Определение параллельных прямых в пространстве

Содержание
  1. Параллельные прямые в пространстве. Параллельность трех прямых. урок. Геометрия 10 Класс
  2. Взаимное расположение двух прямых в пространстве.Признак скрещивающихся прямых.Угол между скрещивающимися прямыми
  3. Признак скрещивающихся прямых
  4. Угол между скрещивающимися прямыми
  5. Геометрия_10-1
  6. Аксиомы стереометрии и их следствия
  7. Некоторые следствия из аксиом
  8. Параллельные прямые в пространстве
  9. Урок 4. параллельность прямых, прямой и плоскости — Геометрия — 10 класс — Российская электронная школа
  10. Параллельные прямые, признаки и условия параллельности прямых, две прямые параллельны если
  11. Параллельные прямые: основные сведения
  12. Параллельность прямых: признаки и условия параллельности
  13. Параллельность прямых в прямоугольной системе координат

Параллельные прямые в пространстве. Параллельность трех прямых. урок. Геометрия 10 Класс

Определение параллельных прямых в пространстве

На этом уроке мы дадим основные определения и теоремы на тему параллельных прямых в пространстве.

В начале урока рассмотрим определение параллельных прямых в пространстве и докажем теорему о том, что через любую точку пространства можно провести только одну прямую, параллельную данной.

Далее докажем лемму о двух параллельных прямых, пересекающих плоскость. И с ее помощью докажем теорему о двух прямых, параллельных третьей прямой.

Тема: Параллельность прямых и плоскостей

Урок: Параллельные прямые в пространстве. Параллельность трех прямых

Мы уже изучали параллельные прямые в планиметрии. Теперь нужно дать определение параллельных прямых в пространстве и доказать соответствующие теоремы.

Определение: Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (Рис. 1.).

Обозначение параллельных прямых: a || b.

Рис. 1.

Теорема 1.

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Дано: прямая а,  (Рис. 2.)

Доказать: существует единственная прямая b || a,

Рис. 2.

Доказательство:

Через прямую а и точку  , не лежащую на ней, можно провести единственную плоскость α (Рис. 3.). В плоскости α  можно провести единственную прямую b, параллельную а, проходящую через точку M (из аксиомы планиметрии о параллельных прямых). Существование такой прямой доказано.

Рис. 3.

Докажем единственность такой прямой. Предположим, что существует другая прямая с, проходящая через точку M и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда плоскость β  проходит через точку M и прямую а.

Но через точку M и прямую а проходит единственная плоскость (в силу теоремы 2). Значит, плоскости β и α совпадают.

Из аксиомы параллельных прямых, следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельная заданной прямой. Единственность доказана.

Лемма

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Дано:  а || b,

Доказать:

Рис. 4.

Доказательство: (Рис. 4.)

Существует некоторая плоскость β, в которой лежат параллельные прямые а и b. Точка М принадлежит и плоскости α, и прямой а, которая лежит в плоскости β. Значит, М – общая точка плоскостей α и β. А по третьей аксиоме, существует прямая MN, по которой пересекаются эти две плоскости.

Прямая MN пересекается с прямой b.(так как в противном случае, получается, что прямые MN и b параллельные, то есть a = MN, что невозможно, так как прямая а пересекается с плоскостью α в точке М по условию). То есть точка N – это точка пересечения прямой b и плоскости  α..

          Докажем, что N  — это единственная общая точка прямой b и плоскости α. Допустим, что есть другая точка, но тогда прямая bпринадлежит плоскости α (по второй аксиоме). То есть MN = b, что невозможно, так как прямые а и bпараллельны, а прямая а должна пересекаться с прямой MN. Лемма доказана.

Теорема 2.

Если две прямые параллельны третьей, то они параллельны.

Дано:

 Доказать: .

Рис. 5.

Доказательство: (Рис. 5.)

Выберем произвольную точку К на прямой b. Тогда существует единственная плоскость α, проходящая черезточку К и прямую а. Докажем, что прямая bлежит в плоскости α.

Предположим противное. Пусть прямая bне лежит в плоскости α. Тогда прямая bпересекает плоскость α в точке К. Так как прямые bи с параллельны, то, согласно лемме, прямая с также пересекает плоскость α.

Прямые а и с также параллельны, значит, по лемме, прямая а также пересекает плоскость α, но это невозможно, так как прямая а лежит в плоскости α. Получили противоречие.

То есть, предположение было неверным, а значит, прямая bлежит в плоскости α.

Докажем, что прямые а и b не пересекаются. Предположим противное. Пусть прямые а и bпересекаются в некоторой точке М. Но тогда получается, что через точку М проходят две прямые а и b, параллельные прямой с, что невозможно в силу теоремы 1. Получили противоречие. Значит, прямые а и b не пересекаются.

Мы доказали, что прямые а и b не пересекаются и что существует плоскость α, в которой лежат прямые а и b. Значит, прямые а и bпараллельны (по определению), что и требовалось доказать.

Итак, мы дали определение параллельных прямых и доказали теорему о параллельных прямых в пространстве. Также мы доказали важную лемму о пересечении параллельными прямыми плоскости и с помощью этой леммы доказали теорему: если две прямые параллельны третьей, то они параллельны. Эта теория будет использоваться дальше и для доказательства других теорем, и для решения задач.

Список рекомендованной литературы

1. Геометрия. 10-11 класс : учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М. : Мнемозина, 2008. – 288 с. : ил.

2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.

3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М. : Дрофа, 008. – 233 с. :ил.

Рекомендованные ссылки на ресурсы интернет

1. Якласс (Источник).

2. Scholo.ru (Источник).

3. Шпаргалки (Источник).

Рекомендованное домашнее задание

1. Какие прямые называются параллельными?

2. Докажите, что все прямые, пересекающие две данные параллельные прямые, лежат в одной плоскости.

3. Прямая пересекает прямые AB и BC под прямыми углами. Параллельны ли прямые  AB и BC?

4. Геометрия. 10-11 класс : учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М. : Мнемозина, 2008. – 288 с. : ил.

Задания 1, 2 стр. 21

Источник: https://interneturok.ru/lesson/geometry/10-klass/parallelnost-pryamyh-i-ploskostej/parallelnye-pryamye-v-prostranstve-parallelnost-treh-pryamyh

Взаимное расположение двух прямых в пространстве.Признак скрещивающихся прямых.Угол между скрещивающимися прямыми

Определение параллельных прямых в пространстве

      Все возможные случаи взаимного расположения двух прямых в пространстве представлены в следующей таблице.

ФигураРисунокОпределение
Две пересекающиеся прямыеДве прямые называют пересекающимися прямыми, если они имеют единственную общую точку.
Две параллельные прямыеДве прямые называют параллельными прямыми, если они лежат в одной плоскости и не имеют общих точек
Две скрещивающиеся прямыеДве прямые называют скрещивающимися прямыми, если не существует плоскости, содержащей обе прямые.
Две пересекающиеся прямые
Две прямые называют пересекающимися прямыми, если они имеют единственную общую точку.
Две параллельные прямые
Две прямые называют параллельными прямыми, если они лежат в одной плоскости и не имеют общих точек
Две скрещивающиеся прямые
Две прямые называют скрещивающимися прямыми, если не существует плоскости, содержащей обе прямые.

      С перечисленными в предыдущей таблице случаями взаимного расположения двух прямых в пространстве близко связаны утверждения, представленные в следующей таблице.

ФигураРисунокТип утверждения и формулировка
Две различные точкиАксиома о прямой линии, заданной двумя точкамиЧерез две различные точки проходит одна и только одна прямая линия.
Прямая линия и точка, не лежащая на этой прямойАксиома о параллельных прямыхЧерез точку, не лежащую на прямой,проходит одна и только одна прямая, параллельная этой прямой.
Две пересекающиеся прямыеТеорема о плоскости, определяемой двумя пересекающимися прямымиЧерез две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Две параллельные прямыеТеорема о плоскости, определяемой двумя параллельными прямымиЧерез две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Две различные точки
Аксиома о прямой линии, заданной двумя точкамиЧерез две различные точки проходит одна и только одна прямая линия.
Прямая линия и точка, не лежащая на этой прямой
Аксиома о параллельных прямыхЧерез точку, не лежащую на прямой,проходит одна и только одна прямая, параллельная этой прямой.
Две пересекающиеся прямые
Теорема о плоскости, определяемой двумя пересекающимися прямымиЧерез две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Две параллельные прямые
Теорема о плоскости, определяемой двумя параллельными прямымиЧерез две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Признак скрещивающихся прямых

      Признак скрещивающихся прямых. Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются (рис.1).

Рис.1

      Доказательство. Напомним, что две прямые называют скрещивающимися, если не существует плоскости, содержащей обе эти прямые, и будем доказывать признак скрещивающихся прямых методом «От противного».

      Для этого предположим, что прямая   a,   пересекающая плоскость в точке K, и прямая b, лежащая в плоскости   α  (рис. 1), не являются скрещивающимися. Из этого предположения следует, что существует плоскость, содержащая обе эти прямые. Обозначим эту плоскость буквой  β  и докажем, что плоскость  β  совпадает с плоскостью  α.

 Действительно, поскольку обе плоскости   α  и   β проходят через прямую b и точку K, не лежащую на этой прямой, то они совпадают. Следовательно, прямая a лежит в плоскости прямая a лежит в плоскости. Мы получили противоречие с тем, что по условию прямая a пересекает плоскость прямая a пересекает плоскость, а не лежит в ней.

Доказательство признака скрещивающихся прямых завершено.

Угол между скрещивающимися прямыми

     Углом между скрещивающимися прямыми называют угол между пересекающимися прямыми пересекающимися прямыми, соответственно параллельными параллельными данным скрещивающимся прямым скрещивающимся прямым (рис. 2).

Рис.2

     На рисунке 2 изображены скрещивающиеся прямые   a  и   b. Прямая a' параллельна прямой a, прямая b' параллельна прямой b. Прямые a' и b' пересекаются. Угол   φ  и является углом между скрещивающимися прямыми   a  и   b.

      Задача. В кубе кубе   ABCDA1B1C1D1   найти угол между прямыми   AB1   и   BC1.

      Решение. Поскольку прямая   AB1   пересекает плоскость   BB1C1   в точке   B1,   которая не лежит на прямой   BC1,   то по признаку скрещивающихся прямых прямые   AB1   и   BC1   скрещиваются (рис. 3).

Рис.3

      Для того, чтобы найти угол между прямыми   AB1   и   BC1, проведем в кубе диагональ боковой грани   AD1   и диагональ верхнего основания   D1B1   (рис. 4).

Рис.4

      По определению угла между скрещивающимися прямыми угол   D1AB1   и является углом между прямыми AB1   и   BC1.   Поскольку треугольник   AD1B1   равносторонний, угол   D1AB1   равен   60°.

      Ответ. 60°.

      Замечание. Для более глубокого усвоения понятия «Скрещивающиеся прямые» рекомендуем ознакомиться с разделами нашего сайта «Свойства скрещивающихся прямых» и «Взаимное расположение прямой и плоскости в пространстве. Признак параллельности прямой и плоскости».

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ по математике.

Источник: https://www.resolventa.ru/metod/presentsch.htm

Геометрия_10-1

Определение параллельных прямых в пространстве

Материалы к зачетной работе по теме
«РћСЃРЅРѕРІРЅС‹Рµ понятия Рё аксиомы стереометрии.
Параллельность прямых Рё плоскостей»

Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве.

Слово «стереометрия» РїСЂРѕРёСЃС…РѕРґРёС‚ РѕС‚ греческих слов В«στερεοσВ» — объемный, пространственный Рё В«μετρεοВ» — измерять.

Простейшие фигуры в пространстве: точка, прямая, плоскость.

Плоскость. Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.
РќР° рисунках плоскости изображаются РІ РІРёРґРµ параллелограмма или РІ РІРёРґРµ произвольной области Рё обозначаются греческими буквами α, β, γ Рё С‚.Рґ. Точки Рђ Рё Р’ лежат РІ плоскости β (плоскость β РїСЂРѕС…РѕРґРёС‚ через эти точки), Р° точки M, N, P РЅРµ лежат РІ этой плоскости. Коротко это записывают так: Рђ ∈ β, B ∈ β,

Аксиомы стереометрии и их следствия

Аксиома 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Аксиома 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).
�з аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
Аксиома 3. Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.В таком случае говорят, плоскости пересекаются по прямой.Пример: пересечение двух смежных стен, стены и потолка комнаты.

Некоторые следствия из аксиом

Теорема 1. Через прямую a и не лежащую на ней точку А проходит плоскость, и притом только одна.
Теорема 2. Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна.

Параллельные прямые в пространстве

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Теорема о параллельных прямых.Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Лемма о пересечении плоскости параллельными прямыми.Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Теорема Рѕ трех прямых РІ пространстве.Если РґРІРµ прямые параллельны третьей РїСЂСЏРјРѕР№, то РѕРЅРё параллельны (если a∥c Рё b∥c, то a∥b).

Параллельность прямой и плоскости

Прямая и плоскость называются параллельными, если они не имеют общих точек.

Признак параллельности прямой и плоскости Теорема. Если прямая, не лежащая в данной плоскости, параллельнакакой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Теорема. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.Теорема.Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.

Взаимное расположение прямых в пространстве

Пересекающиеся прямые: лежат в одной плоскости, имеют одну общую точку.Параллельные прямые: лежат в одной плоскости, не имеют общих точек (не пересекаются)Скрещивающиеся прямые: не лежат в одной плоскости, не имеют общих точек (не пересекаются)
Параллельность плоскостей Две плоскости называются параллельными, если РѕРЅРё РЅРµ пересекаются, С‚.Рµ. РЅРµ имеют РЅРё РѕРґРЅРѕР№ общей точки. α∥β.

Признак параллельности РґРІСѓС… плоскостейТеорема. Если РґРІРµ пересекающиеся прямые РѕРґРЅРѕР№ плоскости параллельны РґРІСѓРј пересекающимся прямым РґСЂСѓРіРѕР№ плоскости , то эти плоскости параллельны.Если Р°∥Р°1 Рё b∥b1, то α∥β.

Свойства параллельных плоскостей

Вели α∥β Рё РѕРЅРё пересекаются СЃ γ, то Р°∥b.Если РґРІРµ параллельные плоскости пересечены третьей, то линии РёС… пересечения параллельны.Если α∥β Рё AB∥CD, то РђР’ = CD. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

вернуться РЅР° страницу «РњР°С‚ематика»РІРІРµСЂС…

Источник: http://osiktakan.ru/mg_10-0.htm

Урок 4. параллельность прямых, прямой и плоскости — Геометрия — 10 класс — Российская электронная школа

Определение параллельных прямых в пространстве

Геометрия, 10 класс

Урок №4. Параллельность прямых, прямой и плоскости

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных прямых;
  2. Теорема о единственности прямой, параллельной данной, проходящей через данную точку;
  3. лемма о двух параллельных прямых;
  4. теорему о параллельности трех прямых;
  5. определение параллельных прямой и плоскости;
  6. признаком параллельности прямой и плоскости.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые − прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл.– М.: Просвещение, 2014. 255 с.

Дополнительная литература:

Зив Б. Г. Дидактические материалы. Геометрия 10 кл. – М.: Просвещение, 2014. 96 с.

Глазков Ю. А., Юдина И. И., Бутузов В.Ф. Рабочая тетрадь. Геометрия 10 кл.-М.: Просвещение, 2013. 65 с.

Теоретический материал для самостоятельного изучения

Геометрия, которую мы изучаем, называется евклидовой, по имени древнегреческого ученого Евклида (3 век до нашей эры), который создал целый труд по математике под названием «Начала». В данной книге есть раздел о параллельных прямых.

В советском энциклопедическом словаре слово «параллельность» переводится с греческого языка, как «идущий рядом».

В средние века параллельность обозначалась знаком «=». В 1557 году Р. Рекордом для обозначения равенства был введен знак «=», которым мы пользуемся сейчас, а параллельность стали обозначать «║».

В книге «Начала» определение параллельных прямых звучало так «прямые, лежащие в одной плоскости и будучи бесконечно продолжены в обе стороны, ни с той, ни с другой стороны не пересекаются». Это определение почти не отличается от современного.

В области параллельных прямых работало очень много учёных: Н.И. Лобаческий (18-19 век); Аббас ал-Джаухари (работал в Багдаде в 9 веке); Фадл ал-Найризи (Богдад 10 век); Герард (Италия 12 век); Иоганн Генрих Ламберт (Берлин) и многие другие.

Каково расположение 2-х прямых на плоскости (совпадают, пересекаются, параллельны) (рис. 1 а, б, в).

Перейдем к взаимному расположению 2-х прямых в пространстве. Как и в планиметрии, две различные прямые в пространстве либо пересекаются в одной точке, либо не пересекаются (не имеют общих точек).

Но второй случай допускает две возможности: прямые лежат в одной плоскости (параллельны) или прямые не лежат в одной плоскости.

В первом случае они параллельны, а во втором — такие прямые называются скрещивающимися.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Проиллюстрировать данные определения наглядно нам поможет куб.

Давайте укажем некоторые пары параллельных прямых:

AB||A₁B₁; AB|| CD; A₁B₁||C₁D₁; CD||C₁D₁; AD||A₁D₁; BC||B₁D₁; AD||BC; A₁D₁||B₁C₁.

А теперь рассмотрим некоторые пары скрещивающихся прямых, как мы отметили, они не должны лежать в одной плоскости:

AB A₁D₁; AB B₁C₁; CD A₁D₁; CD B₁C₁; BC C₁D₁; BC A₁B₁; AB B₁C₁; AB A₁D₁.

Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

  1. М и а задают плоскость α
  2. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т.е. в плоскости α.
  3. В плоскости α через точку М проходит прямая, параллельная прямой а, и притом только одна- это нам известно из кураса планиметрии.
  4. На чертеже эта прямая обозначена буквой b .
  5. Следовательно, b-единственная прямая, проходящая через точку М паралельно прямой а.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Аналогично определяется праралельность отрезка и прямой, а так же паралельность двух лучей.

Лемма. Если одна из двух паралельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

  1. Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(а рис.).
  2. Мы знаем, что через параллельные прямые a и b можно провести только одну плоскость β. (теорема)
  1. Так как точка M находится на прямой b, то M также принадлежит плоскости β (б рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая p, которая является прямой пересечения этих плоскостей (4 аксиома).
  1. Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую p, то вторая прямая a тоже пересекает p.

  1. Точку пересечения прямых a и p обозначим за N.

Так как точка N находится на прямой p, то N находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

  1. Значит, прямая a пересекает плоскость α в точке N.

Нам известно из курса планиметрии, что если три прямые лежат в одной плоскости и две из них параллельны третьей, то эти две прямые параллельны. Похожее утверждение имеет место и для трех прямых в пространстве.

Теорема. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: a∥c и b∥c

Доказать: a∥b

Доказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

Пусть прямая b пересекает плоскость α.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость.

Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным.

Значит, прямая b находится в плоскости α.

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны.

Если две точки прямой лежат в данной плоскости, то по аксиоме А₂ вся прямая лежит в этой плоскости. Из этого следует, что возможны три расположения прямой и плоскости:

    1. прямая и плоскость имеют только одну общую точку, т.е. пересекаются
    1. прямая и плоскость не имеют ни одной общей точки

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Обозначение: a||α.

Наглядный пример, который дает представление о прямой, параллельной плоскости- это линия пересечения стены и потолка-она параллельна плоскости пола.

Теорема (Признак параллельности прямой и плоскости)
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой на этой плоскости, то эта прямая параллельна данной плоскости. 

Доказательство:
Доказательство проведем от противного. Пусть a не параллельна плоскости α, тогда прямая a пересекает плоскость в некоторой точке A. Причем A не находится на b, так как a∥b. Согласно признаку скрещивающихся прямых, прямые a и b скрещивающиеся. 

Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.

Существует еще два утверждения, которые используются при решении задач:

  1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
  2. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо тоже параллельна данной плоскости, либо лежит в этой плоскости.

Примеры и разбор решения заданий тренировочного модуля

№1.

Тип задания: Ввод с клавиатуры пропущенных элементов в тексте

Дано: в ∆ АВС КМ − средняя линия, КМ=5; ACFE- параллелограмм.

Найти: EF

Решение: Т.к. КМ − средняя линия, то АС= 2·КМ, то АС=2·7=10

Т.к. ACFE − параллелограмм, то АС=EF=10

Ответ: EF=10

№2.

Тип задания: Единичный / множественный выбор

Точка М не лежит в плоскости ромба ABCD. На отрезке АМ выбрана точка Е так, что MЕ:ЕА=1:3. Точка F – точка пересечения прямой МВ с плоскостью CDE. Найдите АВ, если AD= 8 cм.

    1. АВ=2 см
    2. АВ=4 см
    3. АВ=5 см
    4. АВ=10 см

Решение:

MC

Т.к. AD||BC||FK, следовательно, треугольники MFK и MBC- подобны (по трем углам). Значит

. BC=AD= 8 см;

FK=BC:4=8:4=2

Ответ: 2. АВ=4 см.

Источник: https://resh.edu.ru/subject/lesson/6065/conspect/

Параллельные прямые, признаки и условия параллельности прямых, две прямые параллельны если

Определение параллельных прямых в пространстве

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Параллельные прямые: основные сведения

Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥. Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b. Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b, или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10-11 классов).

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7-9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е.

, чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д.

Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a→=(ax, ay) и b→=(bx, by) являются направляющими векторами прямых a и b;

и nb→=(nbx, nby) являются нормальными векторами прямых a и b, то указанное выше необходимое и достаточное условие запишем так: a→=t·b→⇔ax=t·bxay=t·by или na→=t·nb→⇔nax=t·nbxnay=t·nby или a→, nb→=0⇔ax·nbx+ay·nby=0, где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A1x+B1y+C1=0; прямая b  — A2x+B2y+C2=0. Тогда нормальные векторы заданных прямых будут иметь координаты (А1, В1) и (А2, В2) соответственно. Условие параллельности запишем так:

A1=t·A2B1=t·B2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y=k1x+b1. Прямая b — y=k2x+b2. Тогда нормальные векторы заданных прямых будут иметь координаты (k1, -1) и (k2, -1) соответственно, а условие параллельности запишем так:

k1=t·k2-1=t·(-1)⇔k1=t·k2t=1⇔k1=k2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны.

И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x-x1ax=y-y1ay и x-x2bx=y-y2by или параметрическими уравнениями прямой на плоскости: x=x1+λ·axy=y1+λ·ay и x=x2+λ·bxy=y2+λ·by.

Тогда направляющие векторы заданных прямых будут: ax, ay и bx, by соответственно, а условие параллельности запишем так:

ax=t·bxay=t·by

Разберем примеры.

Пример 1

Заданы две прямые: 2x-3y+1=0 и x12+y5=1. Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x12+y5=1⇔2x+15y-1=0

Мы видим, что na→=(2, -3) — нормальный вектор прямой 2x-3y+1=0, а nb→=2, 15- нормальный вектор прямой x12+y5=1.

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t, при котором будет верно равенство:

2=t·2-3=t·15⇔t=1-3=t·15⇔t=1-3=15

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y=2x+1и x1=y-42. Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x1=y-42 к уравнению прямой с угловым коэффициентом:

x1=y-42⇔1·(y-4)=2x⇔y=2x+4

Мы видим, что уравнения прямых y = 2x + 1 и y = 2x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2x + 1, например, (0, 1), координаты этой точки не отвечают уравнению прямой x1=y-42, а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2x + 1 это вектор na→=(2, -1), а направляющий вектором второй заданной прямой является b→=(1, 2). Скалярное произведение этих векторов равно нулю:

na→, b→=2·1+(-1)·2=0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности.

Иначе говоря, если a→=(ax, ay, az) и b→=(bx, by, bz)являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t, чтобы выполнялось равенство:

a→=t·b→⇔ax=t·bxay=t·byaz=t·bz

Пример 3

Заданы прямые x1=y-20=z+1-3 и x=2+2λy=1z=-3-6λ. Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a→ и b→ заданных прямых имеют координаты: (1, 0, -3) и (2, 0, -6).

Так как:

1=t·20=t·0-3=t·-6⇔t=12, то a→=12·b→.

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/parallelnye-prjamye-priznaki-i-uslovija-parallelno/

Booksm
Добавить комментарий