Направление магнитного поля

Направление магнитного поля

Направление магнитного поля

Перемещающийся электрический заряд, помимо электрического поля, порождает магнитное поле. Этот особый вид поля проявляется при воздействии на магнит (например, магнитную стрелку), проводник с током, заряд, находящийся в движении. На проводники с током, магнитную стрелку магнитное поле способно оказывать ориентирующее действие.

С целью наглядности в изображении магнитных полей пользуются линиями магнитной индукции (силовыми линиями) полей. Данные линии являются непрерывными. Это принципиальная отличительная черта магнитного поля от потенциального электрического поля. Магнитное поле — это вихревое (или соленоидальное) поле. До настоящего времени магнитные заряды не обнаружены.

Замечание 1

Электростатическое поле является потенциальным. Его силовые линии начинаются на зарядах со знаком плюс и оканчиваются на отрицательных зарядах.

Вектор индукции магнитного поля

Так сложилось, что силовую характеристику магнитного поля назвали индукцией, а не напряженностью, как у электрического поля.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Индукцией магнитного поля ($\vec{B}$) называют векторную физическую величину, которую вводят при рассмотрении воздействия магнитного поля на элементарную (пробную) рамку с током.

Замечание 2

Малая рамка с током (пробная рамка) является аналогом пробного заряда в электростатике.

Требования, которые предъявляют к пробной рамке с током:

  • Маленькие размеры этого витка с током, которые давали бы возможность делать выводы о свойствах магнитного поля в «точке».
  • Сила тока в рамке не должна быть большой, поскольку не должно быть существенным влияние этого тока на источники магнитного поля.
  • В соответствии с определением, направление вектора магнитной индукции должно совпасть с ориентацией нормали к «свободному» пробному витку с током, который пришел в состояние покоя в магнитном поле.

Направлением нормали ($\vec{n}$) к плоскости витка с током, считают такое направление, по которому станет поступательно двигаться правый винт, при вращении его головки по току в витке (рис.1).

Рисунок 1. Направление магнитного поля. Автор24 — интернет-биржа студенческих работ

При повороте рамки на некоторый угол от положения равновесия, на рамку будет оказывать действие момент сил, величина которого зависит от:

$M\sim IS\sin {\alpha \, \left( 1 \right),}$

где $I$ – сила тока в витке; $S$ – площадь витка с током; $\alpha$ – угол поворота.

Момент сил, приложенный к рамке, будет наибольшим тогда, когда плоскость витка будет перепендикулярна линиям поля:

$M_{max}\sim IS\left( 2 \right)$

Характеризовать магнитное поле в месте расположения рамки можно следующим отношением:

$B=\frac{M_{max}}{IS}\left( 3 \right)$.

Отношение (3) принимают за величину вектора магнитной индукции.

Итак, количественной характеристикой магнитного поля в точке является модуль вектора магнитной индукции. Но, как уже отмечалось, магнитная индукция – векторная величина, следовательно, она имеет направление. Если говорят о направлении магнитного поля, то имеют в виду направление векторов магнитной индукции в каждой точке этого поля.

При расчете магнитных полей, которые создаются токами, необходимо принимать во внимание то, что отдельные участки тока могут создавать разные поля в одной точке пространства и следует учесть совместное действие этих полей.

Магнитная индукция удовлетворяет принципу суперпозиции:

Магнитная индукция, создаваемая несколькими проводниками с токами, равна векторной сумме индукций полей в рассматриваемой точке поля.

Силовые линии магнитного поля

Определение 1

Линии магнитной индукции (силовые линии магнитного поля) – это кривые, при помощи которых проводят визуализацию магнитного поля. Данные линии направлены так, что в любой точке поля их направление совпадает с направлением вектора магнитной индукции в этой точке. Вектор магнитной индукции является касательной к силовой линии в рассматриваемой точке поля.

Картину линий магнитной индукции можно «проявить», если использовать мелкие железные опилки. Эти опилки в магнитном поле располагаются по силовым линиям поля, так как магнитное поле их намагничивает и, воздействуя на них, ориентирует как магнитные стрелки.

Рассмотрим, каково направление магнитного поля, если его создает прямой, длинный проводник с током. Эмпирически (из опытов с контуром или магнитной стрелкой) получено, что линии магнитной индукции в нашем случае – это концентрические окружности, расположенные в плоскости, нормальной к проводнику. Центры силовых линий лежат на оси проводника.

Как и для электрического поля, густота линий магнитной индукции говорит о величине вектора магнитной индукции в исследуемой точке поля. На рис.2 плотность концентрических окружностей увеличивается к оси провода.

Направления вектора (соответственно направление магнитного поля) задано вектором магнитной индукции. В избранной точке поля, это будет касательная к силовой линии, направление которой совпадает с направлением линии магнитной индукции (рис.2).

Рисунок 2. Направление магнитного поля. Автор24 — интернет-биржа студенческих работ

Закон Био — Савара – Лапласа и направление магнитного поля

Экспериментально невозможно изолировать отдельный участок тока, поэтому нельзя измерить величину магнитного поля, которое создает этот участок. Провести измерения можно только суммарной индукции магнитного поля, которая создана всеми элементарными токами проводника.

Установлен и часто используется закон Био-Савара – Лапласа, который можно применить к проводнику произвольной формы с током для вычисления величины магнитной индукции поля в вакууме:

$d\vec{B}=\mu_{0}\frac{I}{4\pi r{3}}\left[ d\vec{l}\vec{r} \right]\left( 4\right)$.

где $dl$ — элемент проводника с током ($d\vec{l}$ направлен вдоль проводника по току); $r$ – расстояние от проводника до точки наблюдения. Мы видим, что в выражении (4) имеется векторное произведение, следовательно, $d\vec{B}$ перпендикулярен плоскости, в которой находятся элемент проводника и радиус-вектор $\vec{r}$.

Конкретное направление $\vec{B}$ определено правилом правого винта, которое можно сформулировать следующим образом:

Вектор магнитной индукции имеет направление, совпадающее с направлением вращения головки винта, если его поступательное перемещение происходит по току.

Для того чтобы определить направление поля, которое создает протяженный проводник, следует векторно сложить индукции всех элементарных участков проводника, следуя принципу суперпозиции.

И так, для определения направления магнитного поля следует:

  1. При помощи правила буравчика (правила правого винта), определить направление элемента вектора магнитной индукции ($d\vec{B}$), создаваемого элементом проводника с током в избранной точке пространства.
  2. Сложить векторно элементарные векторы магнитной индукции в заданной точке поля.

Рассмотрим, каково направление магнитного поля, которое создает круговой виток с током в своем центре (рис.3).

Рисунок 3. Направление магнитного поля. Автор24 — интернет-биржа студенческих работ

Векторы $d\vec{B}$ от всех элементов витка направлены нормально его плоскости, за плоскость чертежа. Следовательно, суммарное поле имеет такое же направление. При этом величину поля находят алгебраическим суммированием (интегрированием) отдельных $d\vec{B}_i $ от всех элементов кольцевого проводника.

Источник: https://spravochnick.ru/fizika/magnitnoe_pole/napravlenie_magnitnogo_polya/

§ 7. МАГНИТНЫЕ НАПРАВЛЕНИЯ

Направление магнитного поля

Какими снарядамизаряжают

РСЗО «Торнадо-Г»

Земной магнетизм и его элементы

Земля представляет собой огромный магнит, имеющий северный NM и южный SM полюса. Причем магнитные полюса не только не совпадают с истинными или географическими, но и, как показывают наблюдения, их место с течением времени меняется. Так, северный магнитный полюс в 1950 г.

находился приближенно в точке, координаты которой cp = 72° N, л = 96° W, а южный магнитный полюс ф = 70° S и л = 150° Ost.

Сила, с которой магнитное поле Земли действует на единицу магнитной массы, помещенную в данное поле, называется напряженностью магнитного поля и характеризуется вектором, направленным в любой точке земного магнитного поля по касательным к силовым линиям.

Силу земного магнетизма, действующую в любой точке, в общем случае можно разложить на две составляющие — горизонтальную и вертикальную. Сила земного магнетизма в точке М (рис. 12) соответствует по величине и направлению вектору Г, его горизонтальная составляющая — H, а вертикальная — Z. Если в точке М

Рис. 12

Рис. 13

поместить свободно подвешенную магнитную стрелку, то последняя установится по направлению горизонтальной составляющей земного магнетизма Я. Вертикальная плоскость ДМАС, в которой располагается вектор Т и магнитная стрелка, удерживаемая силой Н, называется плоскостью магнитного меридиана. Угол РМД между плоскостями истинного меридиана PMAF и магнитного ДМАС называется магнитным склонением и обозначается буквой d.

Когда нордовая часть магнитного меридиана отклонена вправо от истинного, склонение называется восточным (Оst
) и ему приписывается знак плюс, если же нордовая часть магнитного меридиана отклонена влево от истинного меридиана, склонение будет западным (W) со знаком минус (рис. 13). Склонение всегда считается OTNH KNM K Оst или WOT 0 до 180°.

Сила Z (см. рис. 12) будет наклонять свободно подвешенную магнитную стрелку и устанавливать ее под некоторым углом 0 к плоскости истинного горизонта. Этот угол называется наклонением . Все точки Земли, в которых наклонение равно 0° , лежат на магнитном экваторе, который не совпадает с географическим экватором и представляет неправильную кривую. На магнитных полюсах Земли наклонение 90°. Напряженность, склонение и наклонение являются основными элементами земного магнетизма. В настоящее время на основе работ по определению магнитного поля Земли для всех ее районов издаются специальные карты, на которых проведены линии равного значения элементов земного магнетизма. Для характеристики напряженности магнитного поля издаются карты изодин, магнитного наклонения — изоклин, и магнитного склонения — изогон. На картах изогон линия, соединяющая точки, где склонение равно 0°, т. е. где магнитный меридиан совпадает с истинным, называется агоною. Все элементы земного магнетизма с течением времени изменяются, поэтому карты приводят к определенному году и на них указывают годовые изменения элементов земного магнетизма. Магнитное склонение в судовождении имеет наибольшее значение, так как его приходится принимать в расчет для определения истинных направлений в море при пользовании магнитным компасом. Действие магнитного компаса основано на использовании магнитного поля Земли, и магнитная стрелка компаса, установленная на вертикальной оси, практически имеет одну степень свободы вокруг этой оси, и устанавливается по направлению горизонтальной составляющей земного магнетизма. Значение этой составляющей определяется выражением Н = Т cos 0 (см. рис. 12), и оно характеризует величину силы, которая удерживает стрелку компаса в плоскости магнитного меридиана. С приближением к магнитным полюсам угол 0 увеличивается и показание компаса становится не точным. В тех местах на Земле, где залегают железные руды, наблюдаются резкие отклонения величины склонения от их значений в ближайших районах. Такие отклонения называются аномалиями. Неоднократно наблюдались и кратковременные резкие колебания элементов земного магнетизма — магнитные бури, во время которых склонение изменялось на десятки градусов. В такой период показания магнитных компасов ненадежны и полагаться на них опасно. Магнитными называются направления, определяемые относительно магнитного меридиана. На плоскости истинного горизонта угол между нордовой частью магнитного меридиана и линией курса называется магнитным курсом (МК). Угол между нордовой частью магнитного меридиана и линией пеленга называется магнитным пеленгом (МП). Отсчет МК и МП ведется от нордовой части магнитного меридиана по часовой стрелки от 0 до 360°. На рис. 13 видно, что магнитные направления отличаются от истинных на величину склонения: отсюда МК = ИК — d; МП = ИП — d. При расчетах по этим формулам необходимо учитывать знак склонения. Таким образом, истинный курс равен алгебраической сумме магнитного курса и склонения, а магнитный курс равен алгебраической разности истинного курса и склонения. То же самое правило справедливо и в отношении пеленгов предметов. Для удобства величина магнитного склонения на навигационных картах указывается не в виде изогон, а цифрами только для отдельных точек земной поверхности. В заголовке карты указывается величина годового изменения склонения и год, к которому отнесены помещенные сведения о магнитном склонении. Так как навигационные карты издаются периодически, то судоводитель должен учитывать изменение склонения, указанное на карте, за число лет, прошедших с момента издания карты до года плавания. Расчет по приведению склонения к году плавания выполняется по формуле где d — искомое склонение для года плавания;

d0 — склонение, указанное на карте;

Ad — величина годового изменения склонения со знаком плюс при увеличении и минус при уменьшении; п — число лет, прошедших от момента, к которому отнесено склонение, указанное на карте, до года плавания.

В данной формуле перед п требуется учитывать знак склонения (+ Оst и — W).

Пример 1. Склонение, указанное на карте, 3°,1 Оst приведено к 1965 г. Годовое уменьшение 0°, 2. Плавание совершается в 1975. г. Привести склонение к году плавания.

Решение. Подставляя заданные величины в формулу (8), получаем

Пример 2. Склонение, указанное на карте, 3°, 5W приведено к 1965 г. Годовое увеличение 0°, 1. Плавание совершается в 1975 г. Привести склонение к году плавания.

Решение. Подставляя заданные величины в формулу (8), получаем

Для удобства работы на карте в походе полезно рассчитанные значения склонения, приведенные к году плавания, выписать на полях карты таким образом, чтобы они оказались на воображаемых линиях изогон, проходящих через те точки карты, где склонение указано, а с перемещением судна от одной изогоны к другой величину склонения следует учитывать пропорционально пройденному расстоянию путем интерполирования.

Вперед

Оглавление
Назад

Источник: https://flot.com/publications/books/shelf/rulkov/8.htm

Направление тока и линий его магнитного поля. Правило буравчика

Направление магнитного поля

Исследования Ампера…

принадлежат к числу самых

блестящих работ, которые

проведены когда-либо в науке.

Джеймса Клерка Максвелла

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды.

Для наглядного представления магнитного поля пользуются магнитными линиями Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет.

За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.

Теперь разберём, от чего зависит направление линий магнитного поля тока более подробно.

Известно, что для получения спектра магнитного поля прямого проводника с током, его можно пропустить через лист картона, а на картон насыпать железные опилки. Под действием магнитного поля железные опилки располагаются по концентрическим окружностям. Поместим вдоль линий магнитного поля магнитные стрелки.

На рисунке показано расположение магнитных стрелок вокруг проводника с током, перпендикулярного плоскости чертежа. Если изменить направление тока в проводнике, то можно увидеть, что изменение направления тока приводит к повороту всех магнитных стрелок на 1800. Причем оси стрелок располагаются по касательной к магнитным линиям.

Т.о. можно сделать вывод, что направление линий магнитного поля будет зависеть от направления тока в проводнике.

Эта связь может быть выражена простым правилом, которое называют правилом буравчика (или правилом правого винта).

Правило буравчика заключается в следующем: если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля — направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки.

Соленоид — это катушка цилиндрической формы из проволоки, витки которой намотаны вплотную друг к другу в одном направлении, а длина катушки значительно больше радиуса витка. Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось.

На рисунке видно, что внутри соленоида линии магнитного поля каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление. Поэтому, при достаточно плотной намотке соленоида, противоположно направленные участки линий магнитного поля соседних витков взаимно уничтожаться, а одинаково направленные участки сольются в общую линию.

Изучение этого поля с помощью железных опилок показало, что внутри соленоида магнитные линии поля представляют собой прямые, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида.

Зная направление тока в витке, полюсы соленоида можно определить с помощью правила правой руки: если обхватить соленоид, ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре одиночного витка с током.

Из курса физики 8 класса известно, что на всякий проводник с током, помещенный в магнитное поле и не совпадающий с его магнитными линиями, это поле действует с некоторой силой.

Наличие такой силы можно показать с помощью установки. Проволочная трехсторонняя рамка ABCD подвешена на крюках так, что может свободно отклоняться от вертикали.

Сторона ВС находится в области наиболее сильного поля дугообразного магнита, располагаясь между его полюсами. Рамка присоединена к источнику тока последовательно с реостатом и ключом. При замыкании ключа в цепи возникает электрический ток, и сторона ВС втягивается в пространство между полюсами.

Если убрать магнит, то при замыкании цепи проводник ВС двигаться не будет. Значит, со стороны магнитного поля на проводник с током действует некоторая сила, отклоняющая его от первоначального положения.

Таким образом, магнитное поле создается электрическим током и обнаруживается по его действию на электрический ток.

Если изменить направление тока в цепи, поменяв местами провода в гнездах изолирующего штатива, то, при этом, изменится и направление движения проводника, а значит, и направление действующей на него силы.

Направление силы изменится и в том случае, если, не меняя направления тока, поменять местами полюсы магнита (т. е. изменить направление линий магнитного поля).

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

Направление силы, действующей на проводник с током в магнитном поле, можно определить, пользуясь правилом левой руки, которое заключается в следующем: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Пользуясь правилом левой руки, следует помнить, что за направление тока во внешней части электрической цепи (т. е. вне источника тока) принимаетсянаправление от положительного полюса источника тока к отрицательному. Другими словами, четыре пальца левой руки должны быть направлены против движения электронов в электрической цепи.

С помощью правила левой руки можно определить направление силы, с которой магнитное поле действует на отдельно взятую движущуюся в нем частицу, как положительно, так и отрицательно заряженную.

Для наиболее простого случая, когда частица движется в плоскости, перпендикулярной магнитным линиям, это правило формулируется следующим образом: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно заряженной частицы (или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей на частицу силы.

Следует отметить, что сила действия магнитного поля на проводник с током или движущуюся заряженную частицу равна нулю, если направление тока в проводнике или скорость частицы совпадают с линией магнитной индукции или параллельны ей.

Основные выводы:

– Направление линий магнитного поля будет зависеть от направления тока в проводнике.

– Эта связь может быть выражена с помощью правила буравчика (или правила правого винта): если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

– Для определения направления линий магнитного поля соленоида удобнее пользоваться правилом правой руки: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

– Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.

Направление этой силы можно определить с помощью правила левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Источник: https://videouroki.net/video/38-napravlieniie-toka-i-linii-iegho-maghnitnogho-polia-pravilo-buravchika.html

III. Основы электродинамики

Направление магнитного поля

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов.

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем.

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать «видимым» с помощью железных опилок.

Магнитное поле проводника с током

А теперь о том, что обнаружили Ханс Кристиан Эрстед и Андре Мари Ампер в 1820 г. Оказывается, магнитное поле существует не только вокруг магнита, но и любого проводника с током.

Любой провод, например, шнур от лампы, по которому протекает электрический ток, является магнитом! Провод с током взаимодействует с магнитом (попробуйте поднести к нему компас), два провода с током взаимодействуют друг с другом.

Силовые линии магнитного поля прямого тока — это окружности вокруг проводника.

Направление вектора магнитной индукции

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку.

Направление линий магнитной индукции зависит от направления тока в проводнике.

Определяется направление вектора индукции по правилу буравчика или правилу правой руки.

Вектор магнитной индукции

Это векторная величина, характеризующая силовое действие поля.

Индукция магнитного поля бесконечного прямолинейного проводника с током на расстоянии r от него:

Индукция магнитного поля в центре тонкого кругового витка радиуса r:

Индукция магнитного поля соленоида (катушка, витки которой последовательно обходятся током в одном направлении):

Принцип суперпозиции

Если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Применение магнитного поля

Частицы диоксида железа на магнитной пленке хорошо намагничиваются в процессе записи.

Поезда на магнитной подушке скользят над поверхностью совершенно без трения. Поезд способен развивать скорость до 650 км/ч.

Работа головного мозга, пульсация сердца сопровождается электрическими импульсами. При этом в органах возникает слабое магнитное поле.

Источник: http://fizmat.by/kursy/magnetizm/magnit_pole

��������� ���� � ��� ���������, ��������� ����

Направление магнитного поля
��� �������� «��������� ����» ������� ������������� ������������ �������������� ������������, � ������� ����������� ���� ���������� ��������������. ��� ������ ��:

  • ��������� ��������: �������������� (������� � ��������������� ������, ������ � ������ �� ���) � �� ����� �������� ��� ����������� �� ���������;
  • ���������� ������ �������������.

���������� ����, ���������� ��������� ��������� �������� ���������� ��� ������ ������, �������� ����������� ���������. �� �������������� ������������ �� �������� �������� ���������� �������.

��� ������������ ����� ���������� ����������� ������� � �������� ������� ���������� ����� � ������ ����� �������� ������. �������� ������������� ������ ���������� ��������� (N) � ������ (S) ������� � ������������ ������� ����� ������������ �� ����������: ����� �� ��������� ������ � ���� � �����.

��� ��������� ��������� ����

����������� ���������� ���� ��������:

  • ���������� �������;
  • ��������� ������;
  • ������������ �� ������� ������������� ����.

� ��������� ���������� �������� ������ ������ ������� ������������� ��������. ���� ��� ��� ����������� ������ �� ����������� ��������-���������, ����������� �� �������� � ������� �����������.

����������� � �������� ������������� ������ ������ �������� ����������� ������� �������� ���������� ����, ��� ���������� �������. ��� ���� ���������� �������� �������. �������� ������� �� ���������� ��� �������������� ���������� � ����� I.

��������� ������� ����� ���������� � ���������, ���������������� �������� ���� ���, ����� � ������ �� ����� ����, ����������� �� �������� ����� ��������� �������, ������������ �� ����������� � ���� �����. ����� ������� ��������� ��������������� ���������� ������ ����������� ������.

����������� ���� ��� ������������ ��������� �������� ����� ��� ��������� � �������������� �������� ������.

������� ���������

���������� ����������� �������� ������ � �������� ���� � ������� �������� ���, ����� �������������� �������� ��������� ��������� � ��� ������������. ����� ���������� ������� ��������� ����� ����� �������� ��������� ��������.

� ��������� ���������� ������������ �������� �������� ��������� � ������������ ����, � �������������� � ��������� �� ���������� ��������.

��������� ������� ����� ������ ������� �� ��������� ������ � ������ � �����. ��� ������������ ������ ������� � ������� �� ������ ������������.

��������� �������� �����: ��� �������� ������� ��������� � ��������������

������� �������������� ��������� �����

��������� ���� �� ������ ���������� ������������ ���� � ������, ������� �������������� ����.

��� ���� ������� � ������������� �������� (N — S) ������������� ���� � �����, � � ������������ (N � N, S — S) � �������������. ���� �������������� ����� �������� ������� �� ���������� ����� ����. ��� ����� �������� ������, ��� ������� ������ ���������.

�������� �������������� ���������� ����

� ��� �������:

  • ������ ��������� �������� (�);
  • ��������� ����� (�);
  • ��������������� (Ψ).

������������� ��� ���� ����������� ���� ��������� ��������� ������� ��������� ��������. ��� ������������ ��������� ���� �F�, ����������� ���������� ����� �I� �� ���������� ������ �l�. �=F/(I∙l)

������� ��������� ��������� �������� � ������� �� � ����� (� ���� ������ �� ������ ������, ������� ���������� ��� ������� � ������ �� ��������������� ��������). � ������� ����������� ���������� ��� ������������ ���, � � ������������� ������������ ������ ������ �һ.

1 �� � ��� �������� ������ ����������� ���������� ������, ������� ������������ � ����� � 1 ������ �� ������ ���� ����� �������������� ����������, ��������������� �������������� ����������� ����, ����� �� ����� ���������� �������� ��� 1 �����.

1��=1∙�/(�∙�)

����������� ������� � ������������ �� ������� ����� ����.

���� ����������� ������ ����� ���� � ��������� ���� ���, ����� ������� ����� �� ��������� ������ ������� � ������ ��� ������ �����, � ������ ������ ����������� �� ����������� ���� � ����������, �� ������������ ������� ����� ������ ����������� �������� ���� �� ���� ���������.

� ������, ����� ��������� � ������������� ����� ���������� �� ��� ������ ����� � ��������� ������� ������, �� ����, �������������� �� ����, ����� ��������������� �������� ������������ ���� � ������������ ����� �������� ����� ���������� � ����� �� ���������, ������������� � ���������������� �����������.

����, �������������� �� ������������� ���, �� ������� �� ����������, �� ������� ������ ��������� � ������� ��� �������. ���� ���� ����� ���������� ������ �� �����, � ���������� ������ ������ ������������ � ������ ����� ����� ���������� ��������, �� ��� ���� ����� �� ���������.

���� ������ ���������� ���� �� ���� ������ ������ � ����� ���������� ����������� � ��������, �� ����� ���� ������� �����������.

����� �����, ���������� ���������� ����������, ��������� ������� �� �������� ������� �������� �.

��������� ����� (�)

���� ������������� ����������� ��������� �������� ����� ������������ ������� S, �� ������������ �� ��������� �������� ����� ���������� ��������� �������.

����� ������� ��������� ��� �����-�� ����� α � ����������� ��������� ��������, �� ��������� ����� ����������� �� �������� �������� ���� ������� �������. ������������ �� ��� �������� ��������� ��� ���������������� ������������ ������� � �� ������������� ��������. �=�·S

�������� ��������� ���������� ������ �������� 1 �����, ������������ ������������ �������� � 1 ����� ����� ������� � 1 ���� ����������.

���������������

���� ������ ������������ ��� ��������� ��������� �������� ���������� ������, ������������ �� ������������� ���������� ����������� � �����, ������������� ����� �������� �������.

��� ������, ����� ���� � ��� �� ��� I �������� �� ������� ������� � ������ ������ n, �� ������ (����������) ��������� ����� �� ���� ������ �������� ���������������� Ψ.

Ψ=n·�. �������� ��������� ��������������� �������� 1 �����.

��� ���������� ��������� ���� �� ����������� ��������������

���������������� ����, ����������������� � �������������� �������� � ������, ����������� ���������� ���������, ������������ ����� ������������ ���� �����:

  • ��������������;
  • ����������.

��� �������������, ������������ ����� ������������ ���� ����� � ��� ��������� � ������� ������� ������ ���������� ������������ ���������� � ������. � �������, ��� �������� ����������� ��������������� �������������� ���� � ���������� ���������� ������������ ���������� ����� �� ��������� ���� � ���������������� ����������� ������������ ��������.

��������� �������� �������

�� ��������� � �������������� � ������� ��������� ����� �������� ������������ ��:

  • ������������������ � ��������������� ���������� ���������, ��������� ���� ��������� ����� ����� ������� ��������������� ����;
  • ������������ �� ��������� �������������� ����������� ���� ������ �������� ��������. ����� �� ������� ���� �����������, �� � ��� ��������� �������� �� �����������;
  • ������������� �� ���������� �������������� ����������� ���� �� ����������� �������� ��������, ������� �������� ����� �������� ����������;
  • ��������������, ���������� ���������� ���������� ��� ������������ �������� ���� ��� ������������, ������� �������� ����� ����;
  • �������������� � ����������������� �� �������� � ����������� ���������� ���������.

��� ��� �������� ������� ����� ������������� ���������� � ����������� �������.

��������� ����

���� �������� �������� ������������ ��������� ��������� ����������, �� ������� ���������� ��������� �����. ��� �������� �������� ������������� ����� � ����������� ���������������� ��������������� �������� (������� ����, ���, �������� � ��). �������� — �������� ������ ��������������.

�� ������ �������� ��������� ����� �������� ��� ��������������, �������������, ������������� ������ � ������ ������ ����������.

��������, � ����������� �������������� ��������� ����� �������� �� �������������� �� �������������� ������ � ������� � ����������� �� ��������������� ����������. ������������ ���� ��������� � ���������� ��������� ����.

����������� ������������� ��������� � ����� ����������� ����� ��������� ����. ��������� ��� ��� ������� � ���� ������ — ��������� ���� ������������� ���������

������� ����� �� ���� ����: ������� �������� ��������� �����

Источник: http://ElectricalSchool.info/main/osnovy/1595-magnitnoe-pole-i-ego-parametry.html

Направление тока и направление линий его магнитного поля (Зарицкий А.Н.). урок. Физика 9 Класс

Направление магнитного поля

Продолжительное время электрические и магнитные поля изучались раздельно.

Но в 1820 году датский учёный Ханс Кристиан Эрстед во время лекции по физике обнаружил, что магнитная стрелка поворачивается возле проводника с током (см. Рис. 1). Это доказало магнитное действие тока.

После проведения нескольких экспериментов Эрстед обнаружил, что поворот магнитной стрелки зависел от направления тока в проводнике.

Рис. 1. Опыт Эрстеда

Для того чтобы представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током, рассмотрим вид с торца проводника (см. Рис. 2, ток  направлен в рисунок,  – из рисунка), возле которого установлены магнитные стрелки.

После пропускания тока стрелки выстроятся определённым образом, противоположными полюсами друг к другу.

Так как магнитные стрелки выстраиваются по касательным к магнитным линиям, то магнитные линии прямого проводника с током представляют собой окружности, а их направление зависит от направления тока в проводнике.

Рис. 2. Расположение магнитных стрелок возле прямого проводника с током

Для более наглядной демонстрации магнитных линий проводника с током можно провести следующий опыт. Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис. 3).

Рис. 3. Расположение железных опилок вокруг проводника с током (Источник)

Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) – если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см. Рис. 4).

Рис. 4. Правило буравчика (Источник)

Также можно использовать правило правой руки – если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 5).

Рис. 5. Правило правой руки (Источник)

Оба указанных правила дают один и тот же результат и могут быть использованы для определения направления тока по направлению магнитных линий поля.

После открытия явления возникновения магнитного поля вблизи проводника с током Эрстед разослал результаты своих исследований большинству ведущих учёных Европы.

Получив эти данные, французский математик и физик Ампер приступил к своей серии экспериментов и через некоторое время продемонстрировал публике опыт по взаимодействию двух параллельных проводников с током.

Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см. Рис. 6 б) если ток течёт в противоположные стороны – проводники отталкиваются (см. Рис. 6 а).

Рис. 6. Опыт Ампера (Источник)

Из своих опытов Ампер сделал следующие выводы:

1. Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле.

2. Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле.

3. Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током.

На рисунке 7 изображён проволочный прямоугольник, направление тока в котором показано стрелками. Используя правило буравчика, начертить возле сторон прямоугольника по одной магнитной линии, указав стрелкой её направление.

Рис. 7. Иллюстрация к задаче

Решение

Вдоль сторон прямоугольника (проводящей рамки) вкручиваем мнимый буравчик по направлению тока.

Вблизи правой боковой стороны рамки магнитные линии будут выходить из рисунка слева от проводника и входить в плоскость рисунка справа от него. Это обозначается с помощью правила стрелы в виде точки слева от проводника и крестика справа от него (см. Рис. 8).

Аналогично определяем направление магнитных линий возле других сторон рамки.

Рис. 8. Иллюстрация к задаче

Опыт Ампера, в котором вокруг катушки устанавливались магнитные стрелки, показал, что при протекании по катушке тока стрелки к торцам соленоида устанавливались разными полюсами вдоль мнимых линий (см.

Рис. 9). Это явление показало, что вблизи катушки с током есть магнитное поле, а также что у соленоида есть магнитные полюса. Если изменить направление тока в катушке, магнитные стрелки развернутся.

Рис. 9. Опыт Ампера. Образование магнитного поля вблизи катушки с током

Для определения магнитных полюсов катушки с током используется правило правой руки для соленоида (см. Рис.

10) – если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то большой палец покажет направление линий магнитного поля внутри соленоида, то есть на его северный полюс.

Это правило позволяет определять направление тока в витках катушки по расположению её магнитных полюсов.

Рис. 10. Правило правой руки для соленоида с током

Определите направление тока в катушке и полюсы у источника тока, если при прохождении тока в катушке возникают указанные на рисунке 11 магнитные полюсы.

Рис. 11. Иллюстрация к задаче

Решение

Согласно правилу правой руки для соленоида, обхватим катушку таким образом, чтобы большой палец показывал на её северный полюс. Четыре согнутых пальца укажут на направление тока вниз по проводнику, следовательно, правый полюс источника тока положительный (см. Рис. 12).

Рис. 12. Иллюстрация к задаче

На данном уроке мы рассмотрели явление возникновения магнитного поля вблизи прямого проводника с током и катушки с током (соленоида). Также были изучены правила нахождения магнитных линий данных полей.

Список литературы

  1. А.В. Перышкин, Е.М. Гутник. Физика 9. – Дрофа, 2006.
  2. Г.Н. Степанова. Сборник задач по физике. – М.: Просвещение, 2001.
  3. А.Фадеева. Тесты физика (7 – 11 классы). – М., 2002.
  4. В. Григорьев, Г. Мякишев Силы в природе. – М.: Наука, 1997.

Домашнее задание

  1. А.В. Перышкин, Е.М. Гутник. Физика 9: § 44, стр. 149, упр. 35 (1–5) (Источник).
  2. Что можно определить, используя правило буравчика?
  3. Что можно определить, используя правило правой руки?
  4. Определить направление тока по известному направлению магнитных линий (см. Рис. 13).

    Рис. 13. Иллюстрация к задаче

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Clck.ru (Источник).
  2. Интернет-портал Class-fizika.narod.ru (Источник).
  3. Интернет-портал Festival.1september.ru (Источник).

Источник: https://interneturok.ru/lesson/physics/9-klass/elektromagnitnye-yavleniya/napravlenie-toka-i-napravlenie-liniy-ego-magnitnogo-polya-2?konspekt

Booksm
Добавить комментарий