Однородное и неоднородное магнитное поле

Однородное и неоднородное магнитное поле

Однородное и неоднородное магнитное поле

Эмпирически показано, что перемещающиеся заряды действуют друг на друга иначе, чем стационарные. Помимо взаимодействия при помощи электрического поля, движущиеся заряды оказывают действия друг на друга магнитным полем.

Прежде чем говорить об однородности или неоднородности магнитного поля следует определить с помощью каких основных физических величин можно количественно описывать магнитное поле. Рассмотрим такие характеристики магнитного поля как:

  • Вектор магнитной индукции поля.
  • Вектор напряженности магнитного поля.
  • Индукция магнитного поля

Магнитная сила ($\vec{F}_{m})$), которая оказывает воздействие на элементарный заряд q, может быть найдена как:

$\vec{F}_{m}=q\left[ \vec{v}\vec{B} \right]\left( 1 \right)$

где $\vec{v}$– скорость перемещения частицы. Величину силы (1) определим:

$F_{m}=qvB\sin {\alpha \, \left( 2 \right),}$

где $\alpha =\hat{\vec{v}\vec{B}}$.

Уравнение (1) указывает нам на то, что магнитная сила всегда нормальна к вектору скорости и вектору магнитной индукции $\vec{B} $ Если движется положительный заряд, то векторы $\vec{F}_{m}$, $\vec{v}$, $\vec{B}$ связывает правило правого винта.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Вектор магнитной индукции ($\vec{B}$) является характеристикой силового действия магнитного поля. Величина магнитной индукции численно равна максимальной магнитной силе, которая действует на частицу с зарядом 1 Кл, которая движется со скоростью 1 м/с в вакууме, нормально вектору магнитной индукции.

Для магнитных полей выполняется принцип суперпозиции: магнитное поле, которое создается системой перемещающихся зарядов или рядом токов, находят как векторную сумму магнитных полей, которые созданы каждым отдельным источником поля.

Величина магнитной индукции поля зависит от магнитных свойств вещества, в котором поле локализовано. В веществе магнитное поле является суперпозицией внешнего магнитного поля и магнитных полей, создаваемых молекулярными токами.

Определение 1

Магнитное поле называют постоянным, если оно неизменно во времени.

Магнитные поля можно классифицировать, разделяя поля на:

  • однородные;
  • неоднородные.

Определение 2

Магнитное поле называют однородным, если векторы магнитной индукции во всех точках этого поля одинаковы:

$\vec{B}$=const.

Если $\vec{B}$≠const, то такое магнитное поле называется неоднородным.

Магнитное поле, как и электрическое можно изобразить графически при помощи силовых линий. Это делают для наглядности.

Линии магнитной индукции

Силовые линии магнитного поля называются линиями магнитной индукции. Касательные к этим линиям в любых точках имеют направления аналогичные направлениям векторов магнитной индукции в этих же точках.

Например, силовые линии прямого тока – это окружности с центрами на оси тока (рис.1).

Рисунок 1. Силовые линии прямого тока. Автор24 — интернет-биржа студенческих работ

У всех постоянных магнитных полей силовые линии замкнутые (или начинаются и заканчиваются в бесконечности). Это свойство качественного отличия постоянного электрического поля от магнитного.

Направление силовых линий магнитного поля связано с правилом буравчика.

Силовые линии постоянных магнитов начинаются на его северных полюсах и приходят к южным полюсам. Внутри постоянных магнитов силовые линии замыкаются.

Представление магнитных полей при помощи линий индукции говорит не только о направлении $\vec{B}$, но и модуле магнитной индукции.

Линии магнитной индукции магнитного поля наносят на чертеж, изображая поле, такой густоты, что количество их, пронизывающих единичную площадку, нормальную к этим линиям, было пропорционально модулю магнитной индукции.

На таких чертежах там, где магнитная индукция увеличивается по модулю, силовые линии сгущаются. Там, где модуль магнитной индукции уменьшается, силовые линии разрежаются.

Определение 3

Количество силовых линий, которые пересекают поверхность, называют магнитным потоком:

$Ф=\int\limits_S {\vec{B}d\vec{S}\left( 3 \right).}$

В однородном магнитном поле силовые линии изображаются как система параллельных прямых, находящихся на равных расстояниях (рис.2).

Рисунок 2. Однородное магнитное поле. Автор24 — интернет-биржа студенческих работ

Отличительные черты однородного магнитного поля:

  1. Силовые линии магнитного поля — это параллельные прямые.
  2. Плотность линий магнитной индукции везде одна.
  3. Сила воздействия поля на магнитную стрелку в любой точке поля одинакова по модулю и направлению.

Неоднородное магнитное поле изображено на рис.3.

Рисунок 3. Неоднородное магнитное поле. Автор24 — интернет-биржа студенческих работ

Отличительные черты неоднородного магнитного поля:

  1. Искривленность линий магнитной индукции.
  2. В различных точках поля густота силовых линий различны.
  3. Сила воздействия магнитного поля на магнитную стрелку является разной в разных точках поля по модулю и направлению.

Напряженность магнитного поля

Если магнитное поле находится в веществе (магнитная проницаемость $\mu e 1)$;), то в таком веществе происходит процесс намагничивания. В этом случае во всем объеме вещества возникают молекулярные токи, порождающие свое магнитное поле. Магнитное поле в веществе получается равным сумме внешнего поля (или поля в вакууме) $\vec{B}_{0}$ и поля молекулярных токов $\vec{B}_{mol}$:

$\vec{B}=\vec{B}_{0}+\vec{B}_{mol}\left( 4 \right)$

Магнитные свойства вещества характеризует такая физическая величина, как магнитная проницаемость $\mu$:

$\mu =\frac{B}{B_{0}}\left( 5 \right)$.

Вектор напряженности магнитного поля ($\vec{H}$) — это комбинация разных физических величин, которые относятся к полю и веществу, и, следовательно, физического смысла не имеет:

$\vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{P}_{m}\left( 6 \right)$

где $\vec{P}_{m}$ – вектор намагниченности (вектор интенсивности намагничения вещества). Однако вектор напряженности является количественной характеристикой магнитного поля, которая не зависит от магнитных свойств вещества, в котором его рассматривают. Применение $\vec{H}$ упрощает количественные описания магнитного поля в веществе.

Связь между $\vec{B}$ и $\vec{H}$ является линейной, если вещество считают изотропным:

$\vec{B}=\mu \mu_{0}\vec{H}\left( 7 \right)$.

Для магнитного поля в однородном изотропном магнетике напряженность магнитного поля не зависит от магнитной проницаемости вещества и равна напряженности в избранной точке поля для вакуума, если поле создают те же источники.

Для однородного магнитного поля имеем:

$\vec{H}=const (8)$.

Относительно неоднородного магнитного поля можно сказать, что:

$\vec{H}$≠const (9).

Примеры однородных магнитных полей

Однородных магнитных полей встречается совсем немного. К однородным магнитным полям относят:

  • магнитное поле внутри полосового магнита,
  • внутри длинного соленоида, если его длину можно считать намного большей, чем его диаметр.

Примеры неоднородных магнитных полей

К неоднородным магнитным полям относится большинство магнитных полей, например:

  • магнитное поле проводника с током,
  • вокруг постоянного магнита,
  • поле тороида,
  • магнитное поле витка с током и т.д.

Источник: https://spravochnick.ru/fizika/magnitnoe_pole/odnorodnoe_i_neodnorodnoe_magnitnoe_pole/

Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле (Ерюткин Е.С.). урок. Физика 9 Класс

Однородное и неоднородное магнитное поле

Темой этого урока будет магнитное поле и его графическое изображение. Мы обсудим неоднородное и однородное магнитное поле. Для начала дадим определение магнитному полю, расскажем, с чем оно связано и какими оно обладает свойствами. Научимся изображать его на графиках. Также узнаем, как определяется неоднородное и однородное магнитное поле. 

Cегодня мы в первую очередь повторим, что такое магнитное поле. Магнитное поле – силовое поле, которое образуется вокруг проводника, по которому протекает электрический ток. Оно связано с движущимися зарядами.

Теперь необходимо отметить свойства магнитного поля. Вы знаете, что с зарядом связано несколько полей. В частности, электрическое поле. Но мы будем обсуждать именно магнитное поле, создаваемое движущимися зарядами. У магнитного поля несколько свойств. Первое: магнитное поле создается движущимися электрическими зарядами.

Иными словами, магнитное поле образуется вокруг проводника, по которому протекает электрический ток. Следующее свойство, которое говорит, как магнитное поле определяется. Определяется оно по действию на другой движущийся электрический заряд. Или, говорят, на другой электрический ток. Наличие магнитного поля мы можем определить по действию на стрелку компаса, на т.

н. магнитную стрелку.

Еще одно свойство: магнитное поле оказывает силовое действие. Поэтому говорят, что магнитное поле материально.

Эти три свойства являются отличительными чертами магнитного поля. После того, как мы определились с тем, что такое магнитное поле, и определили свойства такого поля, необходимо сказать, как магнитное поле исследуют.

В первую очередь магнитное поле исследуется при помощи рамки с током.

Если мы возьмем проводник, сделаем из этого проводника круглую или квадратную рамку и по этой рамке будем пропускать электрический ток, то в магнитном поле эта рамка будет определенным образом поворачиваться.

Рис. 1. Рамка с током поворачивается во внешнем магнитном поле

По тому, как поворачивается эта рамка, мы можем судить о магнитном поле. Только здесь есть одно важное условие: рамка должна быть очень маленькая или она должна быть очень малых размеров по сравнению с расстояниями, на которых мы изучаем магнитное поле. Такую рамку называют контур с током.

Исследовать магнитное поле мы можем и при помощи магнитных стрелок, размещая их в магнитном поле и наблюдая за их поведением.

Рис. 2. Действие магнитного поля на магнитные стрелки

Следующее, о чем мы будем говорить, о том, как можно изобразить магнитное поле.

В результате исследований, которые были проведены в течение долгого времени, стало понятно, что магнитное поле удобно изображать при помощи магнитных линий.

Чтобы пронаблюдать магнитные линии, проделаем один эксперимент. Для нашего эксперимента потребуется постоянный магнит, металлические железные опилки, стекло и лист белой бумаги.

Рис. 3. Железные опилки выстраиваются вдоль линий магнитного поля

Магнит накрываем стеклянной пластиной, а сверху кладем лист бумаги, белый лист бумаги. Сверху на лист бумаги сыплем железные опилки. В результате будет видно, как проявляются линии магнитного поля.

То, что мы увидим, – это линии магнитного поля постоянного магнита. Их еще называют иногда спектром магнитных линий. Заметьте, что линии существуют по всем трем направлениям, не только в плоскости.

Магнитная линия – воображаемая линия, вдоль которой выстраивались бы оси магнитных стрелок.

Рис. 4. Схематическое изображение магнитной линии

Посмотрите, на рисунке представлено следующее: линия изогнутая, направление магнитной линии определяется направлением магнитной стрелки. Направление указывает северный полюс магнитной стрелки. Очень удобно изображать линии именно при помощи стрелок.

Рис. 5. Как обозначается направление силовых линий

Теперь поговорим о свойствах магнитных линий. Во-первых, у магнитных линий нет ни начала, ни конца. Это линии замкнутые. Раз магнитные линии замкнуты, то не существует магнитных зарядов.

Второе: это линии, которые не пересекаются, не прерываются, не свиваются каким-либо образом. При помощи магнитных линий мы можем характеризовать магнитное поле, представить себе не только его форму, но и говорить о силовом воздействии. Если изображать большую густоту таких линий, то в этом месте, в этой точке пространства, у нас силовое действие будет больше.

Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно. Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным. В заключение урока хотелось бы обратить ваше внимание на следующие рисунки.

Рис. 6. Неоднородное магнитное поле

Во-первых, теперь мы уже знаем, что магнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.

На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.

Рис. 7. Однородное магнитное поле

Однородное магнитное поле – это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.

Неоднородноемагнитное полеОднородноеМагнитное поле
Сила, действующая в разных точкахРазличнаОдинакова (как по модулю, так и по направлению)
Линии магнитного поляИскривлены, их густота различнаПараллельны, их густота одинакова
ПримерыПоле магнита вне егоПоле прямолинейного проводника с токомПоле внутри длинной катушки с большим числом витков. Поле внутри магнита

Список дополнительной литературы:

Белкин И.К. Электрическое и магнитное поля // Квант. — 1984. — № 3. — С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. — 2009. — № 3. — С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974

Источник: https://interneturok.ru/lesson/physics/9-klass/elektromagnitnye-yavleniya/magnitnoe-pole-i-ego-graficheskoe-izobrazhenie-neodnorodnoe-i-odnorodnoe-magnitnoe-pole-eryutkin-e-s

Физика 9 кл. Неоднородное и однородное магнитное поле — Класс!ная физика

Однородное и неоднородное магнитное поле

1. Какое магнитное поле называется однородным? и где оно существует?

Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Например: Однородное магнитное поле существует: а) внутри соленоида, т. е.

проволочной цилиндрической катушки с током, если длина соленоида значительно больше его диаметра.

б) внутри постоянного полосового магнита в центральной его части.

2. Какое магнитное поле называется неоднородным? и где оно существует?

Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке. Например: Неоднородное магнитное поле существует: а) снаружи полосового магнита, б) снаружи соленоида (катушки с током),

в) вокруг прямого проводника с током.

3. Что вы знаете о направлении и форме линий поля полосового магнита?

Магнитное поле постоянного полосового магнита: Магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.

Вне магнита магнитные линии расположены наиболее густо у его полюсов. Это значит, что возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита.

Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке. Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку. в разных точках поля может быть различной как по модулю, так и по направлению.

Поле постоянного полосового магнита является неоднородным снаружи магнита и однородным внутри его центральной части..

4. Что вы знаете о магнитном поле прямого проводника с током? Магнитное поле может прямолинейного проводника с током: Проводник с током расположен перпендикулярно к плоскости чертежа. Кружочком обозначено сечение проводника. Точка означает, что ток направлен из-за чертежа к нам.

Магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника. Магнитное поле прямого проводника с током неоднородно.

5.

Что вы знаете о магнитном поле соленоида (катушки с током)?

Магнитное поле соленоида (катушки с током): Магнитное поле соленоида (катушки с током) аналогично магнитному полю полосового магнита, если длина катушки больше ее диаметра. Катушка с током представляет собой магнит. Тот конец соленоида, из которого магнитные линии выходят, является северным полюсом, а тот, в который входят, — южным. Однородное магнитное поле, возникает внутри соленоида, т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра. Вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита.

6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита? вокруг прямолинейного проводника с током? внутри соленоида, длина которого значительно больше его диаметра?

Вокруг полосового магнита образуется неоднородное магнитное поле.

Вокруг прямолинейного проводника с током образуется неоднородное магнитное поле. Внутри соленоида, если длина его больше его диаметра, образуется однородное магнитное поле.

7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля? однородного магнитного поля?

Сила, с которой манитное поле полосового магнита действует на помещенную в его неоднородное поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.

Сила, с которой манитное поле катушки с током действует на помещенную внутри катушки (в однородное поле) магнитную стрелку, в разных точках поля должна быть одинаковой как по модулю, так и по направлению.

8. Сравните картины расположения линий в неоднородном и однородном магнитных полях.

Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

9. Как изображают линии магнитного поля, направленные перпендикулярно к плоскости чертежа?

Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками.

Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены из-за чертежа к нам, то их изображают точками.

Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с н45аправлением магнитных линий).

Следующая страница — смотреть

Назад в «Оглавление» — смотреть

Источник: http://class-fizika.ru/u9-44.html

Магнитное поле однородное и неоднородное: характеристика и определение

Однородное и неоднородное магнитное поле

Одним из основных понятий, используемых в физике, является магнитное поле. Оно воздействует на перемещающиеся электрические заряды. Незаметно и не ощущается человеком, однако его наличие можно выявить с помощью магнита или железа. Также достаточно легко понять, какое магнитное поле называется однородным и неоднородным.

Определение и способы обнаружения магнитного поля

Когда мы сталкиваемся с понятием магнитного поля, у нас возникает вопрос касательно того, какое это магнитное поле, однородное или неоднородное оно. Прежде чем дать ответ на такой вопрос, следует дать начальные определения терминам.

Магнитное поле полагается считать особым видом материи, существующим возле перемещающихся электрических зарядов, в особенности возле проводников с током. Обнаружить можно, используя магнитную стрелку или железные опилки.

Однородное поле

Встречается внутри полосового магнита и в соленоиде, когда его длина намного больше диаметра. В таком случае по правилу буравчика контуры магнитного поля будут направляться против часовой стрелки.

Магнитные линии параллельны и прямые, пустота между ними всегда одинакова, сила влияния на магнитную стрелку не различается во всех точках по своей величине и направлению.

В случае с неоднородным полем магнитные линии будут искривляться, пустота между ними различается по величине, сила воздействия на магнитную стрелку различается в разных точках поля по своей величине и направлению.

Также сила, действующая на помещённую в поле полосового магнита стрелку, действует в различные точки с разными по модулю и направлению силами. Это называют неоднородным полем.

Линии такого поля искривлены, частота меняется от точки к точке.

Обнаружить такого рода поле возможно возле прямого проводника с током, полосового магнита и соленоида.

Что такое магнитные линии

В первую очередь при возникновении задачи следует определить, какое магнитное поле, однородное или неоднородное, образуется, следует узнать о магнитных линиях, по форме которых становится понятна характеристика поля.

Чтобы изобразить магнитное поле, стали использовать магнитные линии. Они являются воображаемыми полосами, расположенными вдоль магнитной стрелки и размещенными в магнитном поле. Провести магнитную линию возможно сквозь любую точку поля, она будет иметь направление и всегда замыкаться.

Выходят из северного полюса магнита и направляются в южный. Изнутри самого магнита все строго наоборот. Сами линии не обладают началом или концом, сомкнуты или проходят из бесконечности в бесконечность.

За пределами магнита линии располагаются максимально густо возле полюсов. Из этого становится ясно, что наиболее сильно воздействие поля вблизи полюсов, и по мере удаления от низа оно слабеет. Учитывая, что магнитные полосы искривлены, то направление силы, которая действует на магнитную стрелку, тоже изменяется.

Как изобразить

Чтобы понять, чем отличаются однородные магнитные поля от неоднородных, необходимо их научиться изображать, используя магнитные линии.

Следует рассмотреть названный выше пример возникновения однородного магнитного поля в так называемом соленоиде, который представляет собой проволочную цилиндрическую катушку, через какую пускают ток.

Внутри него магнитное поле может считаться однородным, при условии что длина намного больше диаметра (вне катушки поле будет неоднородным, магнитные линии будут располагаться так же, как и у полосового магнита).

Однородное поле также располагается в центре постоянного полосового магнита. В какой-либо ограниченной области в пространстве возможно воспроизвести и однородное магнитное поле, в котором силы воздействия на намагниченную стрелку будут одинаковы по модулю и направлению.

Чтобы изобразить магнитное поле, используют следующий пример. Если линии расположатся перпендикулярно к чертежной плоскости и направляются от смотрящего, то их изображают крестиками, если на смотрящего — точками. Как и с током, каждый крестик является как бы видимым хвостовым оперением летящей от смотрящего стрелы, а точка — острее стрелы, которая летит к нам.

Также требование «Изобразите однородное и неоднородное магнитное поле» легко выполнимо. Попросту нарисуйте эти магнитные линии, учитывая характеристики поля (однородность и неоднородность).

Однако существование неоднородных полей сильно усложняет задачу. В таком варианте получение какого-либо физического результата с использованием общего уравнения маловероятно.

Отличия

Ответ на вопрос о том, чем отличаются однородные магнитные поля от неоднородных, достаточно легко дать. В первую очередь это зависит от магнитных линий.

В случае с однородным полем расстояние между ними будет одинаково, и они будут равномерно располагаться, с одной и той же силой действуя на приборы в любой точке. Для неоднородных полей все строго наоборот.

Линии неравномерно расположены, в различных местах действуют с неодинаковой силой на приборы.

На практике достаточно часто встречается неоднородное поле, о чем также следует помнить, поскольку однородные поля могут встречаться разве что внутри предмета, вроде магнита или соленоида. Наружные же наблюдения зафиксируют неоднородность.

Обнаружение поля

Поняв, что такое однородные и неоднородные магнитные поля, и определения их разобрав, следует узнать, каким способом можно обнаружить их.

Наиболее простым для этого является опыт, проведенный Эрстедом. Заключается он в использовании магнитной стрелки, которая помогает определить существование электрического тока. Как только ток будет передвигаться по проводнику, расположенная рядом стрелка придет в движение, за счет того что существуют однородные и неоднородные магнитные поля.

Взаимодействие проводников с током

У каждого проводника с током наблюдается свое магнитное поле, воздействующее с определенной силой на ближайший. В зависимости от направления тока, проводники будут притягиваться или отталкиваться друг от друга. Поля, возникшие от различных источников, будут складываться и образовывать единое результирующее поле.

Как создаются и для чего

Примеры однородного и неоднородного магнитного поля, применяемые в электронно-лучевых приборах, создаются катушками, которые пропускают ток. Для получения необходимой формы магнитного поля применяют полочные наконечники и магнитные экраны, сделанные из материй, имеющих сильную магнитную проницаемость.

Влияние неоднородных магнитных полей способно изменить протекание необратимых явлений физико-химического характера, в основном гетерогенного процесса. Появление турбулентной диффузии ведет к увеличению на несколько порядков скорости перемещения газа из какой-либо жидкости к поверхности в виде микропузырьков.

Эффект локальной дегидратации ионов и частиц обусловлен интенсификацией процесса микрокристаллизации. В проточных средах высокоэнергетические реакции способны создавать свободные радикалы, атомарный кислород, перекиси и азотистые соединения.

Случается коагуляция, и в жидкости оказываются продукты, вызванные эрозионным разрушением.

Во время гидродинамической кавитации большая величина возникающих пузырьков и каверн усложняет их унос жидкостью из территории пониженного давления в зону большего давления, где ведется коллапсирование пузырьков.

Во время коллапса пузырька малой величины имеется малое содержание воздуха и возникает сильная химическая реакция, схожая с плазменным разрядом. Присутствие неоднородных магнитных полей ведет к неустойчивости каверн, их распаду и возникновению мелкомасштабных вихрей и пузырьков.

Учитывая, что давление в центре такого вихря понижено, он конверсирует газовые пузырьки незначительного размера.

Во время измерения индукции в неоднородном магнитном поле следует помнить, что напряжение Холла пропорционально усредненной величине индукции поля в пределах территории, ограниченной поверхностью преобразователя.

Чтобы сфокусировать параксиальные пучки, также используют неоднородные магнитные поля, образовываемые короткими катушками, являющимся многослойными соленоидами, длина коих соизмерима с их диаметром.

На электрон, попадающий в такое поле, действуют силы, меняющие его направление. Электрон под влиянием такой силы приближается к оси линзы, при том плоскость, в которой находится его траектория, искривляется.

Электрон продвигается по спиралевидному отрезку, который пересекает оси линзы в заданной точке.

Пространственный фактор увеличения вызван пространственным рассредотачиванием неоднородных полей на территории гетерогенной системы, запиленной жидкостью. Чтобы получить инверсию населенности уровней методом разделения, применяют неоднородные поля, созданные многополосным магнитом. Форма полюсов подобна стержням в квадрупольном конденсаторе молекулярного генератора на аммиаке.

Способы использования

Магнитно-порядковый способ дефектоскопии базируется на тяге магнитных частиц силами неоднородных полей, появляющихся над дефектами. По скоплению такого порошка выясняют присутствие дефекта, его величину и положение на проверяемой детали.

Немалым недостатком метода молекулярных пучков с применением сильных неоднородных магнитных полей считается малый эффект расщепления.

Имеется простой и кажущийся неправдоподобным метод увеличения этого эффекта. Заключается он в применении легкого наружного магнитного поля.

Последнее даст возможность увеличить область использования ядерных прецессионных магнитометров в сторону неоднородных магнитных полей.

Преимуществом такого метода является высокая разрешающая способность, дающая возможность фиксировать неоднородные магнитные поля, соразмерные с величиной частиц магнитного слоя ленты, а также возможность нахождения повреждений на сложных поверхностях и в тесных проемах.

Недостатками являются необходимость вторичной обработки информации, фиксируются лишь частицы магнитных полей вдоль ленты, сложность размагничивания и сохранения ленты, и необходимо предотвращать влияние внешних магнитных полей.

Магнитное поле однородное и неоднородное встречаются достаточно часто, несмотря на то, что незаметны простому обывателю. Примеры однородного и неоднородного магнитного поля можно обнаружить в полосовых магнитах и соленоидах. При этом заметить их можно, используя простейшую магнитную стрелку или железные опилки.

Источник: https://FB.ru/article/329947/magnitnoe-pole-odnorodnoe-i-neodnorodnoe-harakteristika-i-opredelenie

Презентация+конспект урока+видео на урок физики в 9 классе по теме» « Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле»

Однородное и неоднородное магнитное поле

План конспект урока № 16.

Тема урока: « Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле»

Цели:

  • Образовательные: установить связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике. Ввести понятие неоднородного и однородного магнитных полей.

    На практике получить картину силовых линий магнитного поля постоянного магнита, соленоида, проводника по которому течет электрический ток.

    Систематизировать знания по основным вопросам темы “Электромагнитное поле”, продолжить учить решать качественные и экспериментальные задачи.

  • Развивающие: активизировать познавательную деятельность обучающихся на уроках физики. Развивать познавательную активность учащихся.

  • Воспитательные: содействовать формированию идеи познаваемости мира. Воспитывать трудолюбие, взаимопонимание между учениками и учителем.

Задачи:

  • Образовательная: углубление и расширение знаний о магнитном поле, обосновать связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике.

  • Воспитательная: показать причинно – следственные связи при изучении магнитного поля прямого тока и магнитных линий, что беспричинных явлений не существует, что опыт- критерий истинности знаний.

  • Развивающая: продолжить работу над формированием умений анализировать и обобщать знания о магнитном поле и его характеристиках. Вовлечение учащихся в активную практическую деятельность при выполнении экспериментов.

Оборудование: презентация,  таблица, проектор, экран, магнитные стрелки, железные опилки, магнитики, компас.

План урока:

  1. Организационный момент.(1-2 мин)

  2. Мотивация и целеполагание (1-2 мин)

  3. Изучение новой темы(15-30 мин)

4. Домашнее задание.(1-2 мин)

1. Организационный момент.

Встали, подровнялись. Здравствуйте, садитесь.

2. Мотивация и целеполагание.

Каждый из вас наблюдал, как в конце лета, в начале осени многие птицы улетают в теплые края. Перелетные птицы преодолевают огромные расстояния, опасаясь зимних холодов, а весной они возвращаются обратно. Птицы ориентируются по магнитному полю Земли. Так вот сегодня мы поговорим о магнитах, рассмотрим свойства магнита. Вспомним что такое магнитное поле, какие бывают магнитные поля.

3.Изучение новой темы.

История магнита насчитывает свыше двух с половиной тысяч лет.

Старинная легенда рассказывает о пастухе по имени Магнус. Он однажды обнаружил, что железный наконечник его палки и гвозди сапог притягиваются к черному камню. Этот камень стали называть камнем «Магнуса» или просто «магнитом».

Но известно и другое предание о том, что слово «магнит» произошло от названия местности, где добывали железную руду (холмы Магнезии в Малой Азии)Слайд 2. Таким образом, за много веков до н.э. было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Об этом упоминал в VI в до н.э. греческий физик Фалес.

В те времена свойства магнитов казались волшебными. в той же древней Греции их странное действие связывали напрямую с деятельность Богов.

Вот как описывал свойство этого камня древнегреческий мудрец Сократ: « Этот камень не только притягивает железное кольцо- он одаряет своей силой и кольцо, так что оно в свою очередь может притягивать другое кольцо, и таким образом может висеть друг на друге множество колец и кусков железа! Это происходит благодаря силе магнитного камня»

Каковы же свойства магнитов и чем определяются свойства магнитов? Для этого посмотрим опыт. Берем лист бумаги, магнит и железные опилки. Что мы наблюдаем?

Слайд 3

А если взять 2 магнита и поднести их друг к другу одноименными полюсами? как они будут себя вести? А если разноименными полюсами?

Почему куски, железные опилки притягиваются к магниту? Подобно тому как стеклянная палочка притягивает к себе куски бумаги, подобно этому магнит притягивает к себе железные опилки Вокруг магнита существует магнитное поле.

Из курса физики 8 класса вы узнали, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создается электронами, направленно движущимися вдоль проводника.

Поскольку электрический ток — это направленное движение заряженных частиц, то можно сказать, что  магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными.

Итак запишем определение:

Магнитное поле-это особый вид материи, который создается вокруг магнитов движущимися заряженными частицами, как положительными, так и отрицательными.

Слайд 5

Запомните ,что если частицы движутся, то создается магнитное поле. Мы сказали что м.п.- это особый вид материи ,оно называется особым видом, т.к. не воспринимается органами чувств.

Для обнаружения м.п. используются магнитные стрелки.

Для наглядного представления магнитного поля мы пользуемся магнитными линиями (их называют также линиями магнитного поля). Напомним, что магнитные линии— это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. Слайд

Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.

На рисунке 86, а, б показано, что магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещенной в эту точку. Слайд 6

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Слайд 7

В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Например, поле, изображенное на рисунке 87, слева сильнее, чем справа. Слайд 8

Таким образом, по картине магнитных линии можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких — с меньшей).

Давайте посмотрим на рис. 88 в учебнике: изображен проводник с током ВС, давайте вспомним что такое эл. ток- движение заряж. частиц, а мы говорили ,если частицы движутся ,то создается магнитное поле.

Давайте посмотрим в точке N будет действовать магнитное поле? Да, будет, т.к. ток течет по всему проводнику. В какой точке А или М магнитное поле будет сильнее? В точке А т.к. она находится ближе к магниту.

Магнитное поле бывает 2х видов: однородное и неоднородное. Давайте рассмотрим эти виды магнитных полей.

Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, идут из бесконечности в бесконечность. Рис. 89

Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает.

Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита.

Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.

Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку в разных точках поля может быть различной как по модулю, так и по направлению.

 Слайд 9

Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Еще одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке 90 изображен участок такого проводника, расположенный перпендикулярно к плоскости чертежа.

Кружочком обозначено сечение проводника.

Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.

В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

Слайд 10.

На рисунке 91 показано однородное поле, возникающее внутри так называемого соленоида, т. е. проволочной цилиндрической катушки с током.

Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита).

Из этого рисунка мы видим, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Однородным является также поле внутри постоянного полосового магнита в центральной его части (см. рис. 89).

Слайд11

Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками (рис.

92), а если из-за чертежа к нам — то точками (рис. 93).

Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).

Так как же птицы все таки при перелетах ориентируются в пространстве, оказывается Земля окружена магнитным полем. Внутри земли находится большой магнит который создает огромное магнитное поле вокруг земли.

А магнит внутри земли это и есть железная руда из которой делают наши постоянные магниты.

Ученые гвоорят что у почтовых голубей например внутри тоже находится подобие магнита именно поэтому они так хорошо ориентируются в пространстве.

Параграф 43, 44. упр 34.

Приготовить сообщения на тему: « М.п. Земли», «М.п. в живых организмах», «Магнитные бури» .

Источник: https://infourok.ru/material.html?mid=71654

Booksm
Добавить комментарий