреть величину крутящего момента на маятнике: |T| = — mgℓ sinθ, где m — масса, g — ускорение силы тяжести, ℓ — длина, а θ — угол между вектором длины и гравитацией. Далее, самое время переписать момент импульса: L = r x p = mr x (ꞷ x r).

Просто величина углового момента и его производная по времени: |L| = mr² w = mℓ² d²θ / dt². ​Формула крутящего момента после всех вычислений будет выглядеть следующим образом: T = r x F = dL / dt.

Сохранение механической энергии

Такое уравнение можно получить с помощью одноимённого принципа. Формулируется он так: любой объект, падающий на вертикальное расстояние h, получит кинетическую энергию, равную той, которую потерял при падении. Изменение потенциальной энергии выражается: Δ U = mgh, тогда как кинетическая (отвес начал движение с покоя) представлена формулой: Δ K = 1/2 mu².

Поскольку, как известно, никакая энергия не теряется, выигрыш в одном должен быть равен потере в другом: 1/2 mu² = mgh.

Колебательные движения

Период колебаний математического маятника (простого гравитационного) зависит от его длины, локальной силы тяжести и в небольшой степени от максимального угла, от которого отвес отклоняется от вертикали θ 0, называемого амплитудой.

Он не зависит от массы груза. Если амплитуда ограничена малыми колебаниями, то на период T, время, необходимое для полного цикла является: T≈ 2 π √ L/g. При этом L — длина маятника, а g — местное ускорение гравитации.

Нужно сказать, что для небольших колебаний период не зависит от амплитуды. Такое свойство называется изохронизмом, именно оно стало причиной того, что маятники используются для хронометража.

Последовательные колебания маятника, даже если они меняются по амплитуде, занимают одинаковое количество времени.

Для большого размаха свойственно увеличение периода с каждым раскачиванием, поэтому он длиннее, чем задано уравнением, отражающим частоту колебаний математического маятника.

Период возрастает до бесконечности как только θ 0 приближается к 180°, так как это значение является нестабильной точкой равновесия для маятника.

Истинный период может быть записан в нескольких различных формах, например, бесконечный ряд: T = 2 π √ L/g )1+ 1/16 θ²/º + 11/3072 θ ⁴/º + …). Разница между истинным и периодом небольших колебаний называется круговой ошибкой.

В случае с типичными напольными часами, у которых маятник имеет размах 6° и, следовательно, амплитуду 3° (0,05 радиана), разница составит около 15 секунд в день.

Формула математического маятника, при малых колебаниях, когда он приближается к гармоническому осциллятору, и его движение, как функция времени t, находит выражение следующим образом: θ(t) = θₒ cos (2 π / T * t + ⱷ). Где фи (ⱷ) — постоянная величина, зависящая от начальных условий. Для маятников этот период незначительно меняется в зависимости от некоторых факторов, например:

  • плавучесть и вязкостное сопротивление воздуха;
  • масса нити или стержня;
  • размер и форма отвеса и способы его прикрепления к шнуру;
  • гибкость и растяжение нити.

Если необходимы точные расчёты, конечно, все эти поправки должны учитываться.

Составной маятник

Другое название — физический, представляет собой любое качающееся твёрдое тело, свободно вращающееся вокруг фиксированной горизонтальной оси.

Соответствующая эквивалентная длина — L, а для расчёта времени используется расстояние от оси до центра колебаний.

Эта точка расположена над центром массы на расстоянии от оси, традиционно называемым радиусом колебаний, который зависит от распределения веса груза.

Христиан Гюйгенс в 1673 году доказал, что точка вращения и центр колебаний взаимозаменяемы. Это означает, если какой-либо маятник перевёрнут и ротирован от оси, расположенной в его предыдущем центре колебаний, он будет иметь тот же период, что и раньше, и новый центр будет находиться в старой точке вращения.

В 1817 году Генри Кэтер использовал эту идею для создания обратимого маятника, теперь известного под именем создателя, для улучшения измерений ускорения под действием силы тяжести.

Историческая хроника

Одним из самых ранних известных применений маятника было устройство сейсмометра (I века) китайского учёного династии Хань Чжан Хэна.

Его функция состояла в том, чтобы раскачивать и активировать один из серии рычагов после того, как он был нарушен тремором землетрясения, которое происходило далеко от места измерения.

Освобождённый рычагом, маленький шарик выпадал из устройства в форме урны в одну из восьми горловин металлической жабы внизу, в восьми точках компаса, что указывало направление землетрясения.

Многие источники утверждают, что египетский астроном X века Ибн Юнус использовал маятник для измерения времени, но это была ошибка, возникшая в 1684 году с британским историком Эдвардом Бернардом.

В эпоху Возрождения большие маятники с ручной накачкой использовались в качестве источников энергии для ручных поршневых машин, таких как пилы, сильфоны и насосы. Леонардо Давинчи сделал много рисунков движения маятников, хотя и не осознавал его значения для хронометража.

Исследования Галилея

Итальянский учёный Галилео Галилей был первым, кто начал изучать свойства маятников, начиная примерно с 1602 года. Самый ранний существующий отчёт о его исследованиях содержится в письме Гвидо Убальдо дель Монте из Падуи от 29 ноября 1602 года. Его биограф и ученик, Винченцо Вивиани, утверждал, что его интерес был вызван около 1582 года, когда физик раскачивал люстры в соборе Пизы.

Галилей обнаружил важнейшее свойство, которое делает маятники полезными в качестве хронометриста, называемое изохронизмом; период маятника приблизительно не зависит от амплитуды или ширины качания.

Он также обнаружил, что период не зависит от массы отвеса и пропорционален квадратному корню из длины всей конструкции.

Сначала он использовал маятники свободного вращения в простых приложениях синхронизации.

Его друг — врач Санторио Санторий, используя наработки Галилея, изобрёл прибор, который измерял пульс пациента. В 1641 году Галилео задумал и продиктовал своему сыну Винченцо конструкцию маятниковых часов. Тот начал строительство, но не завершил его, поскольку умер в 1649 году. Так, появился первый гармонический осциллятор, использованный человеком.

Маятниковые часы

Первый образец построил в 1656 году голландский учёный Христиан Гюйгенс. Это было значительное улучшение по сравнению с существующими механическими часами. Их точность была улучшена с отклонений от 15 минут до 15 секунд в день. Маятники распространились по Европе, так как все существующие часы стали модифицироваться.

Английский учёный Роберт Гук изучил конический маятник (около 1666), который мог свободно колебаться в двух измерениях, а груз вращаться по кругу или эллипсу. Он использовал движение этого устройства в качестве модели для анализа орбитального движения планет. Гук предложил Исааку Ньютону в 1679 году свои наработки.

Он утверждал, что составляющие орбитального движения состояли из инерционного движения по касательному направлению и привлекательного движения в радиальном направлении. Это сыграло свою роль в формулировке Ньютоном закона всемирного тяготения. Роберт Гук также был ответственным за то, что ещё в 1666 году предположил, что маятник можно использовать для измерения силы тяжести.

Во время своей экспедиции в Кайенна (Французская Гвиана) в 1671, Жан Рише обнаружил, что там часы с маятником шли на 2,5 минуты медленнее, чем в Париже. Из этого он сделал вывод, что сила гравитации была ниже в Кайенне.

В 1687 году Исаак Ньютон в Principia Mathematica показал, что это произошло потому, что Земля была не настоящей сферой, а слегка сплюснутой (сплющенной на полюсах) от действия центробежной силы из-за её вращения, это и вызывает увеличение силы гравитации.

Портативные маятники стали совершать рейсы в дальние страны, в качестве прецизионных гравиметров для измерения ускорения свободного падения в разных точках Земли, что в итоге привело к определению точной модели формы планеты. Затем последовало превращение исследований и выводов учёных в новые классы приборов, с дополнительными параметрами. Например:

  • 1721 г. — маятник с температурной компенсацией;
  • 1851 г. — маятник Фуко.

В 1930 году решение задачи по точному хронометражу было найдено, в 1921 был изобретён кварцевый генератор.

Источник: https://nauka.club/fizika/matematicheskii-mayatnik.html

Математический маятник

Определение периода колебаний математического маятника

  • Что такое математический маятник (осциллятор)
  • Колебания математического маятника
  • Свойства маятника
  • Период математического маятника
  • Практическое применение математического маятника
  • Математический маятник, видео
  • Что такое математический маятник (осциллятор)

    Представьте себе некую механическую систему, которая состоит из некой материальной точки (тела), которая висит на нерастяжимой невесомой нити (при этом масса нити ничтожно мала по сравнению с массой тела).

    Вот такая механическая система и является маятником или осциллятором, как его еще называют. Впрочем, могут быть и другие виды такого устройства.

    Чем же математический маятник, осциллятор интересен для нас? Дело в том, что с его помощью можно проникнуть в суть многих интересных природных явлений в физике.

    Колебания математического маятника

    Формула периода колебания математического маятника впервые была открыта голландским ученым Гюйгенсом в далеком XVII веке. Будучи современником Исаака Ньютона, Гюйгенс был очень увлечен такими вот маятниками, увлечен настолько, что даже изобрел специальные часы с маятниковым механизмам, и часы эти были одними из самых точных для того времени.

    Маятниковые часы Гюйгенса.

    Появление подобного изобретения сослужило большую пользу физике, особенно в сфере физических экспериментов, где точное измерение времени является весьма важным фактором.

    Но вернемся к маятнику, итак, в основе работы маятника лежат его колебания, которые можно выразить формулой, точнее следующим дифференциальным уравнением:

    x + w2 sin x = 0

    Где х (t) – неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); w – положительная константа, которая определяется из параметров маятника (w = √ g/L, где g – это ускорение свободного падения, а L – длина математического маятника (подвес).

    Помимо, собственно колебаний маятник может пребывать и в положении равновесия, при этом сила тяжести, действующая на него, будет уравновешиваться силой натяжения нити.

    Обычный плоский маятник, пребывающий на нерастяжимой нити, является системой с двумя степенями свободы.

    Но если, к примеру, нитку заменить на стержень, тогда наш маятник станет системой лишь с одной степенью свободы, так как его движения будут двухмерными, а не трехмерными.

    Но если же наш маятник все-таки пребывает на нити и при этом совершает интенсивные колебания вверх-вниз, тогда механическая система приобретает устойчивое положение, именуемое «верх тормашками», еще ее называют маятником Капицы.

    Свойства маятника

    У маятника есть ряд интересных свойств, подтвержденных физическими законами.

    Так период колебаний всякого маятника зависит от таких факторов, как его размер, форма тела, расстояние между центром тяжести и точкой подвеса.

    Поэтому определение периода маятника является не простой задачей. А вот период математического маятника можно рассчитать точно по формуле, которая будет приведена ниже.

    В ходе наблюдений за маятниками были выведены следующие закономерности:

    • Если к маятнику подвешивать разные грузы с разным весом, но при этом сохранять одинаковую длину маятника, то период его колебания будет одинаковым вне зависимости от массы груза.
    • Если при запуске колебаний отклонить маятник на не очень большие, но все же разные углы, то он станет колебаться в одинаковым период, но по разным амплитудам. Следовательно, период колебания у подобного маятника не зависит от амплитуды колебания, такое явление было названо изохронизмом, что с древнегреческого можно перевести как «хронос» – время, «изо» – равный, то есть «равновременный».

    Период математического маятника

    Период маятника – показатель, который представляет период собственно колебаний маятника, их длительность. Формулу периода математического маятника можно записать следующим образом.

    T = 2π √L/g

    Где L – длина нити математического маятника, g – ускорение свободного падения, а π – число Пи, математическая константа.

    Период малых колебания математического маятника никак не зависит от массы маятника и амплитуды колебания, в этой ситуации он двигается как математический маятник с заданной длинной.

    Практическое применение математического маятника

    Вот мы добрались и до самого интересного, зачем нужен математический маятник и какое его применение на практике в жизни. В первую очередь ускорение математического маятника используется для геологоразведки, с его помощью ищут полезные ископаемые.

    Как это происходит? Дело в том, что ускорение свободного падения изменяется с географической широтой, так как плотность коры в разных местах нашей планеты далеко не одинакова и там где залегают породы с большей плотностью, ускорение будет немножко больше.

    А значит, просто подсчитав количество колебаний маятника можно отыскать в недрах Земли руду или каменный уголь, так как они имеют большую плотность, нежели другие рыхлые горные породы.

    Также математическим маятником пользовались многие выдающиеся ученые прошлого, начиная с античности, в частности Архимед, Аристотель, Платон, Плутарх. Так Архимед и вовсе использовал математический маятник во всех своих вычислениях, а некоторые люди даже верили, что маятник может влиять на судьбы людей и пытались делать с его помощью предсказания будущего.

    Математический маятник, видео

    И в завершение образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/fizika/matematicheskiy-mayatnik/

    Математический маятник: период, ускорение и формулы

    Определение периода колебаний математического маятника

    Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название – осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень. Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

    Общие сведения о механической системе

    Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг.). Этот современник И. Ньютона очень увлекался данной механической системой. В 1656 г.

    он создал первые часы с маятниковым механизмом. Они измеряли время с исключительной для тех времен точностью.

    Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

    Если маятник находится в положении равновесия (висит отвесно), то сила тяжести будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью.

    При смене всего одного компонента меняются характеристики всех ее частей. Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы.

    Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос. В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия.

    При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название. Ее называют маятником Капицы.

    Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами.

    Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки. Именно поэтому определение периода висящего тела является довольно сложной задачей.

    Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

    • Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

    • Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам.

    Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды.

    Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» — время, «изос» — равный).

    Этот показатель представляет собой период собственных колебаний. Несмотря на сложную формулировку, сам процесс очень прост. Если длина нити математического маятника L, а ускорение свободного падения g, то эта величина равна:

    T = 2π√L/g

    Период малых собственных колебаний ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

    Колебательные движения маятника

    Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

    x = A sin (θ0 + ωt),

    где θ0 – начальная фаза, A – амплитуда колебания, ω – циклическая частота, определяемая из уравнения движения.

    Математический маятник (формулы для больших амплитуд)

    Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле:

    sin x/2 = u * sn(ωt/u),

    где sn — синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

    u = (ε + ω2)/2ω2,

    где ε = E/mL2 (mL2 – энергия маятника).

    Определение периода колебания нелинейного маятника осуществляется по формуле:

    T = 2π/Ω,

    где Ω = π/2 * ω/2K(u), K – эллиптический интеграл, π3,14.

    Движение маятника по сепаратрисе

    Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

    Если амплитуда колебаний маятника приближается к числу π, это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

    При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = –mg sin φ.

    Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L.

    Второй закон Исаака Ньютона, предназначенный для проекций вектора ускорения и силы, даст искомое значение:

    mg τ = Fτ = –mg sin x/L

    Исходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

    Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15–20°. Колебания маятника с большими амплитудами не является гармоническим.

    Закон Ньютона для малых колебаний маятника

    Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом:

    mg τ = Fτ = –m* g/L* x.

    Исходя из этого, можно заключить, что тангенциальное ускорение математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

    ω02 = g/L; ω0 = √ g/L.

    Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,

    T = 2π/ ω0 = 2π√ g/L.

    Вычисления на основе закона сохранения энергии

    Свойства колебательных движений маятника можно описать и при помощи закона сохранения энергии. При этом следует учитывать, что потенциальная энергия маятника в поле тяжести равняется:

    E = mg∆h = mgL(1 – cos α) = mgL2sin2 α/2

    Полная механическая энергия равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = E

    После того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

    Ep + Ek = const

    Поскольку производная от постоянных величин равняется 0, то (Ep + Ek)' = 0. Производная суммы равняется сумме производных:

    Ep' = (mg/L*x2/2)' = mg/2L*2x*x' = mg/L*v + Ek' = (mv2/2) = m/2(v2)' = m/2*2v*v' = mv* α,

    следовательно:

    Mg/L*xv + mva = v (mg/L*x + m α) = 0.

    Исходя из последней формулы находим: α = — g/L*x.

    Лабораторная работа «Исследование колебаний математического маятника» (Ерюткин Е. С.). урок. Физика 9 Класс

    Определение периода колебаний математического маятника

    Данный урок посвящен теме «Лабораторная работа “Исследование зависимости периода и частоты свободных колебаний математического маятника от его длины”».

    Это практическое занятие позволит закрепить уже изученный ранее материал.

    На этой лабораторной работе вы вместе с преподавателем проведете интересное исследование и выясните, как зависит период и частота свободных колебаний нитяного маятника от его длины.

    Цель: выяснить, как зависит период и частота свободных колебаний математического маятника от его длины.

    Оборудование: штатив с муфтой и лапкой, шарик с нитью, секундомер (рис. 1).

    Рис. 1. Оборудование

    Для выполнения работы нам потребуется таблица. Таблица будет состоять из следующих частей:

    Величина/№

    1

    2

    3

    4

    5

    Длина (см)

    5

    20

    45

    80

    125

    Число колебаний

    30

    30

    30

    30

    30

    Время (с)

    Период (с)

    Частота (Гц)

    Во-первых, нужно определить количество экспериментов. В данном случае их 5. По вертикали записаны те самые величины, которые мы будем измерять. В первую очередь, длина самого маятника в сантиметрах. Следующая величина – количество колебаний. Далее – полное время колебаний.

    Следующие две графы – это период колебаний, который измеряется в секундах, и частота в Гц. Обратите внимание, что мы заранее записали те величины, которые будем использовать. В первую очередь, это длина нитяного маятника. Начальная длина: 5 см – это очень короткий маятник. Дальше 20, 45, 80 и 125.

     Число колебаний мы будем использовать постоянное. Это 30 колебаний. В каждом эксперименте мы будем использовать по 30 колебаний.

    Соберем экспериментальную установку. Установка состоит из шарика на нити. Нить продернута через ластик. Это сделано для того, чтобы можно было регулировать его длину. Обратите внимание, что сам ластик укреплен в лапке штатива.

    Рис. 2. Грузик на нити, закрепленный в штативе

    Для измерения длины будем использовать линейку и секундомер. Итак, мы отсчитали 30 колебаний, и время, которое мы зарегистрировали, оказалось равным 13,2 с (рис. 3).

    Рис. 3. Первый эксперимент с длиной нити 5 см

    Заносим эти данные в таблицу и можем приступать к расчетам периода и частоты колебаний. Следующий шаг: увеличиваем длину маятника до 20 см. И весь эксперимент повторяем сначала. Вновь результаты заносим в таблицу. Итак, проведя наши эксперименты, мы получили конечные результаты и занесли их в таблицу.

    Период колебаний:  (с). Частота колебаний:  (Гц), где  – это время, а  – количество колебаний, совершенных за время .

    Обратите внимание: когда длина маятника составляла 5 см, 30 колебаний прошли за время 13,2 с. Период колебаний составил , а частота .

    Следующий результат: те же 30 колебаний, но длина маятника была уже 20 см. В этом случае увеличилось время колебаний – 26,59 с, а период колебаний составил . Частота уменьшилась почти в 2 раза, обратите внимание: .

    Если мы посмотрим на третий результат, то увидим, что длина маятника еще больше, период стал больше, а частота уменьшилась еще на некоторое значение. Следующий, четвертый и пятый, постарайтесь посчитать сами. Обратите внимание на то, как при этом будет меняться период и частота колебаний нашего нитяного маятника.

    Для 4 и 5 экспериментов посчитайте частоту и период самостоятельно.

    Величина/№

    1

    2

    3

    4

    5

    Длина (см)

    5

    20

    45

    80

    125

    Число колебаний

    30

    30

    30

    30

    30

    Время (с)

    13,2

    26,59

    40,32

    52,81

    66,21

    Период (с)

    0,44

    0,886

    1,344

    Частота (Гц)

    2,27

    1,128

    0,744

    Табл. 1. Значения частоты и периода для первых трех экспериментов

    Можно сделать вывод: с увеличением длины маятника увеличивается период колебаний и уменьшается частота (рис. 4). Хотелось бы, чтобы четвертый и пятый опыты вы проделали сами и убедились, что все действительно так, как мы получили в наших опытах.

    Формула для вычисления периода колебания математического маятника: , где  – длина маятника, а – ускорение свободного падения.

    Формула для вычисления частоты колебаний: .

    Рис. 4. Зависимость частоты и периода маятника от его длины

    На этом лабораторная работа заканчивается, но есть дополнительная часть к лабораторной работе – дальнейшее исследование колебаний.

    Ветка. Математическая зависимость между длиной маятника и периодом колебаний

    Дополнительная часть лабораторной работы заключается в том, чтобы лучше определить взаимосвязь периода колебаний и длины нитяного маятника. Эта зависимость должна определяться математически.

    Цель дополнительного задания в том, чтобы выявить математическую зависимость между периодом и длиной маятника. Как это можно сделать? Нужно рассмотреть отношение периодов колебаний маятника и отношение длин маятника.

    Посмотрим на таблицу, которую используем, и обсудим те величины, которые будем туда заносить.

    В первой части мы рассмотрим отношение периода из второго опыта, когда длина маятника составляла 20 см. Отношение мы будем искать к периоду, который получили, когда длина маятника составляла 5 см. Отношение самих длин мы рассмотрим в нижней строке.

    Итак, в верхней строке отношение периодов , в нижней строке отношение длин маятника . Все необходимые данные мы возьмем из предыдущей таблицы. Обратим внимание, что эти вычисления в некоторых случаях получатся приближенными, но это зависит уже от чистоты эксперимента.

    Если мы обратимся к первой строке, то увидим, что во всех экспериментах отношение периодов будет составлять:

    Далее рассмотрим отношение длин маятников. Обратите внимание: в первом случае это отношение равно 4, т. е. . Во втором случае – 9. В третьем случае – 16. Видно сразу, как будут связаны эти величины. Посмотрите: в первом случае у нас 2 и 4. В другом случае – 3 и 9 и т. д.

    Делаем вывод о том, что период будет пропорционален корню квадратному из длины маятника. Эту зависимость мы можем использовать в дальнейшем для анализа подобных колебаний: 

    Из этого следует, что период мы можем записать как  .

    Другими словами, если мы увеличиваем длину маятника в 4 раза, то период увеличится в 2 раза. Если увеличим длину маятника в 3 раза, то увеличится период в  раз. И т. д. В этом и заключается результат лабораторной работы.

    Список литературы

    1. Аксенович Л.А. Физика в средней школе: Теория. Задания. Тесты: учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования/Л.А. Аксенович, Н.Н. Ракина, К.С. Фарино. Под ред. К.С. Фарино. – Минск.: Адукацыя i выхаванне, 2004.
    2. Физика: механика. 10 кл.: учеб. для углубленного изучения физики/М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др. Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
    3. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. – М., 1974.

    Дополнительные рекомендованные ссылки на ресурсы сети Интернет

    Домашнее задание

    1. Что такое математический маятник? Запишите формулу для периода такого маятника.
    2. Один математический маятник имеет период 10 с, а другой – период 6 с. Определите период колебаний третьего математического маятника, длина которого равна разности длин указанных маятников.
    3. Длина математического маятника 25 см. Определите период и частоту его колебаний на Земле.

    Источник: https://interneturok.ru/lesson/physics/9-klass/mehanicheskie-kolebaniya-i-volny/laboratornaya-rabota-issledovanie-kolebaniy-matematicheskogo-mayatnika-eryutkin-e-s

    Booksm
    Добавить комментарий