Момент силы, формулы

Содержание
  1. Момент силы, формулы
  2. Понятие момента силы
  3. Формулы расчета момента силы
  4. Момент нескольких сил
  5. Момент силы: определения, единица измерения, примеры, относительно оси и точки
  6. Единица измерения момента силы
  7. Работа и сила во вращательном движении
  8. Момент силы пример и решение задач относительно точки
  9. Момент силы относительно оси
  10. Момент силы. Формула момента силы
  11. Момент силы в физике
  12. Физический смысл величины M
  13. Несколько действующих сил в системе
  14. Совершает ли работу момент силы?
  15. Момент силы и момент импульса
  16. Равновесие нескольких тел
  17. Задача с движущимся диском
  18. Определение и свойства момента силы
  19. Определение плеча силы
  20. Свойства
  21. Определение
  22. Перемещение точки приложения силы вдоль линии ее действия
  23. Абсолютная величина момента силы
  24. Момент относительно точки от силы, проходящей через эту точку
  25. Момент суммы сил, приложенных в одной точке
  26. Момент системы сил, векторная сумма которых равна нулю
  27. Момент относительно оси от силы, проходящей через эту ось
  28. Момент относительно оси от силы, параллельной этой оси
  29. Момент силы. урок. Физика 7 Класс

Момент силы, формулы

Момент силы, формулы

Определение 1

Моментом силы представляется крутящий или вращательный момент, являясь при этом векторной физической величиной.

Она определяется как векторное произведение вектора силы, а также радиус-вектора, который проведен от оси вращения к точке приложения указанной силы.

Момент силы выступает характеристикой вращательного воздействия силы на твердое тело. Понятия «вращающий» и «крутящий» моменты не будут считаться при этом тождественными, поскольку в технике понятие «вращающий» момент рассматривают как внешнее, прикладываемое к объекту, усилие.

В то же время, понятие «крутящий» рассматривается в формате внутреннего усилия, возникающего в объекте под воздействием определенных приложенных нагрузок (подобным понятием оперируют при сопротивлении материалов).

Понятие момента силы

Момент силы в физике может рассматриваться в виде так называемой «вращающей силы». В СИ за единицу измерения принимают ньютон-метр. Момент силы также может называться «моментом пары сил», что отмечено в работах Архимеда над рычагами.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Замечание 1

В простых примерах, при приложении силы к рычагу в перпендикулярном отношении к нему, момент силы будет определяться в виде произведения величины указанной силы и расстояния до оси вращения рычага.

К примеру, сила в три ньютона, приложенная на двухметровом расстоянии от оси вращения рычага, создает момент, равнозначный силе в один ньютон, приложенной на 6-метровом расстоянии к рычагу. Более точно момент силы частицы определяют в формате векторного произведения:

$\vec {M}=\vec{r}\vec{F}$, где:

  • $\vec {F}$ представляет силу, воздействующая на частицу,
  • $\vec {r}$ является радиусом вектора частицы.

В физике следует понимать энергию как скалярную величину, в то время как момент силы будет считаться величиной (псевдо) векторной. Совпадение размерностей подобных величин не будет случайным: момент силы в 1 Н•м, который приложен через целый оборот, совершая механическую работу, сообщает энергию в 2 $\pi$ джоулей. Математически это выглядит так:

$E = M\theta $, где:

  • $E$ представляет энергию;
  • $M$ считается вращающимся моментом;
  • $\theta $ будет углом в радианах.

Сегодня измерение момента силы осуществляют посредством задействования специальных датчиков нагрузки тензометрического, оптического и индуктивного типа.

Формулы расчета момента силы

Интересным в физике является вычисление момента силы в поле, производимого по формуле:

$\vec{M} = \vec{M_1}\vec{F}$, где:

  • $\vec{M_1}$ считается моментом рычага;
  • $\vec{F}$ представляет величину действующей силы.

Недостатком такого представления будет считаться тот факт, что оно не определяет направление момента силы, а только лишь его величину. При перпендикулярности силы вектору вектору $\vec{r}$ момент рычага будет равен расстоянию от центра до точки приложенной силы. При этом момент силы окажется максимальным:

$\vec{T}=\vec{r}\vec{F}$

При совершении силой определенного действия на каком-либо расстоянии, она совершит механическую работу. Точно также и момент силы (при выполнении действия через угловое расстояние) совершит работу.

$P = \vec {M}\omega $

В существующей международной системе измерений мощность $P$ будет измеряться в Ваттах, а непосредственно момент силы— в ньютон-метрах. При этом угловая скорость определяется в радианах в секунду.

Момент нескольких сил

Замечание 2

При воздействии на тело двух равных, а также противоположно направленных сил, не лежащих при этом на одной и той же прямой, наблюдается отсутствие пребывания этого тела в состоянии равновесия.

Это объясняется тем, что результирующий момент указанных сил относительно любой из осей не имеет нулевого значения, поскольку обе представленные силы имеют направленные в одну сторону моменты (пара сил).

В ситуации, когда тело закрепляется на оси, произойдет его вращение под воздействием пары сил. Если пара сил будет приложенной в отношении свободного тела, оно в таком случае станет вращаться вокруг проходящей сквозь центр тяжести тела оси.

Момент пары сил считается одинаковым в отношении любой оси, которая перпендикулярна плоскости пары. При этом суммарный момент $М$ пары всегда будет равным произведению одной из сил $F$ на расстояние $l$ между силами (плечо пары) в независимости от типов отрезков, на которые оно разделяет положение оси.

$M={FL_1+FL-2} = F{L_1+L_2}=FL$

В ситуации, когда равнодействующая момента нескольких сил равнозначна нулю, он будет считаться одинаковым относительно всех параллельных друг другу осей. По этой причине воздействие на тело всех этих сил возможно заменить действием всего лишь одной пары сил с таким же моментом.

Источник: https://spravochnick.ru/fizika/ponyatie_sily_v_fizike/moment_sily_formuly/

Момент силы: определения, единица измерения, примеры, относительно оси и точки

Момент силы, формулы

В статье мы расскажем про момент силы относительно точки и оси, определения, рисунки и графики, какая единица измерения момента силы, работа и сила во вращательном движении, а также примеры и задачи.

Момент силы представляет собой вектор физической величины, равный произведению векторов плеча силы (радиус-вектор частицы) и силы, действующей на точку. Силовой рычаг представляет собой вектор, соединяющий точку, через которую проходит ось вращения твердого тела с точкой, к которой приложена сила.

где: r — плечо силы, F — сила приложенная на тело. 

Направление вектора силы момента всегда перпендикулярно плоскости, определяемой векторами r и F.

Главный момент — любая система сил на плоскости относительно принятого полюса называется алгебраическим моментом момента всех сил этой системы относительно этого полюса.

Во вращательных движениях важны не только сами физические величины, но и то, как они расположены относительно оси вращения, то есть их моменты. Мы уже знаем, что во вращательном движении важна не только масса, но и момент инерции. В случае силы, ее эффективность для запуска ускорения определяется способом приложения этой силы к оси вращения.

Взаимосвязь между силой и способом ее применения описывает МОМЕНТ СИЛЫ. Момент силы — это векторное произведение силового плеча R на вектор силы F:

Как в каждом векторном произведении, так и здесь

Следовательно, сила не будет влиять на вращение, когда угол между векторами силы F и рычагом R равен 0o или 180o. Каков эффект применения момента силы М?

Мы используем второй Закон движения Ньютона и связь между канатом и угловой скоростью v = Rω в скалярной форме, действительны, когда векторы R и ω перпендикулярны друг другу

Умножив обе части уравнения на R, получим

Поскольку mR 2 = I, мы заключаем, что

Вышеуказанная зависимость справедлива и для случая материального тела. Обратите внимание, что в то время как внешняя сила дает линейное ускорение a, момент внешней силы дает угловое ускорение ε.

Единица измерения момента силы

Основной мерой измерения момента силы в системной координате СИ является: [M]=Н•м

В СГС: [M]=дин•см

Работа и сила во вращательном движении

Работа в линейном движении определяется общим выражением,

но во вращательном движении,

а следовательно

Исходя из свойств смешанного произведения трех векторов, можно записать

Поэтому мы получили выражение для работы во вращательном движении:

Мощность во вращательном движении:

Момент силы пример и решение задач относительно точки

Найдите момент силы, действующей на тело в ситуациях, показанных на рисунках ниже. Предположим, что r = 1m и F = 2N.

а) поскольку угол между векторами r и F равен 90°, то sin(a)=1: M = r • F = 1м • 2N = 2Н • м 

б) потому что угол между векторами r и F равен 0°, поэтому sin(a)=0: 

M = 0 

да направленная сила не может дать точке вращательное движение

c)    поскольку угол между векторами r и F равен 30°, то sin(a)=0.5: 

M = 0,5 r • F = 1Н • м. 

Таким образом, направленная сила вызовет вращение тела, однако ее эффект будет меньше, чем в случае a).

Момент силы относительно оси

Предположим, что данные являются точкой O (полюс) и мощность P. В точке O мы принимаем начало прямоугольной системы координат. Момент силы Р по отношению к полюсным O представляет собой вектор М из (Р), (рисунок ниже).

Любая точка A на линии P имеет координаты (xo , yo , zo ). 
Вектор силы P имеет координаты Px , Py, Pz. Комбинируя точку A (xo, yo, zo ) с началом системы, мы получаем вектор p.

 Координаты вектора силы P относительно полюса O обозначены символами Mx, My, Mz.

Эти координаты могут быть вычислены как минимумы данного определителя, где ( i, j, k) — единичные векторы на осях координат (варианты): i, j, k

После решения определителя координаты момента будут равны:

Координаты вектора моментов Mo (P) называются моментами силы относительно соответствующей оси. Например, момент силы P относительно оси Oz окружает шаблон:

Mz = Pyxo — Pxyo

Этот паттерн интерпретируется геометрически так, как показано на рисунке ниже. 

На основании этой интерпретации момент силы относительно оси Oz можно определить, как момент проекции силы P на перпендикуляр оси Oz относительно точки проникновения этой плоскости осью.

 Проекция силы P на перпендикуляр оси обозначена Pxy, а точка проникновения плоскости Oxy — осью Oс  символом O.

Из приведенного выше определения момента силы относительно оси следует, что момент силы относительно оси равен нулю, когда сила и ось равны, в одной плоскости (когда сила параллельна оси или когда сила пересекает ось). 

Используя формулы на Mx, My, Mz, мы можем рассчитать значение момента силы P относительно точки O и определить углы, содержащиеся между вектором M и осями системы:

Если сила лежит в плоскости Oxy, то zo = 0 и Pz = 0 (см. Рисунок ниже).

Момент силы P по отношению к точке (полюсу) O составляет: 
Mx = 0, 
My = 0, 
Mo (P) = Mz = Pyxo — Pxyo.

Метка крутящего момента: плюс (+) — вращение силы вокруг оси O по часовой стрелке, 

минус (-) — вращение силы вокруг оси O против часовой стрелки.

by HyperComments

Источник: https://meanders.ru/moment-sily.shtml

Момент силы. Формула момента силы

Момент силы, формулы

В физике рассмотрение задач с вращающимися телами или системами, которые находятся в равновесии, осуществляется с использованием концепции «момент силы». В этой статье будет рассмотрена формула момента силы, а также ее использование для решения указанного типа задач.

Момент силы в физике

Как было отмечено во введении, в данной статье пойдет речь о системах, которые могут вращаться либо вокруг оси, либо вокруг точки. Рассмотрим пример такой модели, изображенной на рисунке ниже.

Мы видим, что рычаг серого цвета закреплен на оси вращения. На конце рычага имеется черный кубик некоторой массы, на который действует сила (красная стрелка). Интуитивно понятно, что результатом воздействия этой силы будет вращение рычага вокруг оси против часовой стрелки.

Моментом силы называется величина в физике, которая равна векторному произведению радиуса, соединяющего ось вращения и точку приложения силы (зеленый вектор на рисунке), и самой внешней силе. То есть формула момента силы относительно оси записывается следующим образом:

M¯ = r¯ * F¯

Результатом этого произведения будет вектор M¯. Направление его определяют, исходя из знания векторов-множителей, то есть r¯ и F¯.

Согласно определению векторного произведения, M¯ должен быть перпендикулярен плоскости, образованной векторами r¯ и F¯, и направлен в соответствии с правилом правой руки (если четыре пальца правой руки расположить вдоль первого умножаемого вектора в направлении к концу второго, то отставленный вверх большой палец укажет, куда направлен искомый вектор). На рисунке можно видеть, куда направлен вектор M¯ (синяя стрелка).

На рисунке в предыдущем пункте сила (красная стрелка) действует на рычаг под углом 90o. В общем же случае она может быть приложена под совершенно любым углом. Рассмотрим изображение ниже.

Здесь мы видим, что на рычаг L сила F уже действует под некоторым углом Φ. Для этой системы формула момента силы относительно точки (показана стрелкой) в скалярном виде примет форму:

M = L * F * sin(Φ)

Из выражения следует, что момент силы M будет тем больше, чем ближе направление действия силы F к углу 90o по отношению к L. Наоборот, если F действует вдоль L, то sin(0) = 0, и сила не создает никакого момента (M = 0).

При рассмотрении момента силы в скалярной форме часто пользуются понятием «рычага силы». Эта величина представляет собой расстояние между осью (точкой вращения) и вектором F.

Применяя это определение к рисунку выше, можно сказать, что d = L * sin(Φ) — это рычаг силы (равенство следует из определения тригонометрической функции «синус»).

Через рычаг силы формулу для момента M можно переписать так:

M = d * F

Физический смысл величины M

Рассматриваемая физическая величина определяет способность внешней силы F оказывать вращательное воздействие на систему. Чтобы привести тело во вращательное движение, ему необходимо сообщить некоторый момент M.

Ярким примером этого процесса является открывание или закрывание двери в комнату. Взявшись за ручку, человек прикладывает усилие и поворачивает дверь на петлях. Каждый сможет это сделать. Если же попытаться открыть дверь, воздействуя на нее вблизи петель, то потребуется приложить большие усилия, чтобы сдвинуть ее с места.

Другим примером является откручивание гайки ключом. Чем короче будет этот ключ, тем труднее выполнить поставленную задачу.

Указанные особенности демонстрирует формула момента силы через плечо, которая была приведена в предыдущем пункте. Если M считать постоянной величиной, то чем меньше d, тем большую F следует приложить для создания заданного момента силы.

Несколько действующих сил в системе

Выше были рассмотрены случаи, когда на систему, способную к вращению, действует всего одна сила F, но как быть, когда таких сил несколько? Действительно, эта ситуация является более частой, поскольку на систему могут действовать силы различной природы (гравитационная, электрическая, трение, механическая и другие). Во всех этих случаях результирующий момент силы M¯ может быть получен с помощью векторной суммы всех моментов Mi¯, то есть:

M¯ = ∑i(Mi¯), где i — номер силы Fi

Из свойства аддитивности моментов следует важный вывод, который получил название теоремы Вариньона, названной так по фамилии математика конца XVII — начала XVIII века — француза Пьера Вариньона.

Она гласит: «Сумма моментов всех сил, оказывающих воздействие на рассматриваемую систему, может быть представлена в виде момента одной силы, которая равна сумме всех остальных и приложена к некоторой точке».

Математически теорему можно записать так:

∑i(Mi¯) = M¯ = d * ∑i(Fi¯)

Эта важная теорема часто используется на практике для решения задач на вращение и равновесие тел.

Совершает ли работу момент силы?

Анализируя приведенные формулы в скалярном или векторном виде, можно прийти к выводу, что величина M — это некоторая работа. Действительно, ее размерность равна Н*м, что в СИ соответствует джоулю (Дж).

На самом деле момент силы — это не работа, а лишь величина, которая способна ее совершить. Чтобы это произошло, необходимо наличие кругового движения в системе и продолжительного во времени действия M.

Поэтому формула работы момента силы записывается в следующем виде:

A = M * θ

В этом выражении θ — это угол, на который было произведено вращение моментом силы M. В итоге единицу работы можно записать как Н*м*рад или же Дж*рад.

Например, значение 60 Дж*рад говорит о том, что при повороте на 1 радиан (приблизительно 1/3 окружности) создающая момент M сила F совершила работу в 60 джоулей.

Эту формулу часто используют при решении задач в системах, где действуют силы трения, что будет показано ниже.

Момент силы и момент импульса

Как было показано, воздействие на систему момента M приводит к появлению в ней вращательного движения. Последнее характеризуется величиной, которая получила название «момент импульса». Его можно вычислить, применяя формулу:

L = I * ω

Здесь I — это момент инерции (величина, которая играет такую же роль при вращении, что и масса при линейном движении тела), ω — угловая скорость, она связана с линейной скоростью формулой ω = v/r.

Оба момента (импульса и силы) связаны друг с другом следующим выражением:

M = I * α, где α = dω / dt — угловое ускорение.

Приведем еще одну формулу, которая важна для решения задач на работу моментов сил. С помощью этой формулы можно вычислить кинетическую энергию вращающегося тела. Она выглядит так:

Ek = 1/2 * I * ω2

Далее приведем две задачи с решениями, где покажем, как пользоваться рассмотренными физическими формулами.

Равновесие нескольких тел

Первая задача связана с равновесием системы, в которой действуют несколько сил. На рисунке ниже приведена система, на которую действуют три силы. Необходимо рассчитать, какой массы предмет необходимо подвесить к этому рычагу и в какой точке это следует сделать, чтобы данная система находилась в равновесии.

Из условия задачи можно понять, что для ее решения следует воспользоваться теоремой Вариньона. На первую часть задачи можно ответить сразу, поскольку вес предмета, которые следует подвесить к рычагу, будет равен:

P = F1 — F2 + F3 = 20 — 10 + 25 = 35 Н

Знаки здесь выбраны с учетом того, что сила, вращающая рычаг против часовой стрелки, создает отрицательный момент.

Положение точки d, куда следует подвесить этот вес, вычисляется по формуле:

M1 — M2 + M3 = d * P = 7 * 20 — 5 * 10 + 3 * 25 = d * 35 => d = 165/35 = 4,714 м

Отметим, что с помощью формулы момента силы тяжести мы вычислили эквивалентную величину M той, которую создают три силы. Чтобы система находилась в равновесии, необходимо подвесить тело весом 35 Н в точке 4,714 м от оси с другой стороны рычага.

Задача с движущимся диском

Решение следующей задачи основано на использовании формулы момента силы трения и кинетической энергии тела вращения. Задача: дан диск радиуса r = 0,3 метра, который вращается со скоростью ω = 1 рад/с. Необходимо рассчитать, какое расстояние способен он пройти по поверхности, если коэффициент трения качения равен μ = 0,001.

Эту задачу легче всего решить, если воспользоваться законом сохранения энергии. Мы располагаем начальной кинетической энергией диска. Когда он начнет катиться, то вся эта энергия расходуется на нагрев поверхности за счет действия силы трения. Приравнивая обе величины, получим выражение:

I * ω2/2 = μ * N/r * r * θ

Первая часть формулы — это кинетическая энергия диска. Вторая часть — это работа момента силы трения F = μ * N/r, приложенной к краю диска (M=F * r).

Учитывая, что N = m * g и I = 1/2m * r2, вычисляем θ:

θ = m * r2 * ω2/(4 * μ * m * g) = r2 * ω2/(4 * μ *g) = 0,32 * 12/(4 * 0,001 * 9,81) = 2,29358 рад

Поскольку 2pi радиан соответствуют длине 2pi * r, тогда получаем, что искомое расстояние, которое пройдет диск, равно:

s = θ * r = 2,29358 * 0,3 = 0,688 м или около 69 см

Отметим, что на данный результат масса диска никак не влияет.

Источник: https://FB.ru/article/427827/moment-silyi-formula-momenta-silyi

Определение и свойства момента силы

Момент силы, формулы

Определения момента силы относительно точки и оси. Определение плеча силы относительно точки. Формулировки и доказательства свойств момента силы. Выражение абсолютного значения момента в виде произведения плеча силы на модуль силы.

Момент силы относительно точки O – это векторное произведение вектора , проведенного из точки O в точку приложения силы A, на вектор силы :
(1)   .

Если выбрать прямоугольную систему координат Oxyz с центром в точке O, то момент силы будет иметь следующие компоненты:
(1.1)   ;
(1.2)   ;
(1.3)   .
Здесь – координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Определение плеча силы

Плечо силы относительно точки – это расстояние между линией действия силы и точкой, относительно которой определяется плечо. То есть плечо силы – это длина перпендикуляра, опущенного из точки на линию действия силы.

Свойства

Если точку приложения силы переместить вдоль линии ее действия, то момент, при таком перемещении, не изменится.
Доказательство ⇓

Абсолютная величина момента силы относительно некоторой точки равна произведению абсолютного значения силы на плечо этой силы относительно выбранной точки.
Доказательство ⇓

Момент относительно точки O, от силы, линия действия которой проходит через эту точку, равен нулю.
Доказательство ⇓

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.
Доказательство ⇓

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке. При этом в качестве точки приложения суммы сил берется точка пересечения линий их действия.

Если векторная сумма сил равна нулю:
, то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:

.

Доказательство ⇓

Момент силы является псевдовектором или, что то же самое, аксиальным вектором.

Это свойство следует из свойства векторного произведения. Поскольку векторы и являются истинными (или полярными) векторами, то их векторное произведение является псевдовектором. Это означает то, что мы можем определить только абсолютное значение и ось, вдоль которой направлено векторное произведение.

Само же направление по этой оси мы задаем произвольным образом, используя правило правого винта. То есть мы мысленно откладываем векторы и из одного центра. Затем поворачиваем ручку из положения в положение . В результате правый винт смещается в направлении, перпендикулярном плоскости, в которой расположены векторы.

Это направление мы и берем за направление векторного произведения.

Но если бы мы определили направление по правилу левого винта, то векторное произведение было бы направлено в противоположную сторону. При этом никакого противоречия не возникает.

То есть фактически, аксиальные векторы могут иметь два взаимно противоположных направления. Чтобы не усложнять математические формулы, мы выбираем одно из них, применяя правило правого винта.

По этой причине, псевдовекторы нельзя геометрически складывать с истинными векторами. Но их можно перемножать, используя скалярное или векторное произведение.

Определение

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Момент силы относительно оси – это проекция вектора момента силы относительно произвольной точки, принадлежащей этой оси, на направление оси.

Пусть – единичный вектор, направленный вдоль оси. И пусть O – произвольная точка, принадлежащая ей. Тогда момент силы относительно оси является скалярным произведением:
.
Такое определение возможно, поскольку для любых двух точек O и O′, принадлежащих оси, проекции моментов относительно этих точек на ось равны. Покажем это.

Воспользуемся векторным уравнением :

;
.
Умножим это уравнение скалярно на единичный вектор , направленный вдоль оси:
.
Поскольку вектор параллелен оси, то . Отсюда
.
То есть проекции моментов на ось, относительно точек O и O′, принадлежащих этой оси, равны.

Перемещение точки приложения силы вдоль линии ее действия

Все свойства ⇑ Если точку приложения силы переместить вдоль линии действия силы, то момент, при таком перемещении, не изменится.

Доказательство

Пусть сила приложена в точке A. Через точку A проведем прямую, параллельную вектору силы. Эта прямая является линией ее действия. Переместим точку A приложения силы в точку A′, принадлежащую линии действия. Тогда
.

Вектор проведен через две точки линии действия. Поэтому его направление совпадает или противоположно направлению вектора силы . Тогда , где λ – параметр; .   , если точка A′ смещена относительно A в направлении вектора .

В противном случае .

Таким образом, вектор, проведенный из O в A′, имеет вид:
.
Найдем момент силы, приложенной в точке A′, применяя свойства векторного произведения:

. Мы видим, что момент не изменился:

.

Свойство доказано.

Абсолютная величина момента силы

Все свойства ⇑ Абсолютная величина момента силы относительно некоторой точки равна произведению абсолютного значения силы на плечо этой силы относительно выбранной точки.

Доказательство

Абсолютное значение момента M относительно точки O равно произведению силы F на ее плечо d = |OD|.

Пусть мы имеем силу , приложенную в точке A. Рассмотрим момент этой силы относительно некоторой точки O. Заметим, что точки O, A и вектор лежат в одной плоскости. Изобразим ее на рисунке. Через точку A, в направлении вектора проводим прямую AB.

Эта прямая называется линией действия силы . Через точку O опустим перпендикуляр OD к линии действия. И пусть D является точкой пересечения линии действия и перпендикуляра. Тогда – плечо силы относительно центра O. Обозначим его буквой .

Воспользуемся предыдущим свойством ⇑, согласно которому точку приложения силы можно перемещать вдоль ее линии действия. Переместим ее в точку D. Момент силы:
.

Поскольку векторы и перпендикулярны, то по свойству векторного произведения, абсолютное значение момента:
,
где – абсолютное значение силы.

Заметим, что вектор момента перпендикулярен плоскости рисунка. Его направление определяется по правилу правого винта. Если мы будем вращать винт, проходящий через точку O перпендикулярно плоскости рисунка, в направлении силы F, то он будет перемещаться на нас. Поэтому вектор момента перпендикулярен плоскости рисунка и направлен на нас.

Свойство доказано.

Момент относительно точки от силы, проходящей через эту точку

Все свойства ⇑ Момент относительно точки O, от силы, линия действия которой проходит через эту точку, равен нулю.

Доказательство

Пусть линия действия силы проходит через точку O. Тогда плечо этой силы относительно O равно нулю: . Согласно предыдущему свойству ⇑, абсолютное значение момента силы относительно выбранной точки равно нулю:
.

Свойство доказано.

Момент суммы сил, приложенных в одной точке

Все свойства ⇑ Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Доказательство

Пусть силы приложены в одной точке A. Пусть – векторная сумма этих сил. Находим момент относительно некоторой точки O от векторной суммы , приложенной в точке A. Для этого применяем свойства векторного произведения:

.

Свойство доказано.

Момент системы сил, векторная сумма которых равна нулю

Все свойства ⇑ Если векторная сумма сил равна нулю:
, то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:

.

Доказательство

Пусть силы приложены в точках , соответственно. И пусть точки O и C обозначают два центра, относительно которых мы будем вычислять моменты. Тогда имеют место следующие векторные уравнения:
.
Используем их при вычислении суммы моментов относительно точки O:

. Здесь мы воспользовались тем, что по условию,

.

Свойство доказано.

Момент относительно оси от силы, проходящей через эту ось

Все свойства ⇑ Момент относительно оси от силы, линия действия которой проходит через эту ось, равен нулю.

Доказательство

В определении ⇑ указано, что момент силы относительно оси – это проекция вектора момента силы относительно произвольной точки, принадлежащей этой оси, на направление оси. В качестве такой точки возьмем точку пересечения линии действия силы с осью. Но, согласно доказанному выше ⇑, момент относительно этой точки равен нулю. Поэтому равна нулю и его проекция на эту ось.

Свойство доказано.

Момент относительно оси от силы, параллельной этой оси

Все свойства ⇑ Момент относительно оси от силы, параллельной этой оси равен нулю.

Доказательство

Пусть O – произвольная точка на оси. Рассмотрим момент силы относительно этой точки. Согласно определению:
.
Согласно свойству векторного произведения, вектор момента перпендикулярен вектору силы . Поскольку вектор силы параллелен оси, то вектор момента ей перпендикулярен. Поэтому проекция момента относительно точки O на ось равна нулю.

Свойство доказано.

Олег Одинцов.     : 20-09-2019

Источник: https://1cov-edu.ru/mehanika/statika/moment-sily-opredelenie-i-svojstva/

Момент силы. урок. Физика 7 Класс

Момент силы, формулы

Представьте, что вы футболист и перед вами футбольный мяч. Чтобы он полетел, его нужно ударить. Всё просто: чем сильнее ударите, тем быстрее и дальше полетит, и бить будете, скорее всего, в центр мяча (см. рис. 1).

Рис. 1. Прямая траектория полета мяча (Источник)

А чтобы мяч в полете вращался и летел по искривленной траектории, вы ударите не в центр мяча, а сбоку, что и делают футболисты, чтобы обмануть соперника (см. рис. 2).

Рис. 2. Кривая траектория полета мяча

Здесь уже важно, в какую точку бить.

Еще один простой вопрос: в каком месте нужно взять палку, чтобы она при подъеме не перевернулась? Если палка равномерная по толщине и плотности, то возьмем мы её посередине. А если она с одного края массивнее? Тогда мы возьмем её ближе к массивному краю, иначе он перевесит (см. рис. 3).

Рис. 3. Точка подъема

Представьте: папа сел на качели-балансир (см. рис. 4).

Рис. 4. Качели-балансир

Чтобы его перевесить, вы сядете на качели поближе к противоположному концу.

Во всех приведённых примерах нам важно было не просто подействовать на тело с некоторой силой, но и важно, в каком месте, на какую именно точку тела действовать. Эту точку мы выбирали наугад, пользуясь жизненным опытом. А если на палке будет три разных груза? А если поднимать ее вдвоем? А если речь идёт о подъемном кране или вантовом мосте (см. рис. 5)?

Рис. 5. Примеры из жизни

Для решения таких задач интуиции и опыта недостаточно. Без четкой теории их решить уже нельзя. О решении таких задач сегодня и пойдёт речь.

Обычно в задачах у нас есть тело, к которому приложены силы, и мы их решаем, как всегда до этого, не задумываясь над точкой приложения силы. Достаточно знать, что сила приложена просто к телу. Такие задачи встречаются часто, мы умеем их решать, но бывает, что недостаточно приложить силу просто к телу, – становится важно, в какую точку.

Пример задачи, в которой размеры тела не важны

Например, на столе лежит маленький железный шарик, на который действует сила тяжести 1 Н. Какую силу нужно приложить, чтобы его поднять? Шарик притягивается Землей, мы будем действовать на него вверх, прикладывая некоторую силу.

Силы, действующие на шарик, направлены в противоположные стороны, и, чтобы поднять шарик, нужно подействовать на него с силой, большей по модулю, чем сила тяжести (см. рис. 6).

Рис. 6. Силы, действующие на шарик

Сила тяжести равна , значит, на шарик нужно подействовать вверх с силой:

Мы не задумывались, как именно мы берем шарик, мы его просто берем и поднимаем. Когда мы показываем, как мы поднимали шарик, мы вполне можем нарисовать точку и показать: мы воздействовали на шарик (см. рис. 7).

Рис. 7. Действие на шарик

Когда мы можем так поступить с телом, показать его на рисунке при объяснении в виде точки и не обращать внимания на его размеры и форму, мы считаем его материальной точкой. Это модель.

Реально же шарик имеет форму и размеры, но мы на них в этой задаче не обращали внимания. Если тот же шарик нужно заставить вращаться, то просто сказать, что мы воздействуем на шарик, уже нельзя.

Здесь важно, что мы толкали шарик с краю, а не в центр, заставляя его вращаться. В этой задаче тот же шарик уже нельзя считать точкой.

Мы уже знаем примеры задач, в которых нужно учитывать точку приложения силы: задача с футбольным мячом, с неоднородной палкой, с качелями.

Точка приложения силы важна также в случае с рычагом. Пользуясь лопатой, мы действуем на конец черенка. Тогда достаточно приложить небольшую силу (см. рис. 8).

Рис. 8. Действие малой силы на черенок лопаты

Что общего между рассмотренными примерами, где нам важно учитывать размеры тела? И мяч, и палка, и качели, и лопата – во всех этих случаях речь шла о вращении этих тел вокруг некоторой оси. Мяч вращался вокруг своей оси, качели поворачивались вокруг крепления, палка – вокруг места, в котором мы ее держали, лопата – вокруг точки опоры (см. рис. 9).

Рис. 9. Примеры вращающихся тел

Рассмотрим поворот тел вокруг неподвижной оси и увидим, что заставляет тело поворачиваться. Будем рассматривать вращение в одной плоскости, тогда можно считать, что тело поворачивается вокруг одной точки О (см. рис. 10).

Рис. 10. Точка вращения

Если мы захотим уравновесить качели, у которых балка будет стеклянной и тонкой, то она может просто сломаться, а если балка из мягкого металла и тоже тонкая – то согнуться (см. рис. 11).

Рис. 11. Стеклянная балка (слева) и балка из мягкого металла (справа)

Такие случаи мы рассматривать не будем; будем рассматривать поворот прочных жестких тел.

Неправильно будет сказать, что вращательное движение определяется только силой. Ведь на качелях одна и та же сила может вызвать их вращение, а может и не вызвать, смотря где мы сядем.

Дело не только в силе, но и в расположении точки, на которую воздействуем. Все знают, насколько трудно поднять и удержать груз на вытянутой руке.

Чтобы определять точку приложения силы, вводится понятие плеча силы (по аналогии с плечом руки, которой поднимают груз).

Плечо силы – это минимальное расстояние от заданной точки до прямой, вдоль которой действует сила.

Из геометрии вы наверняка уже знаете, что это перпендикуляр, опущенный из точки О на прямую, вдоль которой действует сила (см. рис. 12).

Рис. 12. Графическое изображение плеча силы

Почему плечо силы – минимальное расстояние от точки О до прямой, вдоль которой действует сила

Может показаться странным, что плечо силы измеряется от точки О не до точки приложения силы, а до прямой, вдоль которой эта сила действует.

Проделаем такой опыт: привяжем к рычагу нить. Подействуем на рычаг с некоторой силой в точке, где привязана нить (см. рис. 13).

Рис. 13. Нить привязана к рычагу

Если создастся момент силы, достаточный для поворота рычага, он повернется. Нить покажет прямую, вдоль которой направлена сила (см. рис. 14).

Рис. 14. Направление силы

Попробуем потащить рычаг с той же силой, но теперь взявшись за нить. В воздействии на рычаг ничего не изменится, хотя точка приложения силы поменяется. Но сила будет действовать вдоль той же прямой, ее расстояние до оси вращения, то есть плечо силы, останется тем же. Попробуем подействовать на рычаг под углом (см. рис. 15).

Рис. 15. Действие на рычаг под углом

Теперь сила приложена к той же точке, но действует вдоль другой прямой. Ее расстояние до оси вращения стало малό, момент силы уменьшился, и рычаг может уже не повернуться.

На тело оказывается воздействие, направленное на вращение, на поворот тела. Это воздействие зависит от силы и от её плеча. Величина, характеризующая вращательное воздействие силы на тело, называется момент силы, иногда его называют еще вращающим или крутящим моментом.

Значение слова «момент»

Нам привычно употреблять слово «момент» в значении очень короткого промежутка времени, как синоним слова «мгновение» или «миг». Тогда не совсем понятно, какое отношение имеет момент к силе. Обратимся к происхождению слова «момент».

Слово происходит от латинского momentum, что означает «движущая сила, толчок». Латинский глагол movēre означает «двигать» (как и английское слово move, а movement означает «движение»). Теперь нам ясно, что вращающий момент – это то, что заставляет тело вращаться.

Момент силы – это произведение силы на ее плечо.

Единица измерения – ньютон, умноженный на метр: .

Если увеличивать плечо силы, можно уменьшить силу и момент силы останется прежним. Мы очень часто используем это в повседневной жизни: когда открываем дверь, когда пользуемся плоскогубцами или гаечным ключом.

Остался последний пункт нашей модели – надо разобраться, что делать, если на тело действует несколько сил. Мы можем вычислить момент каждой силы. Понятно, что если силы будут вращать тело в одном направлении, то их действие сложится (см. рис. 16).

Рис. 16. Действие сил складывается

Если в разных направлениях – моменты сил будут уравновешивать друг друга и логично, что их нужно будет вычесть. Поэтому моменты сил, которые вращают тело в разных направлениях, будем записывать с разными знаками. Например, запишем, если сила предположительно вращает тело вокруг оси по часовой стрелке, и  – если против (см. рис. 17).

Рис. 17. Определение знаков

Тогда мы можем записать одну важную вещь: чтобы тело пребывало в равновесии, сумма моментов действующих на него сил должна быть равна нулю.

Формула для рычага

Мы уже знаем принцип действия рычага: на рычаг действуют две силы, и во сколько раз больше плечо рычага, во столько раз меньше сила:

Рассмотрим моменты сил, которые действуют на рычаг.

Выберем положительное направление вращения рычага, например против часовой стрелки (см. рис. 18).

Рис. 18. Выбор направления вращения

Тогда момент силы  будет со знаком плюс, а момент силы  – со знаком минус. Чтобы рычаг был в равновесии, сумма моментов сил должна быть равна нулю. Запишем:

Математически это равенство и соотношение, записанное выше для рычага, – одно и то же, и то, что мы получили экспериментально, подтвердилось.

Например, определим, будет ли пребывать в равновесии рычаг, изображенный на рисунке. На него действуют три силы (см. рис. 19). ,  и . Плечи сил равны ,  и .

Рис. 19. Рисунок к условию задачи 1

Чтобы рычаг пребывал в равновесии, сумма моментов сил, которые на него действуют, должен быть равен нулю.

На рычаг по условию действуют три силы: ,  и . Их плечи соответственно равны ,  и .

Направление вращения рычага по часовой стрелке будем считать положительным. В этом направлении рычаг вращает сила , ее момент равен:

Силы  и  вращают рычаг против часовой стрелки, их моменты запишем со знаком минус:

Осталось вычислить сумму моментов сил:

Суммарный момент не равен нулю, значит, тело не будет пребывать в равновесии. Суммарный момент положительный, значит, рычаг будет поворачиваться по часовой стрелке (в нашей задаче это положительное направление).

Что произойдет с рычагом дальше?

Мы решили задачу и получили результат: суммарный момент сил, действующих на рычаг, равен . Рычаг начнет поворачиваться. И при его повороте, если силы не изменят направление, будут изменяться плечи сил. Они будут уменьшаться, пока не станут равны нулю, когда рычаг повернется вертикально (см. рис. 20).

Рис. 20. Плечи сил равны нулю

А при дальнейшем повороте силы станут направлены так, чтобы вращать его в противоположном направлении. Поэтому, решив задачу, мы определили, в какую сторону начнет вращаться рычаг, не говоря о том, что будет происходить потом.

Теперь вы научились определять не только силу, с которой нужно действовать на тело, чтобы изменить его скорость, но и точку приложения этой силы, чтобы оно не поворачивалось (или поворачивалось, как нам нужно).

Как толкать шкаф, чтобы он не перевернулся?

Мы знаем, что, когда мы толкаем шкаф с силой  в верхней его части, он переворачивается, а чтобы этого не произошло, мы толкаем его ниже. Теперь мы можем объяснить это явление. Ось его вращения находится на том его ребре, на котором он стоит, при этом плечи всех сил, кроме силы , либо малы, либо равняются нулю, поэтому под действием силы  шкаф падает (см. рис. 21).

Рис. 21. Действие на верхнюю часть шкафа

Прикладывая силу ниже, мы уменьшаем ее плечо , а значит, и момент этой силы, и опрокидывания не происходит (см. рис. 22).

Рис. 22. Сила приложена ниже

Шкаф как тело, размеры которого мы учитываем, подчиняется тому же закону, что и гаечный ключ, дверная ручка, мосты на опорах и т. п.

На этом наш урок окончен. Спасибо за внимание!

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Перышкин А.В. Физика. 7 кл.: учеб. для общеобразоват. учреждений — 10-е изд., доп. – М.: Дрофа, 2006. – 192 с.: ил.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Abitura.com (Источник).
  2. Solverbook.com (Источник).

Домашнее задание

  1. Дайте определение плеча силы, момента сил.
  2. Чему равна размерность момента сил?
  3. Подвешенный однородный стержень с двумя грузами на концах находится в равновесии. Как нужно изменить плечо , чтобы стержень остался в равновесии, если массу первого груза увеличили в 2 раза?

Источник: https://interneturok.ru/lesson/physics/7-klass/rabota-moshnost-energija/moment-sily?book_id=8

Booksm
Добавить комментарий