Определение коэффициента сухого трения

Сила трения. Виды трения. урок. Физика 10 Класс

Определение коэффициента сухого трения

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила  уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы  брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе  брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

,

где  – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления);  – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения. Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где  – модуль силы трения скольжения; N – сила реакции опоры (нормального давления);  – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению.

При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя.

Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

— от размеров тела и его геометрической формы (рис. 14);

— состояния поверхности тела (рис. 15);

— свойства жидкости или газа (рис. 16);

— относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

,

где  – величина относительной скорости;  – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

,

где  – величина относительной скорости;  – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

Дано: ; ;  (движение равномерное)

Найти:

Решение:

Так как тело движется равномерно, то все силы, действующие на него, взаимно уравновешены. На рисунке 19 изображены эти силы ( – сила тяжести,  – сила реакции опоры,  – сила приложенная к телу и направленная горизонтально (считаем, что тело движется влево),  – сила трения скольжения). Считаем, что эти силы отложены из одной точки.

Рис. 19. Иллюстрация к задаче

Сила тяжести уравновешена силой реакции опоры, приложенная внешняя сила уравновешивается силой трения скольжения.

Сила трения скольжения равна:

Следовательно, коэффициент трения равен:

Ответ:.

На этом уроке мы изучили разновидности сил трения. Они бывают двух типов: сухое трение (возникающее при контакте твердых тел) и не сухое (сопротивление движению тела со стороны жидкости или газа). Сухое трение, в свою очередь, делится на три разновидности: трение покоя, трение скольжения, трение качения.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10–11. – М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. – М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «festival.1september.ru» (Источник)
  2. Интернет-портал «5terka.com» (Источник)
  3. Интернет-портал «class-fizika.narod.ru» (Источник)
  4. Интернет-портал «clck.ru» (Источник)

Домашнее задание

  1. Вопросы в конце параграфа 38 (стр. 100); упражнение 7 (2) стр. 102 – Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Мальчик массой 50 кг, скатившись на санках с горки, проехал по горизонтальной дороге до остановки путь 20 м за 10 с. Найти силу трения и коэффициент трения.
  3. Упряжка собак при движении саней по снегу может действовать с максимальной силой 0,5 кН. Какой массы сани с грузом может перемещать упряжка, если коэффициент трения равен 0,1?

Источник: https://interneturok.ru/lesson/physics/10-klass/bsily-v-mehanikeb/sila-treniya-vidy-treniya

Исследовательская работа

Определение коэффициента сухого трения

Канев Михаил Сергеевич

Жуков Иван Алексеевич

Коэффициент трения скольжения и методы его расчёта.

Руководитель: учитель физики Кубасова Маргарита Фёдоровна

Республика Коми, Сосногорский р-он, пгт. Нижний Одес

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 2» пгт. Нижний Одес

10 класс

Исследования по естественно-математическому направлению

Оглавление.

  1. Введение.______________________________________________________стр.2

Основная часть.

  1. Часть 1. Сила трения, виды трения.________________________________стр.4

  2. Часть 2. Методы определения коэффициента трения скольжения

«дерева по дереву»._____________________________________________стр.7

  1. Часть 3. Определение коэффициента трения скольжения

некоторых пар веществ._________________________________________стр.11

  1. Заключение.___________________________________________________стр.13

  2. Список источников информации._________________________________стр.14

  3. Приложения.__________________________________________________стр.15

Введение.

В земных условиях любые движущиеся тела (или приходящие в движение) соприкасаются с веществом окружающей среды, либо с другими телами. При этом возникают силы, оказывающие сопротивление их движению. Силы эти именуются силами трения.

Изучает трение наука трибология. Первые исследования трения были проведены великим итальянским учёным Леонардо да Винчи, более 400 лет назад. Французский учёный Гильом Амонтон изучал трение, открыл в 1699 году законы внешнего трения твердых тел. В 1781 году французским физиком Ш. Кулоном были сформулированы основные законы сухого трения.

В расчетах энергопотерь, износостойкости, динамических характеристик механизмов с парами скольжения существенное значение имеет правильный учет сил трения. Но в большей степени интересна не сила трения, а коэффициент трения.

Коэффициент трения можно определить только экспериментально для определенных пар соприкасающихся веществ, так как он во многом зависит от обработки поверхности. Примерные значения коэффициентов трения уже для многих веществ определены и собраны в таблицы. [3]

Но как это можно сделать, как его определить и вычислить?

Цель работы: изучить методы определения коэффициента трения скольжения.

Задачи, которые мы ставим перед собой следующие:

  1. изучить теоретический материал:

  1. Рассмотреть причины возникновения сил трения

  2. Изучить виды сил трения

  3. Проанализировать от каких факторов зависит трение скольжения

  1. провести опыты по данной теме:

  1. Выяснить, какими методами можно определить коэффициент трения скольжения

Определить коэффициент трения скольжения для некоторых пар веществ

В своей работе мы не будем экспериментально доказывать, что сила трения скольжения зависит от качества обработки поверхности, силы нормальной реакции опоры и не зависит от площади соприкосновения тел, сравнивать величины сил трения между собой — это давно известные факты. Основное внимание мы уделим рассмотрению способов определения коэффициента трения скольжения, а также получим значение коэффициента трения скольжения для некоторых пар веществ.

Методы исследования, которые мы применяем в данной работе – исследовательско-поисковый, аналитический метод при сборе и отборе информации: работа с учебной литературой, с дополнительной литературой по предмету, поиск информации в интернете; лабораторно-репродуктивный: проведение опытов по готовым инструкциям, метод сравнения при анализе результатов.

Актуальность проблемы состоит в том, что в курсе физики общеобразовательной школы с количеством часов 2 урока в неделю нет возможности в полном объёме изучить данный материал. Работа над этой темой позволила нам расширить наши знания по теме «Динамика», закрепить навык решения задач.

Новизна работы заключается в том, что в ходе экспериментов были получены коэффициенты трения скольжения для пар веществ не указанных в справочных данных.

Эта работа будет представлять интерес для учащихся, увлеченных физикой.

Часть 1

Сила трения, виды трения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Благодаря ей мы можем ходить, лежать, стоять, принимать пищу, держать предметы в руках, т.е. жить той жизнью, к которой мы привыкли.

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем.

Но, несмотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения.

Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя — статическое трение и кинематическое трение: скольжения и качения. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места.

Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим.

В противном случае, трение называется «жидким».

Любые движущиеся тела (или приходящие в движение) соприкасаются с веществом окружающей среды либо с другими телами и при этом силы трения оказывают сопротивление их движению, они переводят часть механической энергии движения во внутреннюю энергию, что сопровождается нагреванием тел и окружающей среды.

Основная причина возникновения сил трения: неровности любых тел: при соприкосновении зазубрины одного всегда цепляются за шероховатости другого. Для идеально гладких (например, тщательно отшлифованных) поверхностей, плотно прилегающих друг к другу, действуют законы молекулярного трения, основанного на взаимном притяжении молекул. Силы трения имеют электромагнитную природу. [1]

В 1781 году французским физиком Ш. Кулоном были сформулированы основные законы сухого трения. Опытным путем ученый установил, что сила трения F, возникающая при скольжении, прямо пропорциональна действующей на тело силе N нормального давления. Эта зависимость выглядит следующим образом:

F = µ ∙ N

где величина μ – коэффициент трения (коэффициент пропорциональности).

Его величина была вычислена так: тело помещалось на наклонную плоскость и путем изменения угла наклона достигалось его равномерное движение. При этом сила трения равнялась движущей силе F = mg ∙ sin a. Величина силы нормального давления N = mg ∙ cos a. Следовательно, μ = tg a.

Коэффициент трения является тангенсом угла наклона поверхности, по которой тело скользит равномерно, т. е. с постоянной скоростью. На практике его значение может быть вычислено лишь приблизительно.

Поверхности тел, как правило, в той или иной степени загрязнены, имеют окислы, ржавчину и другие включения. [2]

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться — началу движения, как принято говорить, мешает сила трения покоя.

Тело начнет движение только тогда, когда внешняя сила F превысит максимальное значение, которое может иметь сила трения покоя. Трение покоя – сила трения, препятствующая возникновению движения одного тела по поверхности другого.

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения. Сила трения скольжения всегда направлена противоположно

движению тела. При изменении направления скорости изменяется и направление силы трения.

Таким образом, трение покоя проявляется в том случае, когда тело, находившееся в состоянии покоя, приводится в движение. Коэффициент трения покоя обозначается μ0.

Трение скольжения проявляется при наличии движения тела, и оно значительно меньше трения покоя. μск < μ0

Трение качения проявляется в том случае, когда тело катится по опоре, и оно значительно меньше трения скольжения.

μкач

Источник: https://infourok.ru/issledovatelskaya_rabota_koefficient_treniya_skolzheniya_i_metody_ego_opredeleniya-469075.htm

Как найти коэффициент трения

Определение коэффициента сухого трения

Приводим 2 варианта нахождения коэффициента трения — зная силу трения и массу тела или зная угол наклона. Для обоих вариантов вы найдете удобные калькуляторы и формулы для расчета.

Следует помнить, что коэффициент трения (μ) величина безразмерная, то есть не имеет единицы измерения.

Коэффициент трения зависит от качества обработки трущихся поверхностей, скорости движения тел относительно друг друга и материала соприкасающихся поверхностей. В большинстве случаев коэффициент трения находится в пределах от 0,1 до 0,5 (см. таблицу).

Через силу трения и массу

{\mu= \dfrac{F_{тр}}{m g}}

Формула для нахождения коэффициента трения по силе трения и массе тела:

{\mu= \dfrac{F_{тр}}{m g}}, где μ — коэффициент трения, Fтр — сила трения, m — масса тела, g — ускорение свободного падения.

Через угол наклона

{\mu = tg(\alpha)}

Формула для нахождения коэффициента трения по углу наклона поверхности:

{\mu = tg(\alpha)}, где μ — коэффициент трения, α — угол наклона поверхности скольжения.

Таблица коэффициентов трения скольжения для разных пар материалов

Трущиеся материалы (при сухих поверхностях) Коэффициенты трения покоя при движении
Резина по сухому асфальту0,95-1,00,5-0,8
Резина по влажному асфальту0,25-0,75
Алюминий по алюминию0,94
Бронза по бронзе0,20
Бронза по чугуну0,21
Дерево по дереву (в среднем)0,650,33
Дерево по камню0,46-0,60
Дуб по дубу (вдоль волокон)0,620,48
Дуб по дубу (перпендикулярно волокнам)0,540,34
Железо по железу0,150,14
Железо по чугуну0,190,18
Железо по бронзе (слабая смазка)0,190,18
Канат пеньковый по деревянному барабану0,40
Канат пеньковый по железному барабану0,25
Каучук по дереву0,800,55
Каучук по металлу0,800,55
Кирпич по кирпичу (гладко отшлифованные)0,5-0,7
Колесо со стальным бандажем по рельсу0,16
Лед по льду0,05-0,10,028
Метал по аботекстолиту0,35-0,50
Метал по дереву (в среднем)0,600,40
Метал по камню (в среднем)0,42-0,50
Метал по металу (в среднем)0,18-0,20
Медь по чугуну0,27
Олово по свинцу2,25
Полозья деревянные по льду0,035
Полозья обитые железом по льду0,02
Резина (шина) по твердому грунту0,40-0,60
Резина (шина) по чугуну0,830,8
Ремень кожаный по деревянному шкиву0,500,30-0,50
Ремень кожаный по чугунному шкиву0,30-0,500,56
Сталь по железу0,19
Сталь(коньки) по льду0,02-0,030,015
Сталь по райбесту0,25-0,45
Сталь по стали0,15-0,250,09 (ν = 3 м/с) 0,03 (ν = 27 м/с)
Сталь по феродо0,25-0,45
Точильный камень (мелкозернистый) по железу1
Точильный камень (мелкозернистый) по стали0,94
Точильный камень (мелкозернистый) по чугуну0,72
Чугун по дубу0,650,30-0,50
Чугун по райбесту0,25-0,45
Чугун по стали0,330,13 (ν = 20 м/с)
Чугун по феродо0,25-0,45
Чугун по чугуну0,15

Просмотров страницы: 29686

Источник: https://mnogoformul.ru/kak-nayti-koyefficient-treniya

Сила трения — виды, формула и примеры расчета

Определение коэффициента сухого трения

Сила трения появляется, когда две поверхности соприкасаются и движутся относительно друг друга. Процесс изучает физика, в частности механика. Она рассматривает основные законы, которым поддаются тела при их движении и взаимодействии, выясняет причины, влияющие на изменение положения предметов.

Определение и природа силы трения

Сила трения Fтр возникает при касании двух тел. Она создает препятствия для их дальнейшего движения. 

Это происходит при взаимодействии атомов и молекул, из которых состоят предметы. Поэтому природа ее появления – электромагнитные волны. Она действует в двух направлениях, направлена на оба тела. 

При этом ее значение по модулю не изменяется. Если на одно из двух соприкасающихся тел действует сила, то она оказывает влияние и на другое.

На предмет, остающийся без движения, влияет сила трения покоя. Пока ее значение не превысит внешнее вмешательство, пытающееся сместить предмет, он не изменит положение. 

Когда же ее величина возрастет до определенного предела, произойдет перемещение в новое место. Тогда появляется сила трения скольжения, ее направление противоположно смещению предмета.

Благодаря действию трения невозможно перемещаться вечно. Движение закончится через определенное время. Если же внешняя сила вновь превысит значение трения покоя, то перемещение возобновится.

Виды силы трения

Основные виды силы трения:

  1. Покоя. Она сопротивляется внешним факторам, пытающимся сдвинуть тело. При их отсутствии ее значение приравнивают к нулю.

  2. Скольжения. Она находится в прямой зависимости от коэффициента трения и значения силы, с которой поверхность оказывает давление на тело. Ее направление действия всегда перпендикулярно поверхности. Она обычно ниже, чем максимальная сила трения покоя.

  3. Качения. Она возникает, когда одно тело катится по поверхности другого. Например, при соприкосновении колеса едущего велосипеда с дорогой или при работе подшипникового механизма.

    Она оказывает гораздо меньшее действие, чем трение скольжения, если остальные условия считать неизменными. Ее открытие стало незаменимым для техники.

    Колеса и круглые детали, вращающиеся и меняющие положение, являются основой многих механизмов и работы транспортных средств.

  4. Верчения. Она появляется, когда один предмет начинает вращаться по поверхности другого.

Само трение может быть нескольких видов:

  1. Сухим. Проявляется при соприкосновении твердых поверхностей. На них не наблюдаются другие материалы и слои. Такое в природе и жизни встречается крайне редко.

  2. Вязким. Его еще называют жидкостным. Возникает при взаимодействии твердого тела с жидкостью или газом. Они могут течь мимо неподвижного предмета. Или он перемещается в жидкой или газообразной субстанции. Например, лодку тянут на канате по реке. Тело заставляет перемещаться верхний слой жидкости или газа. Словно тянет его за собой.

    Он в свою очередь действует на другой слой, расположенный ниже. Чем дальше от тела, тем ниже скорость движения слоев. Это происходит из-за уменьшения влияния твердого предмета. Между слоями возникает сила трения, так как тела движутся относительно друг друга.

    Она приводит к их торможению, а значит и действует на твердое тело, останавливая его. Температура определяет степень вязкости веществ. Например, она снижается при нагревании масла. Это наглядно видно на работе автомобильного мотора.

    Когда машина долго находилась на холоде, двигатель нужно сначала разогреть, чтобы увеличить скорость его вращения. У газов обратная зависимость. Вязкость растет с увеличением температуры.

  3. Смешанным. Оно наблюдается, когда между телами, соприкасающимися поверхностями, есть слой смазки.


Также трение разделяют на внутреннее и внешнее. Последнее возникает при взаимодействии твердых тел. Значит к нему можно отнести сухое трение. 

Внутреннее же характеризуется вязкостью. Именно при взаимодействии жидкостей или газа смещение происходит внутри одного тела, когда слои движутся относительно друг друга.

Как найти силу трения

Чтобы найти силу трения, нужно знать коэффициент трения k, зависящий от свойств поверхности. Это постоянная величина, значение которой берется из таблиц. 

Также понадобится сила реакции опоры N. Нужная величина определяется произведением двух значений:

Fтр = k * N

Буквой k обозначается коэффициент. Также можно встретить символ µ. Обычно он находится в пределах от 0,1 до 1. 

Например, для резины, перемещающейся по сухому асфальту, при движении он колеблется от 0,5 до 0,8. При скольжении металла по дереву – 0,4, железа по чугуну – 0,18.

Сила реакции опоры не отличается от величины силы тяжести, зависящей от веса тела. Поэтому ее значение равно произведению массы тела (m) на ускорение свободного падения (g).

N = m * g

Это постоянная величина, составляющая 9,8 м/с². Это правило действует, когда приходится иметь дело с горизонтальной поверхностью. Сила тяжести и реакция опоры уравновешивают друг друга. Поэтому их считают равными величинами.

Если же происходит движение по наклонной плоскости, ход рассуждений несколько меняется. На предмет по-прежнему действуют силы тяжести и реакция опоры, но не в одном направлении.

При знании угла наклона плоскости к горизонту, формула трансформируется и приобретает следующий вид:

N = k * m *·g *·cosα

Здесь необходимо руководствоваться тем, что косинус это отношение катета, прилежащего к углу, к гипотенузе треугольника. Это один из тех случаев, доказывающих тесную взаимосвязь физики и тригонометрии.

Пример решения задачи

Задача, на применение полученных знаний, связанных с силой трения, поможет закрепить материал.

Условие задачи. На полу стоит коробка весом 7 кг. Коэффициент трения между ней и полом составляет 0,3. К коробке прикладывают силу, равную 14 Н. Сдвинется ли она с места?

Решение.

Коробка находится на горизонтальной плоскости. Она подвержена действию силы тяжести, которую уравнивает реакция опоры. Они направлены перпендикулярно коробке и полу. Значит, для определения силы реакции опоры, нужно умножить массу коробки на ускорение:

N = m * g;

N = 10 кг * 9,8 м/с² = 98 кг * м/с² = 98 Н;

Fтр = k * N;

Fтр = 0,3·* 98Н = 29,4 Н.

Ответ: полученное значение превышает усилия, приложенные к коробке со стороны, так как 29,4 Н > 14 Н. Значит, она останется на первоначальном месте.

Сила трения присутствует в жизни постоянно. Она мешает предметам сдвинуться с места и противится их длительному скольжению и перемещению. Ее значение зависит от поверхностей, с которыми приходится соприкасаться, их свойств и характеристик. 

Площадь соприкосновения не учитывается, зато имеет значение положение тела. Например, сила, возникающая при движении автомобиля по ровной поверхности, отличается от величины при перемещении по горной местности, расположенной под углом к горизонту. А если машине приходится двигаться на мокрой дороге, то значение снова меняется.

Источник: https://nauka.club/fizika/sila-treniya.html

Определение коэффициента сухого трения

Определение коэффициента сухого трения

Исследуем, от чего зависит сила трения. Для этого воспользуемся гладкой деревянной доской, деревянным бруском и динамометром.

Рисунок 1.

Сначала проверим, зависит ли сила трения от площади поверхности соприкосновения тел. Положим брусок на горизонтально расположенную доску гранью с самой большой площадью поверхности.

Прикрепив к бруску динамометр, будем плавно увеличивать силу, направленную вдоль поверхности доски, и заметим максимальное значение силы трения покоя. Затем поставим тот же брусок на другую грань с меньшей площадью поверхности и вновь измерим максимальное значение силы трения покоя.

Опыт показывает, что максимальное значение силы трения покоя не зависит от площади поверхности соприкосновения тел.

Повторив такие же измерения при равномерном движении бруска по поверхности доски, убеждаемся, что сила трения скольжения также не зависит от площади поверхности соприкосновения тел.

Исследование зависимости силы трения от силы давления

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Поставим на первый брусок второй такой же.

Рисунок 2.

Этим мы увеличим силу, перпендикулярную поверхности соприкосновения тела и стола (ее называют силой давления~$\overline{P}$). Если теперь мы вновь измерим максимальную силу трения покоя, то увидим, что она увеличилась в два раза. Поставив на два бруска третий, обнаруживаем, что максимальная сила трения покоя увеличилась в три раза.

На основании таких опытов можно сделать вывод, что максимальное значение модуля силы трения покоя прямо пропорционально силе давления.

Взаимодействие тела и опоры вызывает деформацию и тела, и опоры.

Силу упругости $\overline{N}$, возникающую в результате деформации опоры и действующую на тело, называют силой реакции опоры. По третьему закону Ньютона сила давления и сила реакции опоры равны по модулю и противоположны по направлению:

Рисунок 3.

Поэтому предыдущий вывод можно сформулировать так: модуль максимальной силы трения покоя пропорционален силе реакции опоры:

Греческой буквой $\mu$ обозначен коэффициент пропорциональности, называемый коэффициентом трения (соответственно покоя или скольжения).

Опыт показывает, что модуль силы трения скольжения $F_{mp} $, как и модуль максимальной силы трения покоя, пропорционален модулю силы реакции опоры:

Максимальное значение силы трения покоя примерно равно силе трения скольжения, приближенно равны также коэффициенты трения покоя и скольжения.

Безразмерный коэффициент пропорциональности $\mu$ зависит:

  • от природы трущихся поверхностей;
  • от состояния трущихся поверхностей, в частности от их шероховатости;
  • в случае скольжения коэффициент трения является функцией скорости.

Пример 1

Определите минимальное значение тормозного пути автомобиля, начавшего торможение на горизонтальном участке шоссе при скорости движения $20$ м/с. Коэффициент трения равен 0,5.

Дано: $v=20$ м/с, $\mu =0,5$.

Найти: $S_{\min } $-?

Решение: Тормозной путь автомобиля будет иметь минимальное значение при максимальном значении силы трения. Модуль максимального значения силы трения равен:

\[(F_{mp} )_{\max } =\mu mg\]

Вектор силы $F_{mp} $при торможении направлен противоположно векторам скорости $\overline{v}_{0} $и перемещения $\overline{S}$.

При прямолинейном равноускоренном движении проекция перемещения $S_{x} $автомобиля на ось, параллельную вектору скорости $\overline{v}_{0} $ автомобиля, равна:

\[S_{x} =v_{0x} t+\frac{at{2} }{2} .\]

Переходя к модулям величин, получаем:

\[S=v_{0} t-\frac{at{2} }{2} .\]

Значение времени можно найти из условия:

\[v_{1} =v_{0} -at=0,\] \[t=\frac{v_{0} }{a} .\]

Тогда для модуля перемещения получаем:

\[S=\frac{v_{0} {2} }{2a} .\]

Так как:

$a=\frac{(F_{mp} )_{\max } }{m} =\frac{\mu mg}{m} =\mu g$,то

$S_{\min } =\frac{v_{0} {2} }{2\mu g} \approx 40$м.

Ответ: $S_{\min } =40$ м.

Пример 2

Какую силу нужно приложить в горизонтальном направлении к тепловозу массой $8$т, чтобы уменьшить его скорость на $0,3$ м/с за $5$ секунд? Коэффициент трения равен $0,05.$

Дано: $m=8000$ кг, $\Delta v=0,3$ м/с, $\mu =0,05$.

Найти: $F$-?

Решение:

Рисунок 4.

Запишем уравнение движения тела:

\[m\overline{a}=\overline{F}+\overline{F}_{mp} .\]

Спроецируем на ось х силы и ускорение:

\[ma=F+F_{mp} .\]

Поскольку $F_{mp} =\mu mg$, а $a=\frac{v-v_{0} }{t} =\frac{\Delta v}{t} $, получим:

$F=m(\frac{\Delta v}{t} -\mu g)=3440$Н

Ответ: $F=3440$Н.

Источник: https://spravochnick.ru/fizika/dinamika/opredelenie_koefficienta_suhogo_treniya/

Трение, его виды. Трение скольжения и трение качения. Сила и коэффициент трения. Борьба с износом трущихся деталей

Определение коэффициента сухого трения

Трение (фрикционное взаимодействие) – процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде.

Изучением процессов трения занимается раздел физики, который называется трибология (механика фрикционного взаимодействия).

Трение принято разделять на:

  • сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями / смазками (в том числе и твёрдыми смазочными материалами) – очень редко встречающийся на практике случай; характерная отличительная черта сухого трения – наличие значительной силы трения покоя;
  • граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) – наиболее распространённый случай при трении скольжения;
  • жидкостное (вязкое), возникающее при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины – как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
  • смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.

Сила трения – это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению.

Причины возникновения силы трения:

  • шероховатость соприкасающихся поверхностей;
  • взаимное притяжение молекул этих поверхностей.

Трение скольжения – сила, возникающая при поступательном перемещении одного из контактирующих / взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

Трение качения – момент сил, возникающий при качении одного из двух контактирующих / взаимодействующих тел относительно другого.

Трение покоя – сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга.

Сила трения прямо пропорциональна силе нормальной реакции, то есть зависит от того, насколько сильно тела прижаты друг к другу и от их материала, поэтому основной характеристикой трения является коэффициент трения, который определяется материалами, из которых изготовлены поверхности взаимодействующих тел. [1]

Износ – изменение размеров, формы, массы или состояния поверхности изделия вследствие разрушения (изнашивания) поверхностного слоя при трении. [2]

Работа любой машины неизбежно сопровождается трением при относительном движении её частей, поэтому полностью устранить износ невозможно. Величина износа при непосредственном контакте поверхностей прямо пропорциональна работе сил трения.

Абразивный износ частично вызывается действием пыли и грязи, поэтому очень важно содержать оборудование в чистоте, особенно её трущиеся части.

Для борьбы с износом и трением заменяют одни металлы другими, более устойчивыми, применяют термическую и химическую обработку трущихся поверхностей, точную механическую обработку, а также заменяют металлы различными заменителями, изменяют конструкцию, улучшают смазку (изменяют вид, вводят присадки) и т.д.

В машинах стремятся не допускать непосредственного трения скольжения твёрдых поверхностей, для чего или разделяют их слоем смазки (жидкостное трение), или же вводят между ними добавочные элементы качения (шариковые и роликовые подшипники).

Основное правило конструирования трущихся деталей машин состоит в том, что более дорогой и трудно заменяемый элемент трущейся пары (вал) изготовляют из более твёрдого и более износоустойчивого материала (твёрдая сталь), а более простые, дешёвые и легко заменяемые части (вкладыши подшипников) изготовляют из сравнительно мягкого материала с небольшим коэффициентом трения (бронза, баббит).

Большинство деталей машин выходят из строя именно вследствие износа, поэтому уменьшение трения и износа даже на 5-10% даёт огромную экономию, что имеет исключительное значение. [3]

Вопросы для контроля

  1. Что такое трение?
  2. Какие существуют разновидности трения?
  3. Что приводит к возникновению силы трения?
  4. Как классифицируют трение в зависимости от действующих сил?
  5. Что такое износ и как с ним борются?

Источник: https://eam.su/trenie-ego-vidy-trenie-skolzheniya-i-trenie-kacheniya-sila-i-koefficient-treniya-borba-s-iznosom-trushhixsya-detalej.html

Booksm
Добавить комментарий